
On the BMS Algorithm

Shojiro Sakata
The University of Electro-Communications

Department of Information and Communication Engineering
Chofu-shi, Tokyo 182-8585, JAPAN

Abstract

I will present a sketch of the N-dimensional (N -

D) Berlekamp-Massey algorithm (alias Berlekamp-

Massey-Sakata or BMS algorithm). I mention: (1)

How is it related to Gröbner basis? (2) What prob-

lem can it solve? (3) How does it work? First I will

discuss a problem closely related to ours, and intro-

duce some concepts about N -D linear recurrences and

modules of N -D arrays as their general solutions. The

former problem and ours are just the inverse to each

other, which can be solved by Buchberger algorithm

and BMS algorithm, respectively. Furthermore, I dis-

cuss some properties of BMS algorithm and its outputs,

including its computational complexity.

1 Introduction

In this lecture, I will present a sketch of the

multidimensional Berlekamp-Massey algorithm (alias

Berlekamp-Massey-Sakata algorithm or BMS algo-

rithm) [1][2]. It is a generalization of Berlekamp-

Massey algorithm [3][4]. I mention:

(1) How is it related to Gröbner basis theory?

(2) What problem can it solve?

(3) How does it work?

In another session I will mention its application to

decoding of algebraic error-correcting codes [5]. In

most part of these lectures we restrict ourselves to

treating finite fields although the contents remain valid

in any field provided that we have exact computations.

Before we introduce our main theme, i.e. our prob-

lem and its solution by BMS algorithm, we discuss a

problem closely related to ours as well as some con-

cepts which are important in this paper. It also will

turn to be a history of Gröbner basis in the world of

Coding Theory.

Now we start to consider a simple sequence or (one-

dimensional) array and a linear recurrence satisfied by

it. The following is the the linear recurrence satisfied

by the famous Fibonacci sequence:

sj+2 − sj+1 − sj = 0, j ≥ 0

Over the real number field, when we start with the ini-

tial values s0 = 1, s1 = 1, we have the one-dimensional

(1-D) array (sj) = (1, 1, 2, 3, 5, 8, · · ·) (Over a finite field

we have another array, of course). Well, we generalize

such 1-D arrays and 1-D linear recurrences to multi-

dimensional arrays and multidimensional linear recur-

rences. For example, we consider the following system

of two-dimensional (2-D) linear recurrences:

ui+2,j + ui,j = 0
u1+1,j+1 + ui,j = 0, (i, j) ∈ Z2

0,
ui,j+2 + ui,j = 0

(1)

where Z0 is the set of nonzero integers. In general such

a condition as above is called a system of constant-

coefficient linear recurrences or (partial) finite differ-

ence equations. Given a system of N -dimensional (N -

D) linear recurrences over a finite field Fq, we want to

find all N -D arrays satisfying them. It is just a digital

version of finding the general solutions of a system of

(homogeneous) constant-coefficient linear partial dif-

ferential equations. We want to obtain not only a spe-

cial solution but also the general solutions (the whole

set of solutions). We treat multiple recurrences satis-

fied by N -D arrays. To discuss our problem in general

we need some notation as follows.

For a fixed integer N we consider N -D arrays u =

(ui)i∈ZN
0

with elements ui ∈ Fq arranged on the whole

N -D integral lattice ZN
0 := {i = (i1, i2, · · · , iN) | ij ∈

Z0, 1 ≤ j ≤ N}. Let A be the set of all N -D arrays

over Fq defined on ZN
0 , and introduce basic operations

1

upon arrays u ∈ A. Naturally, we have the sum of two

arrays u = (ui), v = (vi) ∈ A as u + v = (ui + vi) ∈ A,

and the scalar product of u by an element c of the co-

efficient field Fq as cu = (cui) ∈ A. Furthermore, we

consider polynomials f =
∑

i∈Supp(f) fix
i ∈ R, where

R := Fq[x] := Fq[x1, · · · , xN] is the N -variate poly-

nomial ring over Fq, and we denote xi := xi1
1 · · · , xiN

N .

We call the set of degrees i (∈ ZN
0) of its nonzero terms

fix
i (having the nonzero coefficient fi ∈ Fq \ {0}) by

the name of the support of f and denote it as Supp(f)

(⊂ ZN
0). (Remark: In case of N ≥ 2, the exponent i of

a monomial xi is an integer vector, which we call degree

for simplicity.) A polynomial f ∈ R is operated on an

array u ∈ A so that the following array v is obtained:

v = f ◦ u := (vi) ∈ A

vi :=
∑

k∈Supp(f)

fkuk+i, i ∈ ZN
0

This polynomial operation ’f◦’ is just a transforma-

tion of an array u into another array v. In particular,

the operation by the monomial f = xj , 1 ≤ j ≤ N

is a unit shift along the xj-axis (to the negative di-

rection), where v = xj ◦ u = (vi), i ∈ ZN
0 has the

components vi1,···,ij ,···,iN
= ui1,···,ij+1,···,iN

(the com-

ponents of u which are put out of the domain ZN
0

are pruned away). For example, in case of N = 1,

for x := x1 and u = (ui), the unit-shifted array

v = x ◦ u = (vi) has the components vi = ui+1, i ∈ Z0,

and the double-shifted array w = x2 ◦ u = (wi) has

wi = ui+2, i ∈ Z0, etc. (Trivially, by multiplying a

polynomial g =
∑

0≤i≤d gix
i with x, one gets the poly-

nomial ḡ = xg =
∑

0≤i≤d gix
i+1 =

∑
1≤i≤d+1 gi−1x

i,

where the array of coefficients of its terms is obtained

by shifting to the positive direction: (gi) → (gi−1) in

contrast with the above shift (to the negative direc-

tion) by operation x.) Consequently, the module A

is an R-module, i.e. a module with the ring R of

operators. By using this notation, we can write any

linear recurrences with the characteristic polynomials

F = {f (1), · · · , f (L)} (⊂ R) as follows,

f (k) ◦ u = 0, 1 ≤ k ≤ L, (2)

where 0 is the all-zero array. From now on, we do not

distinguish between linear recurrences and the corre-

sponding characteristic polynomials, identifying them.

That is, for simplicity, provided that the formula (2)

holds, we often say that the array u satisfies the polyno-

mial f (k), and that ‘the polynomial f (k) is valid for the

array u,’ etc. For a given F ⊂ R, it is easy to see that

the set A(F) of solutions u of (2) is an R-submodule

of the R-module A, since f ◦ (g ◦ u) = (fg) ◦ u for

f, g ∈ R. For example, for a univariate polynomial

f = x2−x−1, A(f) is the set of 1-D arrays (Fibonacci

sequences) u = (ui) which are obtained by setting any

initial values u0, u1 and then uniquely by determining

the other values ui, i ≥ 2 iteratively with the linear

recurrence f ◦ u = 0. In general, for any polynomial

set F ⊂ Fq[x] and the ideal I(F) := 〈F 〉R generated by

F , A(F) = A(I(F)) := {u ∈ A | f ◦ u = 0, f ∈ I(F)}.
As is shown, in case of N = 1, we can easily obtain

R-modules A(f) and A(F) of arrays. In particular, for

F = {f (1), · · · , f (L)} (⊂ Fq[x]), A(F) = A(g), where

g = gcd(F) (gcd=greatest common divisor). However,

it is not so easy to obtain A(F) in case of N ≥ 2 as in

case of N = 1. In case of N ≥ 2, it is difficult to specify

even the positions of initial values. The Gröbner basis

theory provides us with the notion of orders over ZN
0

for discussing this issue. For N ≥ 2, in addition to the

natural partial order ≤P over ZN
0 :

i ≤P j ⇔ ik ≤ jk, 1 ≤ k ≤ N

we have the total order defined with a fixed weight vec-

tor w = (wk) (6= 0) ∈ ZN
0 :

i ≤T j ⇔
∑

1≤k≤N

wkik <
∑

1≤k≤N

wkjk ∨

(
∑

1≤k≤N

wkik =
∑

1≤k≤N

wkjk ∧ i ≤L j),

where ≤L is any appropriate lexicographic order. This

order ≤T satisfies a kind of stable condition as be-

low and sometimes is called monomial order as is well-

known:

i ≤T j ⇒ i + k ≤T j + k

According to this total order, we have a regu-

lar arrangement of terms of a polynomial f =∑
i∈Supp(f) fix

i ∈ Fq[x] so that we can define the de-

gree, which is usually called multidegree, the head co-

efficient and the head term of f as follows (maxT S is

the maximum element of S (⊂ ZN
0) w.r.t. ≤T):

deg(f) := maxT Supp(f) (∈ ZN
0)

2

hc(f) := fdeg(f) (∈ Fq \ {0})
ht(f) := fdeg(f)x

deg(f)

We consider the problem of initial value positions via

the following example in case of N = 2. Now we as-

sume for a set of polynomials F = {f (1), · · · , f (L)}
(⊂ Fq[x1, x2]) that the degrees deg(f (l)) = d(l) =

(d(l)
1 , d

(l)
2) ∈ Z2

0, 1 ≤ l ≤ L of its elements satisfy

d
(1)
1 > d

(2)
1 > · · · > d

(L−1)
1 > d

(L)
1 = 0,

d
(1)
2 = 0 < d

(2)
2 < · · · < d

(L−1)
2 < d

(L)
2

Then, Z2
0 can be split into two parts:

ΣF := {i ∈ Z2
0 | i ≥P d(l), 1 ≤∃ l ≤ L}

∆F := Z2
0 \ ΣF

These subsets have the follwoing properties and are

called stable sets (Sometimes the former and latter sets

are called upper and lower sets, respectively),

i ∈ ΣF , j ∈ Z2
0, i ≤P j ⇒ j ∈ ΣF

i ∈ ∆F , j ∈ Z2
0, i ≥P j ⇒ j ∈ ∆F

among of which the set ∆F called delta-set seemingly

can be used as the initial value positions. That is,

after having specified any values uj ∈ Fq, j ∈ ∆F

as the initial values, we proceed to find each of the

remaining values uj , j ∈ ΣF iteratively by using the

following algorithm of generating an array up to an

prescribed position. In the following we denote the

next (w.r.t. the total order ≤T) point of any point i ∈
Z2

0 as i⊕ 1, and define Supp(f) := Supp(f) \ {deg(f)}
(⊂ Z2

0), Σr := {j ∈ Z2
0 | j <T r}.

Algorithm 1 Generating an array

Input:

a polynomial set F with the delta-set ∆F ;

the initial values uj (∈ Fq), j ∈ ∆F ;

the terminal point r;

Output:

an array uj, j ∈ Σr;

Procedure

Step 1 (initialization): j := minT ΣF

(the minimum element of ΣF w.r.t. ≤T);

Step 2 (computation): if j ∈ ΣF then

begin

let l be any l, 1 ≤ l ≤ L s.t. d(l) ≤P j;

uj :=
1

hc(f (l))
(−

∑

k∈Supp(f(l))

f
(l)
k uk+j−d(l));

end;

Step 3 (termination): j := j ⊕ 1;

if j <T r then go to Step 2 else stop.

Although it seems that we could find an array u be-

fore the terminal point r by using this algorithm, it will

turn out that we do not always succeed to get a proper

array having the specified initial values and satisfying

all of the given linear recurrences. In Step 2, the value

uj is determined by using the polynomial f (l) so that

one of the desired condition

f (l)[u]j :=
∑

k∈Supp(f(l))

f
(l)
k uk+j−d(l) = 0

is satisfied, but some conditions corresponding to other

polynomials f (l′), l′ 6= l with d(l′) ≤P j might not

always be satisfied. Consider the previous example (1)

over F2. The linear recurrences are specified by F =

{f (1) := x2
1 + 1, f (2) := x1x2 + 1, f (3) := x2

2 + 1}, and

the delta-set is ∆F = {(0, 0), (1, 0), (0, 1)}. Starting

with the initial values shown in Table 1, we proceed to

find the other values of u iteratively w.r.t. the total

order ≤T with the weight w = (1, 1) (associated with

the lexicographic order x1 <L x2).

Table 1: initial values

j1 \ j2 0 1 2 3
0 1 0
1 1
2
3
4

Then, we have the intermediate result shown in Table

2.

3

Table 2: partial array

j1 \ j2 0 1 2 3
0 1 0 1
1 1 1
2 1 0∗

3 1
4

The value u2,1 = 0 with signature ∗ is found by us-

ing f (1), but it does not satisfy the linear recurrence

of f (2). Thus, there exists no array u which has the

initial values and is a solution of the linear recurrences

(1). In other words, the above delta-set is not appro-

priate as a set of positions for initial values. On taking

into consideration the properties of Gröbner basis, it

might be hit upon that the polynomial set F is not a

Gröbner basis and that the corresponding delta-set is

too large to be a set of positions for initial values so

that the algorithm for generating arrays fails to find

proper arrays. In fact, it is easy to see that the re-

duced Gröbner basis (w.r.t. the total order ≤T with

w = (1, 1)) of the ideal I = 〈F 〉R is {x2
1 + 1, x2 + x1},

and that the proper set of positions for initial values is

{(0, 0), (1, 0)}. As we have seen, the problem of finding

the proper set of positions for initial values, given a set

of linear recurrences or its characteristic polynomials,

is closely related with that of finding a Gröbner basis of

the ideal I(F). Furthermore, we can find a polynomial

f (j) := xj −∑
i∈∆F

f (j)xi ∈ I(F) by which we can get

the value uj for any j ∈ ΣF directly from any given

values uj , j ∈ ∆F so that the so-called S-polynomial

at any corner point outside ∆F can be obtained. By

repeating reductions of such S-polynomials modulo F

and consequent modifications of F and ∆(F), we fi-

nally get a Gröbner basis. Of course, it is just the

Buchberger algorithm. Let us illustrate it with the

previous example. We get x2f
(1) = x2

1x2 + x2 ∈ I(F)

from f (1) = x2
1 + 1, and x1f

(2) = x2
1x2 + x1 from

f (2) = x1x2 + 1. Then, we obtain the S-polynomial

f (3) := x2f
(1) − x1f

(2) = x2 + x1 ∈ I(F) at the cor-

ner point (2, 1), which is not reducible further modulo

F . Finally, {f (1), f (3)} turns out to be the reduced

Gröbner basis. As a summary, we have that the prob-

lem of finding a module of linear recurrences and that

of finding a Gröbner basis of its characteristic poly-

nomials are equivalent with each other, and thus they

can be solved by the same algorithm. In the world of

Coding Theory, it is a historical fact that the concept

of an equivalent of Gröbner basis and an equivalent of

Buchberger algorithm were introduced in the process

of solving a certain problem of constructing a kind of

multidimensional codes.

2 BMS algorithm

Our main problem is just the inverse of the problem of

finding the general solutions of a given system of linear

recurrences which we have discussed in the previous

section. Now, for integers L and N , we are given a

pair of sets U := {u(l)} and V := {v(l)}, 1 ≤ l ≤
L of infinite (periodic) N -D arrays, and consider the

following linear recurrences:

f ◦ u(l) = v(l), 1 ≤ l ≤ L

We might be required to find a polynomial f having

a minimal degree deg(f). In this paper we concen-

trate upon the homogeneous problem with the right-

hand side arrays v(l) = 0, 1 ≤ l ≤ L, leaving the

non-homogeneous problem. It is easy to see that the

following set of polynomials is an ideal of R = Fq[x],

which we call the characteristic ideal of the given set

U of arrays u(l), 1 ≤ l ≤ L:

I(U) := {f ∈ R | f ◦ u(l) = 0, 1 ≤ l ≤ L}.

For simplicity, we treat only the case of a single array,

i.e. U = {u}, and we will give a method of finding a

Gröbner basis of the characteristic ideal I(u) := {f ∈
R | f◦u = 0}. We want to find a set of polynomials f =∑

k∈Supp(f) fkxk with a minimal degree d = deg(f)

which satisfy f ◦ u = 0 or

f [u]j :=
∑

k∈Supp(f)

fkuk+j−d = 0, j ≥P d (3)

We try to find a set of polynomials with a minimal

degree satisfying a (partial) condition specified by a

finite part of a given infinite array u.

To be more precise, we introduce some notations.

According to a specific total order ≤T over ZN
0 , we

arrange the points j ∈ ZN
0 so that we have ZN

0 =

{j(l), l ∈ Z0 | j(l) <T j(l+1), l ∈ Z0}, and a partial

4

array ui := (uj), j <T i for any point i ∈ ZN
0 . For

a point i = i(l), we call i(l+1) the next point of i, and

denote it as i⊕1. If a polynomial f =
∑

k∈Supp(f) fkxk

(∈ R) satisfies

f [u]j :=
∑

k∈Supp(f) fkuk+j−d = 0, (4)

d = deg(f) ≤P j <T i,

we say that f is valid (w.r.t. u) before i. From now on

we often omit the phrase “w.r.t. u.” Furthermore, if

the condition (4) holds and f [u]i 6= 0, then we say that

f is not valid at the point i for the first time. A monic

(i.e. hc(f) = 1) polynomial f which is valid before i

and whose degree deg(f) is minimal w.r.t. the partial

order ≤P is called a minimal polynomial of the partial

array ui. Since there exist in general plural minimal

polynomials f with distinct degrees deg(f) of a given

partial array ui, we can define a minimal polynomial

set F (i) (or simply, F) of ui associated with a finite

set of points D(i) = {deg(f) | f ∈ F (i)} ⊂ ZN
0 s.t.

there is a single element f ∈ F (i) with deg(f) = d for

each d ∈ D(i) and there exists no polynomial h with

deg(h) <P d ∈ D(i) which is valid (w.r.t. u) before i.

As a consequence we have a pair of subsets ⊂ ZN
0 as

follows, where Σd := {j ∈ ZN
0 | j ≥P d}:

Σ(i) := ∪d∈D(i)Σd

∆(i) := ZN
0 \ Σ(i)

In addition to D(i), letting Γc := {j ∈ ZN
0 | j ≤P c}

for c ∈ ZN
0 , we have a finite subset C(i)(⊂ ZN

0) s.t.

∆(i) = ∪c∈C(i)Γc. We call ∆(i) the delta-set of F (i),

which is, roughly speaking, in form of a stack of mul-

tidimensional building blocks and whose apices are

c ∈ C(i). As above-mentioned, there exists no poly-

nomial h with deg(h) ∈ ∆(i) which is valid before i.

These subsets D(i), C(i), Σ(i) and ∆(i) are unique for

the given array ui, but a minimal polynomial set F (i) is

not necessarily unique for ui. In view of the definition

of minimal polynomial set F (i), ∆(i) ⊆ ∆(i⊕ 1). Sim-

ilar notations can be used for an infinite array u, e.g.

a minimal polynomial set F (⊂ R) of u, the delta-set

∆(⊂ ZN
0) of u, etc.

The multidimensional Berlekamp-Massey algorithm

(alias Berlekamp-Massey-Sakata algorithm or BMS al-

gorithm) is just to find a minimal polynomial set F (i)

of a given partial array ui for a fixed point i ∈ ZN
0 .

Starting with the origin 0, we proceed to find a min-

imal polynomial set F (j) of the partial array uj iter-

atively at each point j ≤T i accordingly to the total

order ≤T . If f ∈ F (j) is valid still at j ⊕ 1, then

f ∈ F (j ⊕ 1). However, if some f ∈ F (j) is not valid

at j, then we must update these non-valid f . Whether

∆(i ⊕ 1) = ∆(i) or not depends on certain relations

among i, D(i) and C(i). The following basic lemma

[2] describing this fact stipulates the main procedure

of BMS algorithm.

Lemma 1 If a polynomial f is not valid (w.r.t. u) for

the first time at i, i.e.

f [u]j := 0, d = deg(f) ≤ j <T i; f [u]i 6= 0,

then there exists no polynomial g with deg(g) = d′ ≤P

i− d satisfying the following condition:

g[u]j := 0, d′ ≤ j ≤ i

Based on Lemma 1 we define the discrepancy, order

and span of f , respectively, as

dis(f) := f [u]i(6= 0)

ord(f) := i, span(f) := i− d

Associated with the finite subset C(i) related to the

delta-set ∆(i), we have a finite set of polynomials

G(i) := {g | span(g) ∈ C(i)}, which we call an aux-

iliary polynomial set of ui. An auxiliary polynomial

g ∈ G(i) is characterized by the property that it has a

maximal (w.r.t. the partial order ≤P) span(g) among

the polynomials s.t. ord(g) <T i. If a minimal poly-

nomial f ∈ F (i) fails to be valid at i, minimal poly-

nomial(s) f ′ ∈ F (i ⊕ 1) at i ⊕ 1 can be obtained by

using appropriate auxiliary polynomial(s) g ∈ G(i) (if

exist) as shown in Lemma 2 or without any g ∈ G(i).

First we have in view of Lemma 1 that, if there exists

a polynomial f ∈ F (i) with d = deg(f) which is not

valid at i and i − d 6∈ ∆(i), then ∆(i ⊕ 1) 6= ∆(i).

Thus, we define FN := {f ∈ F (i) | ord(f) = i},
FNN := {f ∈ FN | i − d 6∈ ∆(i)}, DNN := {deg(f) |
f ∈ FNN}. Furthermore, for c = (cl)1≤l≤N (∈ C(i)),

let max(d, i − c) := (max{dl, il − cl})1≤l≤N (∈ ZN
0),

and let D′ be the set of minimal elements d′ in D′′ :=

5

{d′ := max(d, i− c) | d ∈ DNN , c ∈ C(i)} (⊂ ZN
0), and

let D̂ be the set of minimal elements in Σ(i) \Γi. Now

we have the following lemma about how to update F

[2].

Lemma 2 (1) For f ∈ FN \FNN , there exists c ∈ C(i)

s.t. d ≥P i − c. In this case, by using an auxiliary

polynomial g ∈ G(i) s.t. span(g) = c, we obtain

h := f − dis(f)
dis(g)

xd−(i−c)g ∈ F (i⊕ 1).

(2) For a pair (f, g) ∈ FNN × G(i) with d =

deg(f), c = span(g), respectively, if it holds that

d′ := max(d, i− c) ∈ D′, then we obtain

h := x(i−c)−df − dis(f)
dis(g) g ∈ F (i⊕ 1).

(3) For d̂ ∈ D̂, if there exists no d′ ∈ D′ s.t. d̂ ≥P d′,

then, by using f ∈ FNN s.t. d̂ ≥P d = deg(f), we

obtain

h := xd̂−df ∈ F (i⊕ 1).

Based on the above observations we have the follow-

ing form of the BMS algorithm, where some nota-

tional simplicities are used, i.e. minimal polynomial set

F (j) and auxiliary polynomial set G(j) at each point

j are denoted simply as F and G, respectively, and

for f ∈ F , g ∈ G, let d := deg(f), c := span(g),

df := dis(f), dg := dis(g), etc. A simple result of

its computation is shown in Appendix A, and for the

purpose of comparison, the Berlekamp-Massey (BM)

algorithm (the case of N = 1) is shown together with

its simple result of its computation in Appendix B.

Algorithm 2 BMS algorithm

Step 1 (initialization): j := 0; F := {1}; D := {0};
G := ∅; C := ∅;

Step 2 (discrepancy): for each f ∈ F df := f [u]j;

FN := {f ∈ F | df 6= 0};
FNN := {f ∈ FN |6 ∃c ∈ C s.t.

d ≥P j − c };
DNN := {d = deg(f) ∈ D | f ∈ FNN};
D′′ := {max(d, j − c) | d ∈ DNN , c ∈ C};
D′ := {minimal d′ ∈ D′′};
D̂ := {minimal d̂ ∈ Σ(i) \ Γi};

Step 3 (updating): (1) for each f ∈ FN \ FNN

begin h := f − df

dg
xd−(j−c)g

(for g ∈ G s.t. d ≥P j − c);

F ′ := F ∪ {h}; end;

for each (f, g) ∈ FNN ×G

s.t. d′ := max(d, j − c) ∈ D′

begin h := xd′−df − df

dg
g;

F ′ := F ∪ {h}; end:

for each d̂ ∈ D̂

if 6 ∃d′ ∈ D′ s.t. d̂ ≥P d′ then

for f ∈ FNN s.t. d ≤P d̂

begin h := xd′−df ;

F ′ := F ∪ {h}; end:

(2) F := F ′ \ FN ;

G′′ := {g ∈ G | ∃f ∈ FNN

s.t. c <P j − d};
G := (G ∪ FNN) \G′′;

D := {deg(f) | f ∈ F ′ \ FNN};
C := (C ∪ {j − d | ∃f ∈ FNN

s.t. j − d >P c})
\{c ∈ C | ∃f ∈ FNN

s.t. j − d >P c};

Step 4 (termination): j := j ⊕ 1; if j <T i

then go to Step 2 else stop.

A minimal polynomial set F (i) is not necessarily

unique for the given array u. Let F be the class of

all reduced minimal polynomial sets F = F (i) of ui,

where F ∈ F is said to be reduced iff any f ∈ F has

support Supp(f) s.t. Supp(f) := Supp(f)\{deg(f)} is

contained in the delta-set ∆ := ∆(i). Let deg(f)+∆ :=

{deg + j | j ∈ ∆}. Now, we have the following lemma

[2] about the uniqueness of F (i).

Lemma 3 (Uniqueness) Let F ∈ F . Then, we have

that #F = 1 iff

⋃

f∈F

(deg(f) + ∆) ⊆ Σi,

6

or in other words,

maxT {deg(f) + ord(g)− deg(g) | f ∈ F, g ∈ G} <T i,

where G is an auxiliary polynomial set of ui, and

maxT {· · ·} is the maximum (w.r.t. ≤T) element of the

set {· · ·}.

Corollary 1 Let P = {∑1≤k≤N cki(k) ∈ ZN
0 | 0 ≤

ck ≤ 1, ck ∈ Q, 1 ≤ k ≤ N} be a fundamental period

parallelotope P ⊂ ZN
0 of an infinite N -D periodic array

u s.t. uj+i(k) = uj for any j ∈ ZN
0 , and let 2P :=

{i + j | i, j ∈ P}. Then, If the subset Σi := {j ∈ ZN
0 |

j <T i} contains 2P := {i + j | i, j ∈ P}, a minimal

polynomial set F of a part ui is a Gröbner basis of u.

In real applications of the BMS algorithm, we usually

know in advance how large the delta-set of the Gröbner

basis F . In such cases we can terminate the iterations

of the BMS algorithm much earlier than described in

Corollary 1. We assume the total order ≤T with the

weight w = (wl)1≤l≤N whose components wl are al-

most equal to each other, i.e. w1 ∼ w2 ∼ · · ·wN . This

is just the case that Buchberger algorithm has the least

complexity. Let δ := #∆ for the delta-set ∆ of the

Gröbner basis which is the minimal polynomial set F

at the termination point, and let µ := #F (∼ #G).

Then, if the computational complexity of the BMS al-

gorithm is measured as the total number of arithmetic

operations over the fixed finite field Fq, it is O(µδ2)

∼ δ3− 1
N since µ ∼ δ1− 1

N . For example, the BMS is ap-

plied to solve a N -variate interpolation problem with m

points, its computational complexity is m3− 1
N because

δ ∼ m.

We should remark that we can have various modifica-

tions of the original BMS algorithm and that the com-

putational complexities of these versions are reduced

considerably when they are applied to various prac-

tical problems including decoding of algebraic error-

correcting codes because they cleverly can make use

of the structures or properties of the given input data

(i.e. arrays) which depend on each individual problem

[6][7][5].

3 Conclusion

We have discussed that the BMS algorithm is related

to Gröbner basis via multidimensional arrays and mul-

tidimensional linear recurrences satisfied by them, and

that it can solve just the inverse problem of that of

Buchberger algorithm, and described the essential part

of the BMS algorithm. In addition, we have given some

of its properties, e.g. its computational complexity, etc.

References

[1] S. Sakata, “Finding a minimal set of linear recur-

ring relations capable of generating a given finite

two-dimensional array,” J. Symbol. Comp., Vol.5,

pp.321–337, 1988.

[2] S. Sakata, “Extension of the Berlekamp-Massey

algorithm to N dimensions,” Inform. & Comp.,

Vol.84, pp.207–239, 1990.

[3] E. Berlekamp, Algebraic Coding Theory, McGraw-

Hill: New York, 1968.

[4] J. Massey, “Shift-register synthesis and BCH de-

coding,” IEEE Trans. Inform. Theory, Vol.15,

pp.122–127, 1969.

[5] S. Sakata, “Applications of the BMS Algorithm to

decoding of algebraic codes,” preprint for Work-

shop on Gröbner bases in Cryptography, Coding

Theory and Algebraic combinatorics, Linz, April

30 – May 5, 2006.

[6] S. Sakata, H.E. Jensen, T. Høholdt, “Generalized

Berlekamp-Massey decoding of algebraic geomet-

ric codes up to half the Feng-Rao bound,” IEEE

Trans. Inform. Theory, Vol.41,

[7] S. Sakata, “N-dimensional Berlekamp-Massey al-

gorithm for multiple arrays and construction of

multivariate polynomials with preassigned zeros,”

in Applied Algebra, Algebraic Algorithms and

Error-Correcting Codes: Proc. AAECC-6 (Ed. T.

Mora), Springer: Berlin, pp.356–376, 1989.

Appendix A: BMS algorithm

[Example of computation] In Table 4 is shown a

result of computations by BMS algorithm applied to

7

the 2-D array shown in Table 3. ? implies an updated

polynomial. We can make sure by Buchberger crite-

rion that the minimal polynomial set obtained at the

final iteration is a Gröbner basis. (Remark: A minimal

polynomial set is not necessarily a Gröbner basis.)

Appendix B: BM algorithm

Some notational simplicities are used, i.e. a minimal

polynomial and an auxiliary polynomial of each uj are

denoted simply as f and g, respectively, and let d :=

deg(f), c := span(g), df := dis(f), dg := dis(g).

Algorithm 3 BM algorithm

Step 1 (initialization): j := 0; f := 1; d := 0;

g := 0; c := −1; dg := 0;

Step 2 (discrepancy): df := f [u]j;

Step 3 (updating): if df 6= 0 then

if d ≥ j − c then

f := f − df

dg
xd−(j−c)g;

else begin d′ := j − c; h := xd′−df − df

dg
g;

g := f ; c := j − d; dg := df ; f := h;

d := d′; end;

Step 4 (termination): j := j + 1;

if j < i then go to Step 2 else stop.

[Example of computation] In Table 6 is shown a

result of computations by BM algorithm applied to the

1-D array shown in Table 5.

Table 3: 2-D array over F2: u = (uij)

i \ j 0 1 2 3 4
0 0 1 0 0 1
1 1 1 1 1
2 1 0 0
3 1 0
4 0 ∗
5 1

Table 4: computations by BMS algorithm

j F D G C

(0, 0) 1 (0, 0) − −
(1, 0) · ·
(0, 1) ? x2 (2, 0) ? 1 (1, 0)

y (0, 1)
(2, 0) x2 (2, 0) 1 (1, 0)

? y + x (0, 1)
(1, 1) ? x2 + x (2, 0) 1 (1, 0)

y + x (0, 1)
(0, 2) · ·
(3, 0) x2 + x (2, 0) 1 (1, 0)

? xy + x2 (1, 1) ? y + x (0, 1)
? y2 + xy + x (0, 2)

(2, 1) · ·
(1, 2) x2 + y (2, 0) 1 (1, 0)

? xy + x2 + 1 (1, 1) y + x (0, 1)
y2 + xy + x (0, 2)

(0, 3) · ·
(4, 0) · ·
(3, 1) · ·
(2, 2) ? x3 + xy + y + x (3, 0) ? xy + x2 + 1 (2, 0)

? x2y + x2 + x + 1 (2, 1) ? x2 + y (1, 1)
y2 + xy + x (0, 2) y + x (0, 1)

(1, 3) · ·
(0, 4) x3 + xy + y + x (3, 0) xy + x2 + 1 (2, 0)

x2y + x2 + x + 1 (2, 1) x2 + y (1, 1)
? y2 + x2 + x + 1 (0, 2) y + x (0, 1)

(5, 0) · ·
(4, 1) ∗

Table 5: 1-D array over F2: u = (uj)

j 0 1 2 3 4 5 6 7
uj 1 0 1 1 1 0 0 1

Table 6: computations by BM algorithm

j df f d g c
0 1 1 0 0 −1
1 0 x 1 1 0
2 1 x 1 1 0
3 1 x2 + 1 2 x 1
4 1 x2 + x + 1 2 x 1
5 1 x3 + x2 3 x2 + x + 1 2
6 0 x3 + x + 1 3 x2 + x + 1 2
7 0 x3 + x + 1 3 x2 + x + 1 2
8 ∗ x3 + x + 1 3 x2 + x + 1 2

8

