Almost polynomial Complexity for Zero-dimensional Gröbner Bases

Amir Hashemi

co-author: Daniel Lazard

INRIA SALSA-project/ LIP6 CALFOR-team
http://www-calfor.lip6.fr/~hashemi/

Special semester on Gröbner Bases and related methods
Linz, Austria, 2006

Complexity of Gröbner basis computation

- [Lazard, 83]: Complexity $d^{O(n)}$
- homogeneous zero-dim ideal
- homogeneous regular sequence in generic coordinates
- (degree) reverse lexicographical ordering

Complexity of Gröbner basis computation

- [Lazard, 83]: Complexity $d^{O(n)}$
- homogeneous zero-dim ideal
- homogeneous regular sequence in generic coordinates
- (degree) reverse lexicographical ordering
- [Dickenstein et al., 91]: Bit complexity $d^{O\left(n^{2}\right)}$
. zero-dim ideal
. any ordering

Complexity of Gröbner basis computation

- [Lazard, 83]: Complexity $d^{O(n)}$
- homogeneous zero-dim ideal
- homogeneous regular sequence in generic coordinates
- (degree) reverse lexicographical ordering
- [Dickenstein et al., 91]: Bit complexity $d^{O\left(n^{2}\right)}$
- zero-dim ideal
- any ordering
- [Lakshman, 91]: Arithmetic complexity $\left(n d^{n}\right)^{O(1)}$
- zero-dim ideal
- any ordering (using FGLM)

Motivation

Our objective:

- To have an algorithm to compute the Gröbner basis of a zero-dim ideal within a bit complexity $d^{O(n)}$:
- To be able to extend it to regular sequences in positive dimension and in generic coordinates

Motivation

Our objective:

- To have an algorithm to compute the Gröbner basis of a zero-dim ideal within a bit complexity $d^{O(n)}$:
- To be able to extend it to regular sequences in positive dimension and in generic coordinates
- To extend [Lazard, 83] to the non-homogeneous case by using a deformation method
(already used in [Grigoriev, Chistov, 83], [Canny, 89], [Lakshman-Lazard, 91],...)

Notation

Input data:

- K : field, $R=K\left[x_{1}, \ldots, x_{n}\right]$: ring of polynomials
- f_{1}, \ldots, f_{k} : polynomials in R
- $I=\left\langle f_{1}, \ldots, f_{k}\right\rangle$
- $d_{i}=\operatorname{deg}\left(f_{i}\right)$ ordered in order that $d_{2} \geq \cdots \geq d_{k} \geq d_{1}$

Measures of complexity:

- S : sum of the size of f_{i} in the dense representation
- $\mathrm{D}=\left(d_{1}+\cdots+d_{n}\right) / n$
(if $i>k$ then $d_{i}=1$)
- $\mathcal{T}=\max \left\{\mathrm{S}, D^{n}\right\}$

Notation

Monomial orderings for Gröbner bases:

- \prec degree reverse lexicographic ordering s.t.

$$
x_{0} \prec x_{n} \prec \cdots \prec x_{1}
$$

- <: any other ordering
- $\operatorname{deg}(I,<)=$ maximal degree of the elements of the reduced Gröbner basis of I

Complexity model

- $\mathrm{S} \leq \sum_{i=1}^{k} n h_{i}\binom{n+d_{i}}{n}$ where $h_{i}=\max \left\{\right.$ coefficients of $\left.f_{i}\right\}$

Complexity model

- $\mathrm{S} \leq \sum_{i=1}^{k} n h_{i}\binom{n+d_{i}}{n}$ where $h_{i}=\max \left\{\right.$ coefficients of $\left.f_{i}\right\}$
- We replace the bounds d^{n} and $n d^{n}$ by:

$$
\mathcal{T}=\max \left\{\mathrm{S}, \mathrm{D}^{n}\right\} \ll n h k(e \mathrm{D})^{n}
$$

Complexity model

- $\mathrm{S} \leq \sum_{i=1}^{k} n h_{i}\binom{n+d_{i}}{n}$ where $h_{i}=\max \left\{\right.$ coefficients of $\left.f_{i}\right\}$
- We replace the bounds d^{n} and $n d^{n}$ by:

$$
\mathcal{T}=\max \left\{\mathrm{S}, \mathrm{D}^{n}\right\} \ll n h k(e \mathrm{D})^{n}
$$

- Bézout theorem: \Longrightarrow
"Complexity \geq ":

$$
\max \left\{\mathrm{S}, d_{1} \cdots d_{n}\right\}=\max \left\{\mathrm{S},\left(\left(d_{1} \cdots d_{n}\right)^{1 / n}\right)^{n}\right\}
$$

Complexity model

- $\mathrm{S} \leq \sum_{i=1}^{k} n h_{i}\binom{n+d_{i}}{n}$ where $h_{i}=\max \left\{\right.$ coefficients of $\left.f_{i}\right\}$
- We replace the bounds d^{n} and $n d^{n}$ by:

$$
\mathcal{T}=\max \left\{\mathrm{S}, \mathrm{D}^{n}\right\} \ll n h k(e \mathrm{D})^{n}
$$

- Bézout theorem: \Longrightarrow
"Complexity \geq ":

$$
\max \left\{\mathrm{S}, d_{1} \cdots d_{n}\right\}=\max \left\{\mathrm{S},\left(\left(d_{1} \cdots d_{n}\right)^{1 / n}\right)^{n}\right\}
$$

- The gap: geometric mean \leftrightarrow arithmetic mean

Complexity model

- $\mathrm{S} \leq \sum_{i=1}^{k} n h_{i}\binom{n+d_{i}}{n}$ where $h_{i}=\max \left\{\right.$ coefficients of $\left.f_{i}\right\}$
- We replace the bounds d^{n} and $n d^{n}$ by:

$$
\begin{aligned}
& \mathcal{T}=m \varepsilon \\
& \mathrm{~m}: \Longrightarrow
\end{aligned}
$$

- Bézout theorem: \Longrightarrow "Complexity \geq ":

$$
\max \left\{\mathrm{S}, d_{1} \cdots d_{n}\right\}=\max \left\{\mathrm{S},\left(\left(d_{1} \cdots d_{n}\right)^{1 / n}\right)^{n}\right\}
$$

- The gap: geometric mean \leftrightarrow arithmetic mean
- [Hashemi-Lazard, 05]: Complexity $\mathcal{T}^{O(1)}$ for [Laz, 83], [Dick et al., 91], [Lak, 91]

Main results

$$
\text { I zero-dimensional }(k \geq n)
$$

Main results

I zero-dimensional ($k \geq n$)

- $\operatorname{deg}(I, \prec) \leq d_{1}+\cdots+d_{n}-n+1=n \mathrm{D}-n+1$
- $\operatorname{deg}(I,<) \leq d_{1} \cdots d_{n} \leq \mathrm{D}^{n}$
- Complexity $\mathcal{T}^{O(1)}$ to compute any Gröbner basis of I

Main results

I zero-dimensional $(k \geq n)$

- $\operatorname{deg}(I, \prec) \leq d_{1}+\cdots+d_{n}-n+1=n \mathrm{D}-n+1$
- $\operatorname{deg}(I,<) \leq d_{1} \cdots d_{n} \leq \mathrm{D}^{n}$
- Complexity $\mathcal{T}^{O(1)}$ to compute any Gröbner basis of I

$$
\begin{gathered}
f_{1}, \ldots, f_{k} \text { regular sequence }(k \leq n) \\
x_{k+1}, \ldots, x_{n} \text { in "generic position" for } I
\end{gathered}
$$

Main results

I zero-dimensional $(k \geq n)$

- $\operatorname{deg}(I, \prec) \leq d_{1}+\cdots+d_{n}-n+1=n \mathrm{D}-n+1$
- $\operatorname{deg}(I,<) \leq d_{1} \cdots d_{n} \leq \mathrm{D}^{n}$
- Complexity $\mathcal{T}^{O(1)}$ to compute any Gröbner basis of I

$$
\begin{gathered}
f_{1}, \ldots, f_{k} \text { regular sequence }(k \leq n) \\
x_{k+1}, \ldots, x_{n} \text { in "generic position" for } I
\end{gathered}
$$

- A precise defi nition of generic position for this problem
- $\operatorname{deg}(I, \prec) \leq d_{1}+\cdots+d_{k}-k+1$
- Conjecture: Complexity $\mathcal{T}^{O(1)}$ to compute the Gröbner basis of I

Proof's idea

Transform the problem

for using [Lazard, 81] and [Lazard, 83]
\Downarrow
Reduce back

Proof's idea

Transform the problem

First transformation:

- Elimination of linear polynomials:
- new system with a degree mean ≥ 2
- Denote it by f_{1}, \ldots, f_{k} (abuse of notation)

Proof's idea

Transform the problem

Second transformation:

- Change of polynomials:
- f_{1}, \ldots, f_{n} : a regular sequence
- If $|K|<\infty$ we do this change in $K(\alpha)$

Proof's idea

Transform the problem

Third transformation:

- Homogenization:

Proof's idea

Transform the problem

Third transformation:

- Homogenization:

$$
\begin{aligned}
& \text { - } F_{i}=x_{0}^{\operatorname{deg}\left(f_{i}\right)} f_{i}\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \\
& \text { - } f_{i}=F_{i}\left(1, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Proof's idea

Transform the problem

Third transformation:

- Homogenization:

$$
\begin{aligned}
& \text {, } F_{i}=x_{0}^{\operatorname{deg}\left(f_{i}\right)} f_{i}\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \\
& \text { - } \quad f_{i}=F_{i}\left(1, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Problem: Introduces components $\subset\left\{x_{0}=0\right\}$:

- These "alien" components may have any dimension
- Thus one may not apply directly [Lazard, 83]

Proof's idea

Transform the problem

Fourth transformation:

- Deformation:
- $G_{i}=(1-s) F_{i}+s x_{i}^{d_{i}}(s$ new indeterminate $)$

Proof's idea

Transform the problem

Fourth transformation:

- Deformation:
- $G_{i}=(1-s) F_{i}+s x_{i}^{d_{i}}$ (s new indeterminate)
- Apply [Lazard, 83] for the G_{i} in $K(s)\left[x_{0}, \ldots, x_{n}\right]$

Proof's idea

Transform the problem

Fourth transformation:

- Deformation:
- $G_{i}=(1-s) F_{i}+s x_{i}^{d_{i}}$ (s new indeterminate)
- Apply [Lazard, 83] for the G_{i} in $K(s)\left[x_{0}, \ldots, x_{n}\right]$

Problem: How to descend back to $K\left[x_{1}, \ldots, x_{n}\right]$?

Proof's idea

Transform the problem

Fourth transformation:

- Deformation:
- $G_{i}=(1-s) F_{i}+s x_{i}^{d_{i}}$ (s new indeterminate)
- Apply [Lazard, 83] for the G_{i} in $K(s)\left[x_{0}, \ldots, x_{n}\right]$

Problem: How to descend back to $K\left[x_{1}, \ldots, x_{n}\right]$?

- With Gröbner basis: difficult to manage
- Thus we use "matrix Macaulay" in degree "regularity"

Proof's idea

Transform the problem

for using [Lazard, 81] and [Lazard, 83]
\Downarrow
Reduce back

Proof's idea

Reduce back

Substitution:

- $s=0, x_{0}=1$

Proof's idea

Reduce back

Substitution:

- $s=0, x_{0}=1$

Problem: Divisions by s in $K(s) \Longrightarrow$ division by 0

Proof's idea

Reduce back

Substitution:

- $s=0, x_{0}=1$

Problem: Divisions by s in $K(s) \Longrightarrow$ division by 0

- Using Smith normal form over $K[s]$
instead of Gauss-Jordan diagonalization in $K(s)$
allow to divide by s the polynomials which are multiple of s
- Replacing $s \longrightarrow 0$ and $x_{0} \longrightarrow 1$

To show the conservation of Macaulay matrices properties

Macaulay matrix

$$
S=K[s]\left[x_{0}, \ldots, x_{n}\right]
$$

Macaulay matrix in degree δ

$$
\operatorname{Mac}_{\delta}\left(\left\langle G_{1}, \ldots, G_{n}\right\rangle\right)=\left[\begin{array}{c}
\phi: S_{\delta-d_{1}} \times \cdots \times S_{\delta-d_{n}} \longrightarrow S_{\delta} \\
\text { where } \\
\phi\left(H_{1}, \ldots, H_{n}\right)=\sum_{i=1}^{n} H_{i} G_{i}
\end{array}\right]
$$

Macaulay matrix

$S=K[s]\left[x_{0}, \ldots, x_{n}\right]$

Macaulay matrix in degree δ

$$
\operatorname{Mac}_{\delta}\left(\left\langle G_{1}, \ldots, G_{n}\right\rangle\right)=\left[\begin{array}{c}
\phi: S_{\delta-d_{1}} \times \cdots \times S_{\delta-d_{n}} \longrightarrow S_{\delta} \\
\text { where } \\
\phi\left(H_{1}, \ldots, H_{n}\right)=\sum_{i=1}^{n} H_{i} G_{i}
\end{array}\right]
$$

Quillen theorem: Includes all information about the ideal:

- Verify if " $\delta \geq$ regularity"
- Gröbner basis of I_{δ}

Algorithm

$$
\delta=n \mathrm{D}-n+1, J=\left\langle G_{1}, \ldots, G_{n}\right\rangle, G_{i}=(1-s) F_{i}+s x_{i}^{d_{i}}
$$

- Compute the Smith normal form over $K[s]$ of $\mathcal{M a c}_{\delta}(J)$
- Divide by s, as much as possible, the columns of $\operatorname{Mac}_{\delta}(J)$

Algorithm

$$
\delta=n \mathrm{D}-n+1, J=\left\langle G_{1}, \ldots, G_{n}\right\rangle, G_{i}=(1-s) F_{i}+s x_{i}^{d_{i}}
$$

- Compute the Smith normal form over $K[s]$ of $\mathcal{M a c}_{\delta}(J)$
- Divide by s, as much as possible, the columns of $\operatorname{Mac}_{\delta}(J)$
- $s \rightarrow 0 \Longrightarrow$ Macaulay matrix of \tilde{I} s.t.

$$
\left\langle F_{1}, \ldots, F_{n}\right\rangle \subset \tilde{I} \subset\left\langle F_{1}, \ldots, F_{n}\right\rangle: x_{0}^{\infty}
$$

Algorithm

$$
\delta=n \mathrm{D}-n+1, J=\left\langle G_{1}, \ldots, G_{n}\right\rangle, G_{i}=(1-s) F_{i}+s x_{i}^{d_{i}}
$$

- Compute the Smith normal form over $K[s]$ of $\operatorname{Mac}_{\delta}(J)$
- Divide by s, as much as possible, the columns of $\operatorname{Mac}_{\delta}(J)$
- $s \rightarrow 0 \Longrightarrow$ Macaulay matrix of \tilde{I} s.t.

$$
\left\langle F_{1}, \ldots, F_{n}\right\rangle \subset \tilde{I} \subset\left\langle F_{1}, \ldots, F_{n}\right\rangle: x_{0}^{\infty}
$$

- Macaulay matrix of $\left\langle F_{1}, \ldots, F_{n}\right\rangle: x_{0}^{\infty}=\tilde{I}: x_{0}^{\infty}$:

Gaussian elimination on a matrix formed by $D^{O(n)}$ of "Macaulay"

Algorithm

$$
\delta=n \mathrm{D}-n+1, J=\left\langle G_{1}, \ldots, G_{n}\right\rangle, G_{i}=(1-s) F_{i}+s x_{i}^{d_{i}}
$$

- Compute the Smith normal form over $K[s]$ of $\mathcal{M a c}_{\delta}(J)$
- Divide by s, as much as possible, the columns of $\operatorname{Mac}_{\delta}(J)$
- $s \rightarrow 0 \Longrightarrow$ Macaulay matrix of \tilde{I} s.t.

$$
\left\langle F_{1}, \ldots, F_{n}\right\rangle \subset \tilde{I} \subset\left\langle F_{1}, \ldots, F_{n}\right\rangle: x_{0}^{\infty}
$$

- Macaulay matrix of $\left\langle F_{1}, \ldots, F_{n}\right\rangle: x_{0}^{\infty}=\tilde{I}: x_{0}^{\infty}$:

Gaussian elimination on a matrix formed by $D^{O(n)}$ of "Macaulay"

- $x_{0} \rightarrow 1 \Longrightarrow$ the Gröbner basis of $\left\langle f_{1}, \ldots, f_{n}\right\rangle$

Algorithm

- Computing the basis of $\left\langle f_{1}, \ldots, f_{n}\right\rangle$ for any ordering
. by [FGLM]

Algorithm

- Computing the basis of $\left\langle f_{1}, \ldots, f_{n}\right\rangle$ for any ordering
. by [FGLM]
- If $k>n$:
- compute the basis of the regular sequence f_{1}, \ldots, f_{n}
- f_{n+1}, \ldots, f_{k} used for up-to-date the basis
by linear algebra (as [FGLM])

Conclusion

- An algorithm to compute the zero-dim Gröbner basis:
- quasi-optimal complexity
- bit complexity <<[Lakshman, 91]
- arithmetic complexity = [Lakshman, 91]
- This algorithm is not designed to be implemented:
- does not verify the dimension zero
- it uses the Smith normal form whereas...
- F_{5} (by Faugère) uses the echelon form on almost the smaller matrices (no counter-example yet known)

