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Complexity of Gröbner basis computation

[Lazard, 83]: Complexity dO(n)

homogeneous zero-dim ideal

homogeneous regular sequence in generic coordinates

(degree) reverse lexicographical ordering

[Dickenstein et al., 91]: Bit complexity dO(n2)

zero-dim ideal

any ordering

[Lakshman, 91]: Arithmetic complexity (ndn)O(1)

zero-dim ideal

any ordering (using FGLM)
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Motivation

Our objective:

To have an algorithm to compute the Gröbner basis of a
zero-dim ideal within a bit complexity dO(n):

To be able to extend it to regular sequences
in positive dimension and in generic coordinates

To extend [Lazard, 83] to the non-homogeneous case
by using a deformation method

(already used in [Grigoriev, Chistov, 83], [Canny, 89], [Lakshman-Lazard,

91],...)
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Notation

Input data:

K : field, R = K[x1, . . . , xn] : ring of polynomials

f1, . . . , fk : polynomials in R

I = 〈f1, . . . , fk〉

di = deg(fi) ordered in order that d2 ≥ · · · ≥ dk ≥ d1

Measures of complexity:

S : sum of the size of fi in the dense representation

D = (d1 + · · · + dn)/n (if i > k then di = 1)

T = max{S, Dn}
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Notation

Monomial orderings for Gröbner bases:

≺: degree reverse lexicographic ordering s.t.

x0 ≺ xn ≺ · · · ≺ x1

<: any other ordering

deg(I,<) = maximal degree of the elements of
the reduced Gröbner basis of I
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Complexity model

S ≤
∑k

i=1 nhi

(n+di

n

)

where hi = max{coefficients offi}

We replace the bounds dn and ndn by:

T = max{S, Dn} � nhk(eD)n

Bézout theorem: =⇒

“Complexity ≥”:

max{S, d1 · · · dn} = max{S, ((d1 · · · dn)1/n)n}

The gap: geometric mean ↔ arithmetic mean

[Hashemi-Lazard, 05]: Complexity T O(1)

for [Laz, 83], [Dick et al., 91], [Lak, 91]
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Main results

�
�

�
�I zero–dimensional (k ≥ n)

deg(I,≺) ≤ d1 + · · · + dn − n + 1 = nD − n + 1

deg(I,<) ≤ d1 · · · dn ≤ Dn

Complexity T O(1) to compute any Gröbner basis of I

�

�

�




f1, . . . , fk regular sequence (k ≤ n)
xk+1, . . . , xn in “generic position” for I

A precise definition of generic position for this problem

deg(I,≺) ≤ d1 + · · · + dk − k + 1

Conjecture: Complexity T O(1) to compute the Gröbner basis of I
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Proof’s idea

Transform the problem

for using [Lazard, 81] and [Lazard, 83]

⇓

Reduce back

First transformation:

Elimination of linear polynomials:

new system with a degree mean ≥ 2

Denote it by f1, . . . , fk (abuse of notation)
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Proof’s idea

Transform the problem

Second transformation:

Change of polynomials:

f1, . . . , fn : a regular sequence

If |K| < ∞ we do this change in K(α)
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Proof’s idea

Transform the problem

Third transformation:

Homogenization:

Fi = x
deg(fi)
0 fi(

x1

x0

, . . . , xn

x0

)

fi = Fi(1, x1, . . . , xn)

Problem: Introduces components ⊂ {x0 = 0}:

These “alien” components may have any dimension

Thus one may not apply directly [Lazard, 83]
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Proof’s idea

Transform the problem

Fourth transformation:

Deformation:

Gi = (1 − s)Fi + sxdi

i (s new indeterminate)

Apply [Lazard, 83] for the Gi in K(s)[x0, . . . , xn]

Problem: How to descend back to K[x1, . . . , xn]?

With Gröbner basis: difficult to manage

Thus we use “matrix Macaulay” in degree “regularity”
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Proof’s idea

Transform the problem

for using [Lazard, 81] and [Lazard, 83]
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Proof’s idea

Reduce back

Substitution:

s = 0, x0 = 1

Problem: Divisions by s in K(s) =⇒ division by 0

Using Smith normal form over K[s]

instead of Gauss-Jordan diagonalization in K(s)

allow to divide by s the polynomials which are multiple of s

Replacing s −→ 0 and x0 −→ 1

To show the conservation of Macaulay matrices properties
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Macaulay matrix

☞ S = K[s][x0, . . . , xn]

Macaulay matrix in degree δ

Macδ(〈G1, . . . , Gn〉) =







φ : Sδ−d1
× · · · × Sδ−dn

−→ Sδ

where
φ(H1, . . . , Hn) =

∑n
i=1 HiGi







Quillen theorem: Includes all information about the ideal:
- Verify if “δ ≥ regularity”
- Gröbner basis of Iδ

- · · ·
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Macaulay matrix

☞ S = K[s][x0, . . . , xn]

Macaulay matrix in degree δ

Macδ(〈G1, . . . , Gn〉) =







φ : Sδ−d1
× · · · × Sδ−dn

−→ Sδ

where
φ(H1, . . . , Hn) =

∑n
i=1 HiGi







Quillen theorem: Includes all information about the ideal:
- Verify if “δ ≥ regularity”
- Gröbner basis of Iδ

- · · ·

Almost polynomial Complexity for Zero-dimensional Gröbner Bases – p.14/17



Algorithm

δ = nD − n + 1, J = 〈G1, . . . , Gn〉, Gi = (1 − s)Fi + sxdi

i

Compute the Smith normal form over K[s] of Macδ(J)

Divide by s, as much as possible,
the columns of Macδ(J)

s → 0 =⇒ Macaulay matrix of Ĩ s.t.

〈F1, . . . , Fn〉 ⊂ Ĩ ⊂ 〈F1, . . . , Fn〉 : x∞

0

Macaulay matrix of 〈F1, . . . , Fn〉 : x∞

0 = Ĩ : x∞

0 :
Gaussian elimination on a matrix formed by D

O(n) of “Macaulay”

x0 → 1 =⇒ the Gröbner basis of 〈f1, . . . , fn〉
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Algorithm

Computing the basis of 〈f1, . . . , fn〉 for any ordering

by [FGLM]

If k > n :

compute the basis of the regular sequence f1, . . . , fn

fn+1, . . . , fk used for up-to-date the basis
by linear algebra (as [FGLM])
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Conclusion

An algorithm to compute the zero-dim Gröbner basis:
quasi-optimal complexity

bit complexity � [Lakshman, 91]

arithmetic complexity = [Lakshman, 91]

This algorithm is not designed to be implemented:
does not verify the dimension zero

it uses the Smith normal form

whereas · · ·

F5 (by Faugère) uses the echelon form on almost the smaller

matrices (no counter-example yet known)
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