Almost polynomial Complexity for Zero-dimensional Gröbner Bases

Amir Hashemi

co-author: Daniel Lazard

INRIA SALSA-project/LIP6 CALFOR-team
http://www-calfor.lip6.fr/~hashemi/

Special semester on Gröbner Bases and related methods Linz, Austria, 2006

Complexity of Gröbner basis computation

- [Lazard, 83]: Complexity $d^{O(n)}$
 - homogeneous zero-dim ideal
 - homogeneous regular sequence in generic coordinates
 - (degree) reverse lexicographical ordering

Complexity of Gröbner basis computation

- [Lazard, 83]: Complexity $d^{O(n)}$
 - homogeneous zero-dim ideal
 - homogeneous regular sequence in generic coordinates
 - (degree) reverse lexicographical ordering
- [Dickenstein et al., 91]: Bit complexity $d^{O(n^2)}$
 - zero-dim ideal
 - any ordering

Complexity of Gröbner basis computation

- [Lazard, 83]: Complexity $d^{O(n)}$
 - homogeneous zero-dim ideal
 - homogeneous regular sequence in generic coordinates
 - (degree) reverse lexicographical ordering
- [Dickenstein et al., 91]: Bit complexity $d^{O(n^2)}$
 - zero-dim ideal
 - any ordering
- [Lakshman, 91]: Arithmetic complexity $(nd^n)^{O(1)}$
 - zero-dim ideal
 - any ordering (using FGLM)

Our objective:

- To have an algorithm to compute the Gröbner basis of a zero-dim ideal within a bit complexity d^{O(n)}:
 - To be able to extend it to regular sequences in positive dimension and in generic coordinates

Our objective:

- To have an algorithm to compute the Gröbner basis of a zero-dim ideal within a bit complexity d^{O(n)}:
 - To be able to extend it to regular sequences in positive dimension and in generic coordinates

 To extend [Lazard, 83] to the non-homogeneous case by using a deformation method

(already used in [Grigoriev, Chistov, 83], [Canny, 89], [Lakshman-Lazard, 91],...)

Notation

Input data:

- K : field, $R = K[x_1, \ldots, x_n]$: ring of polynomials
- f_1, \ldots, f_k : polynomials in R
- $I = \langle f_1, \ldots, f_k \rangle$
- $d_i = \deg(f_i)$ ordered in order that $d_2 \ge \cdots \ge d_k \ge d_1$ Measures of complexity:
 - S: sum of the size of f_i in the dense representation
 - $D = (d_1 + \dots + d_n)/n$ (if i > k then $d_i = 1$)
 - $T = \max{\{\mathbf{S}, D^n\}}$

Monomial orderings for Gröbner bases:

→: degree reverse lexicographic ordering s.t.

 $x_0 \prec x_n \prec \cdots \prec x_1$

- <: any other ordering</pre>
- deg(I, <) = maximal degree of the elements of the reduced Gröbner basis of I

• $S \leq \sum_{i=1}^{k} nh_i \binom{n+d_i}{n}$ where $h_i = \max\{\text{coefficients of } f_i\}$

- $S \leq \sum_{i=1}^{k} nh_i \binom{n+d_i}{n}$ where $h_i = \max\{\text{coefficients of } f_i\}$
- We replace the bounds d^n and nd^n by:

$$\mathcal{T} = \max\{\mathbf{S}, \mathbf{D}^n\} \ll nhk(e\mathbf{D})^n$$

- $S \leq \sum_{i=1}^{k} nh_i \binom{n+d_i}{n}$ where $h_i = \max\{\text{coefficients of } f_i\}$
- We replace the bounds d^n and nd^n by:

$$\mathcal{T} = \max{\{S, \mathbf{D}^n\}} \ll nhk(eD)^n$$

■ Bézout theorem: ⇒ "Complexity ≥":

 $\max{S, d_1 \cdots d_n} = \max{S, ((d_1 \cdots d_n)^{1/n})^n}$

• $S \leq \sum_{i=1}^{k} nh_i \binom{n+d_i}{n}$ where $h_i = \max\{\text{coefficients of } f_i\}$

• We replace the bounds d^n and nd^n by:

$$\mathcal{T} = \max\{S, D^n\} \ll nhk(eD)^n$$
Bézout theorem: \implies
"Complexity \geq ":
 $\max\{S, d_1 \cdots d_n\} = \max\{S, ((d_1 \cdots d_n)^{1/n})^n\}$
The gap: geometric mean \leftrightarrow arithmetic mean

• $S \leq \sum_{i=1}^{k} nh_i \binom{n+d_i}{n}$ where $h_i = \max\{\text{coefficients of } f_i\}$

• We replace the bounds d^n and nd^n by:

$$\mathcal{T} = \max\{\mathbf{S}, \mathbf{D}^n\} \ll nhk(e\mathbf{D})^n$$

■ Bézout theorem: ⇒ "Complexity ≥":

$$\max\{\mathbf{S}, d_1 \cdots d_n\} = \max\{\mathbf{S}, ((d_1 \cdots d_n)^{1/n})^n\}$$

- The gap: geometric mean ↔ arithmetic mean
- [Hashemi-Lazard, 05]: Complexity *T^{O(1)}* for [Laz, 83], [Dick et al., 91], [Lak, 91]

 $\left[I \text{ zero-dimensional } (k \ge n)\right]$

$\left(I \; \mathsf{zero-dimensional} \; (k \ge n) \right)$

- $\deg(I, \prec) \le d_1 + \dots + d_n n + 1 = nD n + 1$
- $\deg(I, <) \le d_1 \cdots d_n \le \mathbf{D}^n$
- Complexity $T^{O(1)}$ to compute any Gröbner basis of I

$\left[I \text{ zero-dimensional } (k \ge n) ight]$

- $\deg(I, \prec) \le d_1 + \dots + d_n n + 1 = nD n + 1$
- $\deg(I, <) \le d_1 \cdots d_n \le \mathbf{D}^n$
- Complexity $T^{O(1)}$ to compute any Gröbner basis of I

 f_1, \ldots, f_k regular sequence $(k \le n)$ x_{k+1}, \ldots, x_n in "generic position" for I

$(I \text{ zero-dimensional } (k \ge n))$

- $\deg(I, \prec) \le d_1 + \dots + d_n n + 1 = nD n + 1$
- $\deg(I, <) \le d_1 \cdots d_n \le \mathbf{D}^n$
- Complexity $T^{O(1)}$ to compute any Gröbner basis of I

 $\begin{cases} f_1, \dots, f_k \text{ regular sequence } (k \le n) \\ x_{k+1}, \dots, x_n \text{ in "generic position" for } I \end{cases}$

- A precise definition of generic position for this problem
- $\deg(I, \prec) \le d_1 + \dots + d_k k + 1$
- Conjecture: Complexity $\mathcal{T}^{O(1)}$ to compute the Gröbner basis of I

Proof's idea

Transform the problem

for using [Lazard, 81] and [Lazard, 83] ↓ Reduce back

First transformation:

- Elimination of linear polynomials:
 - new system with a degree mean ≥ 2
- Denote it by f_1, \ldots, f_k (abuse of notation)

Second transformation:

- Change of polynomials:
 - f_1, \ldots, f_n : a regular sequence
- If $|K| < \infty$ we do this change in $K(\alpha)$

Third transformation:

Homogenization:

Proof's idea

Transform the problem

Third transformation:

Homogenization:

•
$$F_i = x_0^{\deg(f_i)} f_i(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0})$$

•
$$f_i = F_i(1, x_1, \dots, x_n)$$

Third transformation:

Homogenization:

•
$$F_i = x_0^{\deg(f_i)} f_i(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0})$$

•
$$f_i = F_i(1, x_1, \dots, x_n)$$

Problem: Introduces components $\subset \{x_0 = 0\}$:

- These "alien" components may have any dimension
- Thus one may not apply directly [Lazard, 83]

Fourth transformation:

- Deformation:
 - $G_i = (1 s)F_i + sx_i^{d_i}$ (s new indeterminate)

Fourth transformation:

- Deformation:
 - $G_i = (1 s)F_i + sx_i^{d_i}$ (s new indeterminate)
- Apply [Lazard, 83] for the G_i in $K(s)[x_0, \ldots, x_n]$

Fourth transformation:

- Deformation:
 - $G_i = (1 s)F_i + sx_i^{d_i}$ (s new indeterminate)
- Apply [Lazard, 83] for the G_i in $K(s)[x_0, \ldots, x_n]$

Problem: How to descend back to $K[x_1, \ldots, x_n]$?

Fourth transformation:

- Deformation:
 - $G_i = (1 s)F_i + sx_i^{d_i}$ (s new indeterminate)
- Apply [Lazard, 83] for the G_i in $K(s)[x_0, \ldots, x_n]$

Problem: How to descend back to $K[x_1, \ldots, x_n]$?

- With Gröbner basis: difficult to manage
- Thus we use "matrix Macaulay" in degree "regularity"

Proof's idea

Transform the problem

for using [Lazard, 81] and [Lazard, 83] ↓ Reduce back

Substitution:

• $s = 0, x_0 = 1$

Substitution:

• $s = 0, x_0 = 1$

Problem: Divisions by s in $K(s) \implies$ division by 0

Substitution:

• $s = 0, x_0 = 1$

Problem: Divisions by s in $K(s) \implies$ division by 0

- Using Smith normal form over K[s] instead of Gauss-Jordan diagonalization in K(s) allow to divide by s the polynomials which are multiple of s
- Replacing $s \longrightarrow 0$ and $x_0 \longrightarrow 1$ To show the conservation of Macaulay matrices properties

Macaulay matrix

 $\Im S = K[s][x_0, \dots, x_n]$

Macaulay matrix in degree δ

$$\mathcal{M}ac_{\delta}(\langle G_{1}, \dots, G_{n} \rangle) = \begin{bmatrix} \phi : S_{\delta-d_{1}} \times \dots \times S_{\delta-d_{n}} \longrightarrow S_{\delta} \\ \mathbf{where} \\ \phi(H_{1}, \dots, H_{n}) = \sum_{i=1}^{n} H_{i}G_{i} \end{bmatrix}$$

Macaulay matrix

 $\Im S = K[s][x_0, \dots, x_n]$

Macaulay matrix in degree δ

$$\mathcal{M}ac_{\delta}(\langle G_{1}, \dots, G_{n} \rangle) = \begin{bmatrix} \phi : S_{\delta-d_{1}} \times \dots \times S_{\delta-d_{n}} \longrightarrow S_{\delta} \\ \mathbf{where} \\ \phi(H_{1}, \dots, H_{n}) = \sum_{i=1}^{n} H_{i}G_{i} \end{bmatrix}$$

Quillen theorem: Includes all information about the ideal: - Verify if " $\delta \ge$ regularity" - Gröbner basis of I_{δ}

- $\delta = nD n + 1, J = \langle G_1, \dots, G_n \rangle, G_i = (1 s)F_i + sx_i^{d_i}$
 - Compute the Smith normal form over K[s] of $\mathcal{M}ac_{\delta}(J)$
 - Divide by s, as much as possible,

the columns of $\mathcal{M}ac_{\delta}(J)$

 $\delta = nD - n + 1, J = \langle G_1, \dots, G_n \rangle, G_i = (1 - s)F_i + sx_i^{d_i}$

- Compute the Smith normal form over K[s] of $Mac_{\delta}(J)$
- Divide by s, as much as possible,

the columns of $\mathcal{M}ac_{\delta}(J)$

• $s \rightarrow 0 \Longrightarrow$ Macaulay matrix of \tilde{I} s.t.

 $\langle F_1, \ldots, F_n \rangle \subset \tilde{I} \subset \langle F_1, \ldots, F_n \rangle : x_0^{\infty}$

 $\delta = nD - n + 1, J = \langle G_1, \dots, G_n \rangle, G_i = (1 - s)F_i + sx_i^{d_i}$

- Compute the Smith normal form over K[s] of $Mac_{\delta}(J)$
- Divide by s, as much as possible,

the columns of $\mathcal{M}ac_{\delta}(J)$

• $s \to 0 \Longrightarrow$ Macaulay matrix of \tilde{I} s.t.

 $\langle F_1, \ldots, F_n \rangle \subset \tilde{I} \subset \langle F_1, \ldots, F_n \rangle : x_0^{\infty}$

• Macaulay matrix of $\langle F_1, \ldots, F_n \rangle : x_0^{\infty} = \tilde{I} : x_0^{\infty}$: Gaussian elimination on a matrix formed by $D^{O(n)}$ of "Macaulay"

 $\delta = nD - n + 1, J = \langle G_1, \dots, G_n \rangle, G_i = (1 - s)F_i + sx_i^{d_i}$

- Compute the Smith normal form over K[s] of $Mac_{\delta}(J)$
- Divide by s, as much as possible,

the columns of $\mathcal{M}ac_{\delta}(J)$

• $s \to 0 \Longrightarrow$ Macaulay matrix of \tilde{I} s.t.

 $\langle F_1, \ldots, F_n \rangle \subset \tilde{I} \subset \langle F_1, \ldots, F_n \rangle : x_0^{\infty}$

- Macaulay matrix of $\langle F_1, \ldots, F_n \rangle : x_0^{\infty} = \tilde{I} : x_0^{\infty}$: Gaussian elimination on a matrix formed by $D^{O(n)}$ of "Macaulay"
- $x_0 \rightarrow 1 \Longrightarrow$ the Gröbner basis of $\langle f_1, \ldots, f_n \rangle$

Computing the basis of (f1,..., fn) for any ordering
 by [FGLM]

- Computing the basis of (f1,..., fn) for any ordering
 by [FGLM]
- If k > n:
 - compute the basis of the regular sequence f_1, \ldots, f_n
 - f_{n+1}, \ldots, f_k used for up-to-date the basis by linear algebra (as [FGLM])

Conclusion

An algorithm to compute the zero-dim Gröbner basis:

- quasi-optimal complexity
- ▶ bit complexity ≪ [Lakshman, 91]
- arithmetic complexity = [Lakshman, 91]
- This algorithm is **not** designed to be implemented:
 - does not verify the dimension zero
 - it uses the Smith normal form

whereas···

• F_5 (by Faugère) uses the echelon form on almost the smaller matrices (no counter-example yet known)