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» [Lazard, 83]: Complexity ¢°
s homogeneous zero-dim ideal
s homogeneous regular sequence in generic coordinates
» (degree) reverse lexicographical ordering
» [Dickenstein et al., 91]; Bit complexity ¢°")
s zero-dim ideal
» any ordering
» [Lakshman, 91]: Arithmetic complexity (nd™)?)
s zero-dim ideal

s any ordering (using FGLM)
e O POlyOIE COMplexity fo Zero-dimensional Grobner Bases - p2/1
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Our objective:

» To have an algorithm to compute the Grobner basis of a
zero-dim ideal within a bit complexity ¢©():

s To be able to extend it to regular sequences
In positive dimension and in generic coordinates

s To extend [Lazard, 83] to the non-homogeneous case
by using a deformation method
(already used in [Grigoriev, Chistov, 83], [Canny, 89], [Lakshman-Lazard, 91],...)




Input data:

s K :field, R = Klx1,...,x,] : ring of polynomials

s f1,...,fr:polynomials in R

s I=(f1,-- [k

» d; = deg(f;) ordered inorderthatds > --- > dy > d;
Measures of complexity:

» S:sum of the size of f; In the dense representation

s D=(d1+---+dy)/n (fi>kthend; =1)

o 7 =max{S, D"}



Monomial orderings for Grobner bases:
» =<:degree reverse lexicographic ordering s.t.

To < Tp =<+ <21

» <:any other ordering

» deg(l,<) = maximal degree of the elements of
the reduced Grodbner basis of I
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s S< YW nhi("T%) where h; = max{coefficients off;}

» We replace the bounds 4" and nd™ by:

7 = max{S,D"} < nhk(eD)"

o Bézout theorem: —
“Complexity >":

max{S,d; - -

s The gap: geometric mean « arithmetic mean

s [Hashemi-Lazard, 05]: Complexity 7°
for [Laz, 83], [Dick et al., 91], [Lak, 91]
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o

K

o

1 zero—dimensional (k > n) |

deg(/,<)<dy+---+d,—n+1=nD—-—n+1
deg(l,<) < dy---d, < D"

Complexity 79 to compute any Grobner basis of 1

fi,..., fr regular sequence (k < n)
Trail,- .., Iy IN“generic position” for I

A precise definition of generic position for this problem
deg(l, <) <dy+---+dp,—k+1

Conjecture: Complexity 79 to compute the Grobner basis of I
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Transform the problem I

First transformation:

» Elimination of linear polynomials:

s nhew system with a degree mean > 2

s Denote it by f4,..., fi (abuse of notation)




Transform the problem I

Second transformation:

» Change of polynomials:
s f1,...,f,:aregular sequence

s If |K| < oo we do this change in K(«)




Transform the problem I

Third transformation:

» Homogenization:
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Third transformation:

» Homogenization:
deg(f; .
o Fy=ap® U p(a, . )

7330

r fz = Fz'(l,ﬂ?l,... ,il?n)




Transform the problem I

Third transformation:

s Homogenization:
deg(f; .
. Fy=ag® iz, )

7330

I fz = Fz'(l,ﬂ?l,... ,.fljn)

Problem: Introduces components c {zg = 0}:

» These “alien” components may have any dimension
» Thus one may not apply directly [Lazard, 83]
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Transform the problem I

Fourth transformation:

» Deformation:
» Gy = (1—s)F; + sz (s new indeterminate)
» Apply [Lazard, 83] for the G; In K(s)|xg,...,zy]

Problem: How to descend back to Klzq,...,x,]|?

» With Grobner basis: difficult to manage
s Thus we use “matrix Macaulay” in degree “regularity”



Transform the problem I

for using [Lazard, 81] and [Lazard, 83]
Y

Reduce back.
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Reduce back.

Substitution:

2 s=0,20=1

Problem: Divisions by s in K(s) = division by 0

» Using Smith normal form over Ks]
instead of Gauss-Jordan diagonalization in K (s)

allow to divide by s the polynomials which are multiple of s

s Replacing s — 0and zg — 1
To show the conservation of Macaulay matrices properties



S = K|s||xg, ...,z

Macaulay matrix in degree

l gb:S(g_dl X e XS(S—dn —>S5 ]
Macs((Gy,...,Gp)) = where
O(Hi,...,Hn) =>1" 1 HiG;




S = K|s||xg, ...,z

Macaulay matrix in degree

l ¢:S5_d1 X e XS(S—dn —>S5 ]
Macs((Gy,...,Gp)) = where
O(Hi,...,Hn) =>1" 1 HiG;

Quillen theorem: Includes all information about the ideal:
- Verify if “§ > regularity”
- Grobner basis of I;



» Compute the Smith normal form over K{s] of Macs(J)

» Divide by s, as much as possible,
the columns of Macs(J)




» Compute the Smith normal form over K{s] of Macs(J)

» Divide by s, as much as possible,
the columns of Macs(J)

» s — 0 = Macaulay matrix of I s.t.

~

(Fi,...,Fp) C I C(F1,...,Fy) xg°




» Compute the Smith normal form over K{s] of Macs(J)

» Divide by s, as much as possible,
the columns of Macs(J)

s s — 0 = Macaulay matrix of I s.t.

~

(Fi,...,Fp) C I C(F1,...,Fy) xg°

» Macaulay matrix of (F,..., F,) : 28 =1 : 8
Gaussian elimination on a matrix formed by D™ of “Macaulay”




» Compute the Smith normal form over K{s] of Macs(J)

» Divide by s, as much as possible,
the columns of Macs(J)

s s — 0 = Macaulay matrix of I s.t.

~

(Fi,...,Fp) C I C(F1,...,Fy) xg°

» Macaulay matrix of (F,..., F,) : 28 =1 : 8
Gaussian elimination on a matrix formed by D™ of “Macaulay”

» 19— 1 = the Grobner basis of (f1,..., f.)



» Computing the basis of (f1,..., f,,) for any ordering
s by [FGLM]




» Computing the basis of (fy,..., f,) for any ordering
s by [FGLM]

s Ifk>n:
» compute the basis of the regular sequence f1,..., f»

s fnit1,-.., [ Used for up-to-date the basis
by linear algebra (as [FGLM])




» An algorithm to compute the zero-dim Grobner basis:
s quasi-optimal complexity
s Dbit complexity < [Lakshman, 91]

s arithmetic complexity = [Lakshman, 91]

» This algorithm is not designed to be implemented:
s does not verify the dimension zero

s It uses the Smith normal form

whereas - - -

s Fj5 (by Faugere) uses the echelon form on almost the smaller
matrices (no counter-example yet known)
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