Groebner Basics

Talk given at the Special Semester
on Groebner Bases Linz 2006

Hans-Gert Gräbe,
Dept. Computer Science, Univ. Leipzig, Germany
http://www.informatik.uni-leipzig.de/~graebe

February 27, 2006
Notations

k a (computationally feasible) field

K/k alg. closed extension

$R = k[x_1, \ldots, x_n] = k[x]$ the ring of polynomials over k

$\mathbb{A}^n := \{(a_1, \ldots, a_n) : a_i \in K\}$ the n-dim. affine space

$B = \{f_1, \ldots, f_s\} \subset S$ a (finite) system of polynomials

$V = V(B) := \{a \in \mathbb{A}^n : f_i(a) = 0 \ \forall \ i\}$

the set of common zeroes. Such a set $V \subset \mathbb{A}^n$ is an affine variety.

$I = Id(B)$ the ideal generated by B. We have $V(B) = V(Id(B))$.
Monomial $x^\alpha = x_1^{\alpha_1} \cdot \ldots \cdot x_n^{\alpha_n}$, $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$

The set of terms

$$T = T(x) = T(x_1, \ldots, x_n) = \{x^\alpha : \alpha \in \mathbb{N}^n\}$$

is a semigroup with unit $1 = x^0$, the term monoid.

A polynomial in x_1, \ldots, x_n over k is a finite k-linear (i.e., $c_\alpha \in k$) combination of terms $f = \sum c_\alpha x^\alpha$.

This representation is called distributive and can be computed with expand in most of the CAS.

It is unique, i.e., a canonical representation, if the coefficients are (representable and) represented in canonical form and the order of summands is fixed.
To fix that order one defines a total ordering $< \text{ on } T(x)$
that is additionally monotone

$$s < t \Rightarrow s \cdot u < t \cdot u \text{ for all } s,t,u \in T(x)$$

Such an ordering is called a term ordering.

Many sources require additionally that $<$ is a well ordering, i.e., the two equivalent conditions hold

(a) Each subset $M \subset T$ has a smallest element.
(b) All strictly descending chains $t_1 > t_2 > \ldots$ in T are finite.

We call such term orderings Noetherian term orderings.
Lexicographical ordering (lex) with \(x_1 > x_2 > \ldots > x_n \)

\[
x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n} >_{\text{lex}} x_1^{b_1}x_2^{b_2}\cdots x_n^{b_n}
\]

\[\iff \begin{cases} a_1 > b_1 & \text{or} \\ a_1 = b_1 & \text{and } x_2^{a_2}\cdots x_n^{a_n} >_{\text{lex}} x_2^{b_2}\cdots x_n^{b_n} \end{cases} \]

Reverse lexicographical ordering (revlex) with \(x_1 < x_2 < \ldots < x_n \)

\[
x_1^{a_1}\cdots x_{n-1}^{a_{n-1}}x_n^{a_n} >_{\text{revlex}} x_1^{b_1}\cdots x_{n-1}^{b_{n-1}}x_n^{b_n}
\]

\[\iff \begin{cases} a_n < b_n & \text{or} \\ a_n = b_n & \text{and } x_1^{a_1}\cdots x_{n-1}^{a_{n-1}} >_{\text{revlex}} x_1^{b_1}\cdots x_{n-1}^{b_{n-1}} \end{cases} \]

Degree ordering (wrt. the standard grading)

\[
x_1^{a_1}\cdots x_n^{a_n} >_{\text{deg}} x_1^{b_1}\cdots x_n^{b_n}
\]

\[\iff \begin{cases} \deg(a) > \deg(b) & \text{or} \\ \deg(a) = \deg(b) & \text{and } x_1^{a_1}\cdots x_n^{a_n} >_{\text{xxx}} x_1^{b_1}\cdots x_n^{b_n} \end{cases} \]

xxx is another term ordering, the tie-breaking ordering.

Widespread used are the degree lexicographic (deg-lex) and the degree reverse lexicographic (deg-revlex) term orderings.
The lexicographic and all degree orderings are Noetherian.

The pure revlex ordering is not Noetherian, since

\[x_1 > x_1^2 > x_1^3 > \ldots \]

is an infinitely strictly descending chain of terms.

A term ordering \((T(x), >)\) is Noetherian iff

(c) \(m > 1\) for all \(m \in T, m \neq 1\).
Characterization of Term Orderings

\(\tilde{T} = \{ x^\alpha : \alpha \in \mathbb{Z}^n \} \) is the set of generalized terms. A term ordering \(<\) can be extended to \(\tilde{T} \).

\(<\) is characterized by its positivity cone

\[
C_+ = \left\{ x^\alpha \in \tilde{T} : x^\alpha > 1 \right\}
\]

This cone is a half space supported by a (uniquely defined) linear functional \(w \in (\mathbb{Z}^n)^* \cong \mathbb{R}^n \). We say that \(w \) is the weight vector of \(<\) and \(<\) refines \(w \).

\(w \) is uniquely determined by the row vector

\[
(w(x_1), \ldots, w(x_n)).
\]

We write shortly \(w(x^\alpha) = w(\alpha) \).
Theorem (Characterization of Term Orderings)

A term ordering can be described by a sequence of weight vectors \(w_1, w_2, \ldots, w_k \in \mathbb{R}^n \) such that for \(x^\alpha \in \tilde{T} \):

\[
x^\alpha > 1 \iff \exists j < k : w_i(\alpha) = 0 \text{ for } i \leq j \text{ and } w_{j+1}(\alpha) > 0
\]

\(w_1 \) is uniquely defined, \(w_j \) only upto multiples of \(w_i, i < j \).

Hence any term ordering can be given as matrix term ordering where the weights of the variables wrt. \(w_i \) are the entries of row \(i \) of the weight matrix.

A term order is Noetherian iff the first non zero entry in each column of the weight matrix is positive.
Weight Matrices for the Standard Term Orderings

>lex: \[
\begin{pmatrix}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{pmatrix}
\]

>deglex: \[
\begin{pmatrix}
1 & 1 & \ldots & 1 & 1 \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots
\end{pmatrix}
\]

>revlex: \[
\begin{pmatrix}
0 & \ldots & 0 & -1 \\
0 & \ldots & -1 & 0 \\
-1 & \ldots & 0 & 0 \\
\end{pmatrix}
\]

>degrevlex: \[
\begin{pmatrix}
1 & 1 & \ldots & 1 & 1 \\
1 & 0 & \ldots & 0 & -1 \\
0 & 0 & \ldots & -1 & 0 \\
0 & -1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots
\end{pmatrix}
\]
Given a finite set $\Sigma \subset \tilde{T} \setminus \{1\}$ consider the set

$$W_\Sigma = \{ w \in \mathbb{R}^n : \forall x^\alpha \in \Sigma \ w(\alpha) > 0 \} = \bigcap_{x^\alpha \in \Sigma} \{ w \in \mathbb{R}^n : w(\alpha) > 0 \}$$

This is the set of all weight vectors w such that for all refinements $<$ of w the terms from Σ are positive. As a finite intersection of open halfspaces this set is either empty or an open cone and hence n-dimensional. The closure of that cone is dual to the cone spanned by the $x^\alpha \in \Sigma$ in \mathbb{Z}^n.

For $\Sigma = \{x_1, \ldots, x_n\}$ we get exactly the cone of Noetherian term orderings. Since $w = (11\ldots1)$ is in the interior part of that cone all refinements of w are Noetherian.
PP-Ideals and Monoid Ideals. Dickson’s Lemma

An ideal \(I \subset R \) is a PP-ideal, iff

\[
f = \sum c_\alpha x^\alpha \in I \Rightarrow \forall \alpha (c_\alpha \neq 0 \Rightarrow x^\alpha \in I).
\]

The set \(\Sigma \) of all \(x^\alpha \in I \) form a monoid ideal, i.e., a subset of \(T \) with

\[
\Sigma \cdot T := \{x^\alpha \cdot x^\beta : x^\alpha \in \Sigma, x^\beta \in T\} \subset \Sigma.
\]

A subset \(\Sigma_0 = \{x^{a_1}, \ldots, x^{a_m}\} \) of a monoid ideal \(\Sigma \) is a basis, if \(\Sigma_0 \cdot T = \Sigma \), and a minimal basis, if additionally \(\Sigma_0 \) is minimal wrt. inclusion and that property.
A monomial ideal $\Sigma \subset T$ has a uniquely determined minimal basis $Gen(\Sigma)$.

This minimal basis contains exactly the minimal wrt. term divisibility $x^\alpha \in \Sigma$, i.e., with the property

$$x^\beta \in \Sigma, x^\beta \mid x^\alpha \Rightarrow x^\beta = x^\alpha.$$

Theorem (Dickson’s Lemma)

Each monomial ideal $\Sigma \subset T$ has a finite basis.

This theorem holds for term monoids with finitely many variables.
Normal Forms

Fix a representation $0 \neq f(x) = \sum_{i=0}^{N} c_i x^{\alpha_i} \in R$ with $x^{\alpha_i} > x^{\alpha_j}$ for $i < j$ and all $c_i \neq 0$.

We denote

- the term set $T(f) := \{x^\alpha : c_\alpha \neq 0\}$,
- the leading term $lt(f) := x^{\alpha_0}$,
- the leading coefficient $lc(f) := c_0$,
- the leading monomial $lm(f) := lc(f) \cdot lt(f)$,
- the reductum $red(f) := f - lm(f)$.

Main idea: Substitute larger terms by smaller ones, i.e.,
convert polynomial relations $f \in R$ into (algebraic) substitution rules

$$lt(f) \mapsto -lc(f)^{-1} red(f).$$
Example:

\[B_1 = \{ f_1 = x^2 + xy + y^2, f_2 = xz + yz, f_3 = y^3 - z^3 \} \]
yields the rule system (wrt. \(<_\text{lex}\))

\[
\begin{align*}
 x^2 & \mapsto -xy - y^2, \\
 xz & \mapsto -yz, \\
 y^3 & \mapsto z^3.
\end{align*}
\]

If we apply these rules in the given order to the polynomial

\[g = x^2y^2 + x^2z^2 + y^2z^2, \]
we get step by step

\[
\begin{align*}
g & \mapsto x^2z^2 - xy^3 - y^4 + y^2z^2 \\
& \mapsto -xy^3 - xyz^2 - y^4 \\
& \mapsto -xyz^2 - xz^3 - y^4 \\
& \mapsto -xz^3 - y^4 + y^2z^2 \\
& \mapsto -y^4 + y^2z^2 + yz^3 \\
& \mapsto y^2z^2
\end{align*}
\]
For $B = \{f_1, \ldots, f_m\} \subset R \setminus \{0\}$ define

$$\Sigma(B) := \{x^\alpha : \exists f \in B : \text{lt}(f) \mid x^\alpha\}$$

Each term from $\Sigma(B)$ can be reduced applying one of the rules obtained from B by smaller terms. $t \in \Sigma(B)$ is called non standard term and $t \in T(X) \setminus \Sigma(B)$ is called standard term.

$Lt(B)$ denotes the PP-ideal generated by $\Sigma(B)$.
NF(f:polynomial, B:basis):polynomial

Input: Polynomial \(f \in R \), finite set \(B \subset R \).
Output: Polynomial \(f' \in R \) with \(f \equiv f' \, (\text{mod } B) \)
and \(f' = 0 \) or \(\text{lt}(f') \notin \Sigma(B) \).

while \((f \neq 0) \) and \((M := \{b \in B : \text{lt}(b) | \text{lt}(f)\} \neq \emptyset) \) do
 choose \(b \in M \)
 \(f := f - \frac{\text{lm}(f)}{\text{lm}(b)}b \)
return \(f \)
The algorithm terminates for Noetherian term orderings.

The result (and the time) of a normal form computation may depend on the \textit{reduction path}.

Since \(f \equiv NF(f, B) \pmod{B} \) this gives a first half answer to the ideal membership problem

\[
\text{If } NF(f, B) = 0 \text{ then } f \in \text{Id}(B).
\]
The algorithm can be refined to an Extended Division Algorithm.

\[g \mapsto g_1 = g - y^2 f_1 = x^2 z^2 - xy^3 - y^4 + y^2 z^2 \]
\[\mapsto g_2 = g_1 - z^2 f_1 = -xy^3 - xyz^2 - y^4 \]
\[\mapsto g_3 = g_2 + x f_3 = -xyz^2 - xz^3 - y^4 \]
\[\mapsto g_4 = g_3 + yz f_2 = -xz^3 - y^4 + y^2 z^2 \]
\[\mapsto g_5 = g_4 + z^2 f_2 = -y^4 + y^2 z^2 + yz^3 \]
\[\mapsto g_6 = g_5 + y f_3 = y^2 z^2 = g' \]

yields \(g = (y^2+z^2)f_1 + (-yz-z^2)f_2 + (-x+y)f_3 + g' \).
\textbf{NFwithRelations}(f:\text{polynomial}, B:\text{basis}):
\text{(polynomial, vector of polynomials)}

\textbf{Input}: Polynomial } f \in \mathbb{R}, \text{ finite set } B = \{b_1, \ldots, b_m\} \subset \mathbb{R}

\textbf{Output}: Polynomial } f' \in \mathbb{R} \text{ with } f' = 0 \text{ or } \text{lt}(f') \notin \Sigma(B) \text{ and vector } v = (v_1, \ldots, v_m) \text{ with } f = \sum_i v_i b_i + f'.

\text{for } i = 1, \ldots, m \text{ do } v_i := 0
\text{while } (f \neq 0) \text{ and } (M := \{b \in B : \text{lt}(b) \mid \text{lt}(f)\} \neq \emptyset) \text{ do}
\quad \text{choose } b_i \in M
\quad f := f - \frac{\text{lm}(f)}{\text{lm}(b_i)} b_i
\quad v_i := v_i + \frac{\text{lm}(f)}{\text{lm}(b_i)}
\text{return } (f, v)
This representation \(v \) has a special property; it avoids large intermediate terms.

For a finite set \(B = \{b_1, \ldots, b_m\} \subset R \) and a polynomial \(f \in R \) the algorithm \texttt{NFwithRelations} returns after a finite number of steps a representation

\[
 f = v_1 b_1 + \ldots + v_m b_m + r
\]

with \(v_1, \ldots, v_m, r \in R \) and \(r = 0 \) or \(\text{lt}(r) \notin \Sigma(B) \) and \(\text{lt}(f) \geq \text{lt}(v_i) \text{lt}(b_i) \) for all \(i \).
\textbf{NF} can be applied recursively to terms in \textit{red}(f), too. This yields a presentation \(f \equiv \sum r_\alpha x^\alpha \mod B \) as linear combination of standard terms.

\begin{tabular}{|l|}
\hline
\textbf{TNF}(f:\text{polynomial}, B:\text{basis}):\text{polynomial} \\
\hline
\textit{Input}: Polynomial \(f \in R \), finite set \(B \subset R \) \\
\textit{Output}: Polynomial \(f' \in R \) with \(f \equiv f' \mod \text{Id}(B) \) \\
and \(f' = 0 \) or \(T(f') \cap \Sigma(B) = \emptyset \) \\
\hline
\end{tabular}

\begin{verbatim}
 f:=NF(f,B)
 if f = 0 then return f
 else return lm(f) + TNF(red(f), B)
\end{verbatim}

The algorithm terminates for Noetherian term orderings.
\(f \in B \) with \(\text{lt}(f) \not\in \text{Gen}(\Sigma(B)) \) can be reduced by other base elements. Iterated application yields a result similar to the triangulation of a matrix within the Gauss algorithm.

\[
\textbf{Interreduce}(B:basis):basis
\]

\textbf{Input}: Basis \(B = \{b_1, \ldots, b_m\} \subset R \)

\textbf{Output}: Basis \(B' \) with \(\text{Id}(B) = \text{Id}(B') \)

\hspace{1cm} and \(|B'| = |\text{Gen}(\Sigma(B'))| \)

while exists \(f \in B, \text{lt}(f) \not\in \text{Gen}(\Sigma(B)) \) do

\hspace{1cm} \(B = B - \{f\} \)

\hspace{1cm} \(f' = \text{NF}(f, B) \)

\hspace{1cm} if \(f' \neq 0 \) then \(B = B \cup \{f'\} \)

return \(B \)
\textbf{Interreduce} terminates if \((T, <)\) is a Noetherian term ordering. Note that the \texttt{while} loop terminates due to Dickson’s lemma. Noetherianity is required only for termination of \textbf{NF}, since \(\Sigma(B)\) increases with every new \(f' \neq 0\).

\textbf{Groebner Bases – Definition and Motivation}

The same idea can be applied to any \(f \in \text{Id}(B)\) with \(\text{lt}(f) \notin \Sigma(B)\). The idea of the Groebner algorithm is to scan \(I = \text{Id}(B)\) systematically for such elements.
Given an ideal I, start from $B = \emptyset$ and in every step enlarge B with an element $0 \neq f \in I$ with $\text{lt}(f) \notin \Sigma(B)$ as long as possible. We obtain a strictly increasing chain

$$\Sigma_0 \subset \Sigma_1 \subset \ldots$$

of monomial ideals that must be finite by Dickson’s lemma. Eventually we get a basis G with $\Sigma(G) = \Sigma(I)$.

A subset $G \subset I$ of an ideal I is called Groebner basis of I if $\Sigma(G) = \Sigma(I)$.
Groebner Bases – First Properties

G is a subset of I but not required to generate I.

Theorem:

A Groebner $G \subset I$ of an ideal I generates I.

As an immediate corollary we obtain

Theorem (Hilbert’s Basissatz)

Every ideal $I \subset R$ has a finite basis.

Indeed, we proved (not constructively so far) the existence of finite Groebner bases for every such ideal.
Further properties are

For a Groebner basis $G \subset I$ we have

$$f \in I \iff NF(f, G) = 0.$$

For a Groebner basis G and a polynomial $f \in R$ the total normal form $TNF(f, G)$ is uniquely determined and does not depend on the reduction path.
S-Polynomials

For $0 \neq f, g \in R$ we define the *S-Polynomial* of (f, g)

$$S(f, g) := \frac{m}{lm(f)}f - \frac{m}{lm(g)}g = \frac{m}{lm(f)}\text{red}(f) - \frac{m}{lm(g)}\text{red}(g),$$

where $m = \text{lcm}(\text{lt}(f), \text{lt}(g))$.

Due to cancellation of highest terms we have $S(f, g) = 0$ or $\text{lt}(S(f, g)) < m$.

27
Characterization of Groebner Bases

The following condition for $G \subset I$ are equivalent:

1. G is a Groebner basis, i.e., $\Sigma(I) = \Sigma(G)$.
2. For all $f \in I$ and all reduction strategies we have $NF(f, G) = 0$.
2'. For all $f \in I$ exists a reduction strategy with $NF(f, G) = 0$.
3. For all pairs $g_1, g_2 \in G$ and all reduction strategies we have $NF(S(g_1, g_2), G) = 0$.
3'. For all pairs $g_1, g_2 \in G$ exists a reduction strategy with $NF(S(g_1, g_2), G) = 0$.
4. All \(f \in I \) have a representation

\[
f = \sum_{g \in G} h_g g \text{ with } \forall g \ (lt(f) \geq lt(h_g g)).
\]

5. The standard terms \(N(G) := T(X) \setminus \Sigma(G) \) are \(k \)-linearly independent \(\pmod I \).

5'. The standard terms \(N(G) \) form a \(k \)-linear basis of the factor ring \(R/I \), i.e., all \(f \in R \) have a unique \(k \)-linear representation

\[
f \equiv \sum_{m \in N(G)} c_m m \pmod I
\]

mit \(c_m \in k \).
GBasis(B:basis):basis

Input: finite set $B = \{f_1, \ldots, f_m\} \subset R$.

Output: a Groebner basis G of $I = \text{Id}(B)$.

$G := \text{B};$
$P := \{(f_i, f_j) \mid 1 \leq i < j \leq m\};$

While $P \neq \emptyset$ do
 Choose $p \in P$; $P := P \setminus \{p\};$
 $f := \text{NF}(S(p), G)$
 if $f \neq 0$ then
 $P := P \cup \{(g, f) \mid g \in G\};$
 $G := G \cup \{f\};$
 return $G;$
GBasis is Buchberger’s algorithm. It terminates in a finite number of steps for any Noetherian term ordering.

The result may contain more elements than necessary.

If \(G \) is a Groebner basis of \(I \) and \(G' \subset G \) a subset with \(\text{Gen}(\Sigma(G)) = \{\text{lt}(g) : g \in G'\} \) then \(G' \) is a Groebner basis of \(I \), too. Such a Groebner basis is called minimal.
Minimal and Reduced Groebner Bases

$Gen(\Sigma(I))$, hence \{\text{lt}(g) : g \in G'\}, is uniquely determined.

\[
G'''' = \{\text{lt}(g) - \text{TNF}(\text{lt}(g), G'') : g \in G'\} \subset I
\]

is called the minimal reduced Groebner basis. It is completely unique for a given ideal I and fixed term ordering.
A Criterion for Trivial Ideals

For $B \subset R$ are equivalent:

1. $V_K(B) = \emptyset$, i.e., B has no common zeroes over an algebraically closed extension K of k.
2. $Id(B) = Id(1)$ is the unit ideal.
3. Any Groebner basis $G = GBasis(B)$ contains a constant polynomial.
4. $\{1\}$ is the minimal reduced Groebner basis of $Id(B)$.
Elimination Orders and the Elimination Theorem

$B \subset R = k[x]$ is a finite set of polynomials, $x = (x_1, \ldots, x_k, y_1, \ldots, y_m)$.

Goal: Compute a basis of the elimination ideal

$$I' = Id(B) \cap k[y_1, \ldots, y_m].$$

Solution: Choose a term ordering on $T(x)$ where a term containing a factor x_i is greater than all terms not containing such factors (elimination ordering). Any matrix term ordering refining the weight vector w with $w(x_i) = 1, w(y_j) = 0$ does (e.g., the lex ordering with $x_i > y_j$ for all (i, j)).
The Elimination Theorem
If $G = GBasis(B)$ is a (min. reduced) Groebner basis of B wrt. an elimination ordering for $x_1, \ldots, x_k, y_1, \ldots, y_m$ then

$$G' = \{ g \in G : \text{lt}(g) \in T(y_1, \ldots, y_m) \}$$

is a (min. reduced) Groebner basis of the elimination ideal $I' = Id(B) \cap k[y_1, \ldots, y_m]$.
The lexicographic ordering is eliminating for any initial sequence of variables. Hence Groebner bases wrt. the lex. ordering are “triangular” and well suited to compute solution sets.

For $G = GBasis(B)$ a (min. reduced) lex. Groebner basis of $B \subset R = k[x]$ with $x_1 > \cdots > x_n$ the subsets

$$G_i = \{ g \in G : \text{lt}(g) \in T(x_i, \ldots, x_n) \}$$

are (min. reduced) Groebner bases of the elimination ideals $Id(B) \cap k[x_i, \ldots, x_n]$.

In particular, G_n contains the polynomial $g(x_n) \in I$ of smallest degree only in x_n, if such a polynomial exists and G is minimal and reduced.
Based on that observation we get an inductive way to compute the solutions of a polynomial system B:

If $(x_{i+1}^0, \ldots, x_n^0)$ is a common zero of G_{i+1}, then $G_i \setminus G_{i+1}$ contains all polynomials required to determine x_i^0 such that (x_i^0, \ldots, x_n^0) is a common zero of G_i.

This requires to compute with algebraic numbers in an early stage. A better way (the Groebner factorizer) tries to factor intermediate polynomials $f = f_1 \cdot \ldots \cdot f_k$ to split the problem:

$$V(F \cup \{f\}) = \bigcup_k V(F \cup \{f_k\})$$
Independent Sets and Dimension

Dimension of an ideal $I \subset R$

$$\dim(R/I) = \max\left(d : \exists (x_{i_1}, \ldots, x_{i_d}) \ I \cap k[x_{i_1}, \ldots, x_{i_d}] = \{0\}\right).$$

A subset $x_{i_1}, \ldots, x_{i_d} \subset x$ with $I \cap k[x_{i_1}, \ldots, x_{i_d}] = \{0\}$ is called an *independent set* modulo I.

For $R' = k[x_{i_1}, \ldots, x_{i_d}]$ we have obviously

$$Lt(I) \cap R' = \{0\} \Rightarrow I \cap R' = \{0\}$$
\((x_{i_1}, \ldots, x_{i_d})\) is called a strongly independent set modulo \(I\) (and the term ordering) if \(\Sigma(I) \cap T(x_{i_1}, \ldots, x_{i_d}) = \emptyset\)

and

\[d' = \max \left(d : \exists (x_{i_1}, \ldots, x_{i_d}) \Sigma(I) \cap T(x_{i_1}, \ldots, x_{i_d}) = \emptyset \right)\]

the strong dimension of \(R/I\). This is exactly \(\dim(R/Lt(I))\).

By definition \(d' \leq \dim(R/I)\).

For an ideal the dimension and the strong dimension coincide.

The proof uses a deformation argument that is of separate interest.
Groebner Weighted Deformations

Example:

\[B = \{ x^2 + y + z - 3, x + y^2 + z - 3, x + y + z^2 - 3 \} \]

There is a positive integer weight vector \(w \) such that \(\text{Lt}_{1\text{ex}}(\text{Id}(B)) \) and \(\text{Lt}_<(\text{Id}(B)) \) coincide for any term ordering \(< \) refining \(w \).

Indeed, take \(w = (4, 3, 1) \) for this example

\[
\begin{align*}
yz^2 + 1/2z^3t - 2yt^2 - 5/2z^2t^3 + 3t^5 \\
z^6 - 10z^4t^2 + 4z^3t^3 + 19z^2t^4 - 8zt^5 - 6t^6 \\
x + yt + z^2t^2 - 3t^4 \\
y^2 - yt^3 - z^2t^4 + zt^5
\end{align*}
\]
Existence of Groebner Weighted Deformations

\[G = \left\{ x^\alpha - \sum_{x^\beta \in N} c_{\alpha \beta} x^\beta : x^\alpha \in \text{Gen}(\Sigma) \right\} \]

is a minimal reduced Groebner basis of the ideal \(I \), with the set \(N = T \setminus \Sigma(I) \) of standard terms. Then exists a positive integer weight vector \(w \in \mathbb{Z}_+ \) such that

\[\forall \alpha, \beta \ (c_{\alpha \beta} \neq 0 \Rightarrow w(\alpha) > w(\beta)) \]

For all term orderings \(\prec' \) that refine \(w \), we have \(\Sigma'(G) = \Sigma(G) \) and \(G \) is a Groebner basis also wrt. \(\prec' \).
We define a family

\[G_t = \left\{ x^\alpha - \sum_{\beta} c_{\alpha \beta} x^\beta \cdot t^{w(\alpha) - w(\beta)} : x^\alpha \in \text{Gen}(\Sigma) \right\} \]

of Groebner bases over the ring \(R_t = k[t][x_1, \ldots, x_n] \) such that \(G = G_1 \) is the Groebner basis of the original ideal \(I \) and \(G_0 = Lt(I) \) is the corresponding PP-ideal.

The set \(N \) of standard terms is not only a \(k \)-linear base of \(R/I \) but also a \(k[t] \)-free base of \(R_t/I_t \). Hence the deformation \(Spec(R_t/I_t) \) is flat over the base \(Spec(k[t]) \) and all fibers have the same dimension:

\[d' = \dim(R/Lt(I)) = \dim(R/I) \]
The Pair Criteria and Syzygies of $Lt(I)$

Main Syzygy Criterion

For $f, g \in R$ non trivial with relative prime leading terms we have always $NF(S(f, g), \{f, g\}) = 0$.

For more advanced criteria we fix some notation.

$G = \{f_1, \ldots, f_N\}$ is the base under consideration in a running Groebner basis computation. Further we assume all $lc(f_i) = 1$

Set $m_i = lt(f_i)$, $m_I = \operatorname{lcm}(m_i, i \in I)$ for a subset $I \subset \{1, \ldots, m\}$, $e_i \in R^N$ the i-th unit vector and $(1 \leq i < j \leq N)$

$$s_{ij} = \frac{m_{ij}}{m_i} e_i - \frac{m_{ij}}{m_i} e_j \in R^N$$
All the s_{ij} form a generating set for the first syzygy module $S_1 = \text{Ker}(\phi_1)$ of $Lt(G)$, i.e., the kernel of the map

$$\phi_1 : R^N \to R \quad \text{given by} \quad e_i \mapsto m_i$$

Hence two other criteria for G to be a Groebner basis are

6. For each $s \in S_1$ exists a reduction strategy such that $\text{NF}(s \cdot B, G) = 0$.

6’. For each $s \in S_1$ and every reduction strategy we have $\text{NF}(s \cdot B, G) = 0$.
It is enough to check (6.) for s in a base of S_1. Hence it is enough to test a subset of the s_{ij} that generates S_1.

To get a complete picture about such subsets we have to determine the relations between the s_{ij}, i.e., to compute the second syzygy module $S_2 = \text{Ker}(\phi_2)$ of $\text{Lt}(G)$ with

$$\phi_2 : R^{\binom{N}{2}} \rightarrow R^N \quad \text{given by} \quad e_{ij} \mapsto s_{ij}$$

A (not necessarily minimal) generating set of S_2 are the elements $(1 \leq i < j < k \leq N)$

$$s_{ijk} = \frac{m_{ijk}}{m_{ij}} e_{ij} - \frac{m_{ijk}}{m_{ik}} e_{ik} + \frac{m_{ijk}}{m_{ijk}} e_{jk}$$
The following strategy is usually applied if f_k enters into a partially computed GBasis $G = (f_i, 1 \leq i < k)$:

(1) Skip (j, k) if there is a $i < j$ with $m_{ijk} = m_{jk}$ (i.e., $m_i | m_{jk}$). The syzygy looks like $[\ldots 1]$.

(2) Skip (i, k) if there is a $i < j$ with $m_{ijk} = m_{ik}$ (i.e., $m_j | m_{ik}$) and $m_{ijk} \neq m_{jk}$ (i.e., $m_i | m_{jk}$, hence (j, k) was not skipped in the first run). The syzygy looks like $[\ldots 1 \ast]$, where \ast stands for a non-constant term.

(3) Scan the old pairs (i, j) and skip those with $m_{ijk} = m_{ij}$ (i.e., $m_k | m_{ij}$) and $m_{ijk} \neq m_{ik}$, $m_{ijk} \neq m_{jk}$ (i.e., $m_i | m_{jk}$, $m_j | m_{ik}$, hence neither (i, k) nor (j, k) was skipped in the first two runs). The syzygy looks like $[1 \ast \ast]$

This is more or less the Gebauer-Möller criterion for useless pairs.
Multimodular and Trace Algorithms

Consider the ideal $I \subset \mathbb{Z}[x]$ generated by $B = \{f_1, \ldots, f_m\}$ and its relation to $I_0 = I \cdot \mathbb{Q}[x]$ and to $I_p = I \cdot \mathbb{Z}_p[x]$ for different primes p.

For a proper definition of $\Sigma(I)$ we get $\Sigma = \Sigma(I) = \Sigma(I_0)$. We say that p is a lucky prime if $\Sigma(I_p) = \Sigma$.

Define $C_m = \gcd(lc(f) : f \in I, \text{lt}(f) = m)$ for $m \in \Sigma$.

$\textit{p is lucky if } p \nmid C_m \textit{ for all } m \in \text{Gen}(\Sigma)$.
\textit{Hence there are only finitely many unlucky primes.}$
Hilbert Series and Hilbert Driven GB Computation

$R = \oplus_d [R]_d$ is the decomposition of R in homogeneous components. A *H-module* is an R-module M with a similar decomposition $M = \oplus_d [M]_d$, $\dim_k ([M]_d)$ finite and $[M]_d = 0$ for $d \ll 0$.

In particular, any homogeneous ideal I and its factor ring R/I are H-modules.

Define the *Hilbert series of* M

$$H(M, t) = \sum_{d \in \mathbb{Z}} \dim_k ([M]_d) t^d$$
For $R = k[x_1, \ldots, x_n]$ we have $H(R, t) = \frac{1}{(1-x)^n}$.

The general computation exploits the relation $(\deg(f) = d)$

$$H(R/(I + (f)), t) = H(R/I, t) - t^d H(R/(I : (f)), t)$$

Since $N(G) = T \setminus \Sigma(I)$ is a k-base of R/I we get

$$H(R/I, t) = H(R/Lt(I), t) = \sum_{d \in \mathbb{Z}} |[N(G)]_d| t^d$$

For homogeneous ideal in many cases the Hilbert series is known in advance. In this case the computation of S-polynomials in degree d can be terminated if $[Lt(\Sigma)]_d$ has the correct k-dimension. This version of Buchberger's algorithmus is called **Hilbert Driven Algorithm**.