Groebner Basics

Talk given at the Special Semester on Groebner Bases Linz 2006

Hans-Gert Gräbe, Dept. Computer Science, Univ. Leipzig, Germany http://www.informatik.uni-leipzig.de/~graebe

February 27, 2006

Notations

k a (computationally feasible) field

K/k alg. closed extension

 $R = k[x_1, \ldots, x_n] = k[\mathbf{x}]$ the ring of polynomials over k

 $\mathbb{A}^n := \{(a_1, \ldots, a_n) : a_i \in K\}$ the *n*-dim. affine space

 $B = \{f_1, \ldots, f_s\} \subset S$ a (finite) system of polynomials

 $V = V(B) := \{ \mathbf{a} \in \mathbb{A}^n : f_i(\mathbf{a}) = 0 \ \forall i \}$ the set of common zeroes. Such a set $V \subset \mathbb{A}^n$ is an *affine variety*.

I = Id(B) the ideal generated by B. We have V(B) = V(Id(B)).

Monomial
$$\mathbf{x}^{\alpha} = x_1^{\alpha_1} \cdot \ldots \cdot x_n^{\alpha_n}, \quad \alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$$

The set of terms

$$T = T(\mathbf{x}) = T(x_1, \dots, x_n) = \{\mathbf{x}^{\alpha} : \alpha \in \mathbb{N}^n\}$$

is a semigroup with unit $1 = x^0$, the *term monoid*.

A polynomial in x_1, \ldots, x_n over k is a finite k-linear (i.e., $c_{\alpha} \in k$) combination of terms $f = \sum c_{\alpha} \mathbf{x}^{\alpha}$.

This representation is called *distributive* and can be computed with expand in most of the CAS.

It is unique, i.e., a *canonical representation*, if the coefficients are (representable and) represented in canonical form and the order of summands is fixed.

To fix that order one defines a total ordering < on $T(\mathbf{x})$ that is additionally *monotone*

 $s < t \Rightarrow s \cdot u < t \cdot u$ for all $s, t, u \in T(\mathbf{x})$

Such an ordering is called a *term ordering*.

Many sources require additionally that < is a well ordering, i.e., the two equivalent conditions hold

(a) Each subset $M \subset T$ has a smallest element. (b) All strictly descending chains $t_1 > t_2 > \ldots$ in T are finite.

We call such term orderings Noetherian term orderings.

Lexicographical ordering (lex) with $x_1 > x_2 > \ldots > x_n$

$$\begin{aligned} x_1^{a_1} x_2^{a_2} \cdot \ldots \cdot x_n^{a_n} >_{\mathsf{lex}} x_1^{b_1} x_2^{b_2} \cdot \ldots \cdot x_n^{b_n} \\ \Leftrightarrow \begin{cases} a_1 > b_1 & \mathsf{or} \\ a_1 = b_1 & \mathsf{and} \ x_2^{a_2} \cdot \ldots \cdot x_n^{a_n} >_{\mathsf{lex}} x_2^{b_2} \cdot \ldots \cdot x_n^{b_n} \end{cases} \end{aligned}$$

Reverse lexicographical ordering (revlex) with $x_1 < x_2 < \ldots < x_n$

$$x_{1}^{a_{1}} \cdot \ldots \cdot x_{n-1}^{a_{n-1}} x_{n}^{a_{n}} >_{\mathsf{revlex}} x_{1}^{b_{1}} \cdot \ldots \cdot x_{n-1}^{b_{n-1}} x_{n}^{b_{n}}$$

$$\Leftrightarrow \begin{cases} a_{n} < b_{n} & \mathsf{or} \\ a_{n} = b_{n} & \mathsf{and} \ x_{1}^{a_{1}} \cdot \ldots \cdot x_{n-1}^{a_{n-1}} >_{\mathsf{revlex}} x_{1}^{b_{1}} \cdot \ldots \cdot x_{n-1}^{b_{n-1}} \end{cases}$$

Degree ordering (wrt. the standard grading)

$$\begin{aligned} x_1^{a_1} \cdot \ldots \cdot x_n^{a_n} &>_{\deg xxx} x_1^{b_1} \cdot \ldots \cdot x_n^{b_n} \\ \Leftrightarrow \begin{cases} \deg(\mathbf{a}) > \deg(\mathbf{b}) & \text{or} \\ \deg(\mathbf{a}) = \deg(\mathbf{b}) & \text{and} \ x_1^{a_1} \cdot \ldots \cdot x_n^{a_n} >_{\mathsf{XXX}} x_1^{b_1} \cdot \ldots \cdot x_n^{b_n} \end{cases} \end{aligned}$$

xxx is another term ordering, the *tie-breaking* ordering.

Widespread used are the *degree lexicographic* (deg-lex) and the *degree reverse lexicographic* (deg-revlex) term orderings.

The lexicographic and all degree orderings are Noetherian.

The pure revlex ordering is not Noetherian, since

$$x_1 > x_1^2 > x_1^3 > \dots$$

is an infinitely strictly descending chain of terms.

A term ordering $(T(\mathbf{x}), >)$ is Noetherian iff (c) m > 1 for all $m \in T, m \neq 1$.

Characterization of Term Orderings

 $\widetilde{T} = {\mathbf{x}^{\alpha} : \alpha \in \mathbb{Z}^n}$ is the set of *generalized terms*. A term ordering < can be extended to \widetilde{T} .

< is characterized by its *positivity cone*

$$C_{+} = \left\{ \mathbf{x}^{\alpha} \in \widetilde{T} : \mathbf{x}^{\alpha} > \mathbf{1} \right\}$$

This cone is a half space supported by a (uniquely defined) linear functional $w \in (\mathbb{Z}^n)^* \cong \mathbb{R}^n$. We say that w is the *weight vector* of < and < *refines* w. w is uniquely determined by the row vector

$$(w(x_1),\ldots,w(x_n)).$$

We write shortly $w(\mathbf{x}^{\alpha}) = w(\alpha)$.

Theorem (Characterization of Term Orderings) A term ordering can be described by a sequence of weight vectors $w_1, w_2, \ldots, w_k \in \mathbb{R}^n$ such that for $\mathbf{x}^{\alpha} \in \tilde{T}$ $\mathbf{x}^{\alpha} > \mathbf{1} \Leftrightarrow \exists j < k : w_i(\alpha) = 0$ for $i \leq j$ and $w_{j+1}(\alpha) > 0$

 w_1 is uniquely defined, w_j only upto multiples of w_i , i < j.

Hence any term ordering can be given as matrix term ordering where the weights of the variables wrt. w_i are the entries of row i of the weight matrix.

A term order is Noetherian iff the first non zero entry in each column of the weight matrix is positive.

Weight Matrices for the Standard Term Orderings

$$>_{\text{lex}}: \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ & & \ddots & \\ 0 & 0 & \dots & 1 \end{pmatrix} >_{\text{deglex}}: \begin{pmatrix} 1 & 1 & \dots & 1 & 1 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ & & \ddots & & \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$
$$>_{\text{revlex}}: \begin{pmatrix} 0 & \dots & 0 & -1 \\ 0 & \dots & -1 & 0 \\ & & \ddots & & \\ -1 & \dots & 0 & 0 \end{pmatrix} >_{\text{degrevlex}}: \begin{pmatrix} 1 & 1 & \dots & 1 & 1 \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & -1 & 0 \\ 0 & 0 & \dots & -1 & 0 \\ & & \ddots & & \\ 0 & -1 & \dots & 0 & 0 \end{pmatrix}$$

9

Given a finite set $\Sigma \subset \widetilde{T} \setminus \{1\}$ consider the set $W_{\Sigma} = \{w \in \mathbb{R}^n : \forall \mathbf{x}^{\alpha} \in \Sigma \ w(\alpha) > 0\}$ $= \bigcap_{\mathbf{x}^{\alpha} \in \Sigma} \{w \in \mathbb{R}^n : w(\alpha) > 0\}$

This is the set of all weight vectors w such that for all refinements < of w the terms from Σ are positive. As a finite intersection of open halfspaces this set is either empty or an open cone and hence n-dimensional. The closure of that cone is dual to the cone spanned by the $\mathbf{x}^{\alpha} \in \Sigma$ in \mathbb{Z}^{n} .

For $\Sigma = \{x_1, \ldots, x_n\}$ we get exactly the cone of Noetherian term orderings. Since $w = (11 \dots 1)$ is in the interior part of that cone all refinements of w are Noetherian.

PP-Ideals and Monoid Ideals. Dickson's Lemma

An ideal $I \subset R$ is a *PP-ideal*, iff

$$f = \sum c_{\alpha} \mathbf{x}^{\alpha} \in I \Rightarrow \forall \alpha \ (c_{\alpha} \neq \mathbf{0} \Rightarrow \mathbf{x}^{\alpha} \in I).$$

The set Σ of all $\mathbf{x}^{\alpha} \in I$ form a *monoid ideal*, i.e., a subset of T with

$$\boldsymbol{\Sigma} \cdot T := \{ \mathbf{x}^{\alpha} \cdot \mathbf{x}^{\beta} : \mathbf{x}^{\alpha} \in \boldsymbol{\Sigma}, \, \mathbf{x}^{\beta} \in T \} \subset \boldsymbol{\Sigma}.$$

A subset $\Sigma_0 = {\mathbf{x}^{a_1}, \dots, \mathbf{x}^{a_m}}$ of a monoid ideal Σ is a *basis*, if $\Sigma_0 \cdot T = \Sigma$, and a *minimal basis*, if additionally Σ_0 is minimal wrt. inclusion and that property.

A monomial ideal $\Sigma \subset T$ has a uniquely determined minimal basis $Gen(\Sigma)$.

This minimal basis contains exactly the minimal wrt. term divisibility $\mathbf{x}^{\alpha} \in \Sigma$, i.e., with the property

$$\mathbf{x}^{\beta} \in \boldsymbol{\Sigma}, x^{\beta} \,|\, \mathbf{x}^{\alpha} \; \Rightarrow \; x^{\beta} = \mathbf{x}^{\alpha}.$$

Theorem (Dickson's Lemma)

Each monomial ideal $\Sigma \subset T$ has a finite basis.

This theorem holds for term monoids with finitely many variables.

Normal Forms

Fix a representation $0 \neq f(\mathbf{x}) = \sum_{i=0}^{N} c_i \mathbf{x}^{\alpha_i} \in R$ with $\mathbf{x}^{\alpha_i} > \mathbf{x}^{\alpha_j}$ for i < j and all $c_i \neq 0$.

We denote

the term set $T(f) := \{\mathbf{x}^{\alpha} : c_{\alpha} \neq 0\}$, the leading term $lt(f) := \mathbf{x}^{\alpha_0}$, the leading coefficient $lc(f) := c_0$, the leading monomial $lm(f) := lc(f) \cdot lt(f)$, the reductum red(f) := f - lm(f).

Main idea: Substitute larger terms by smaller ones, i.e., convert polynomial relations $f \in R$ into (algebraic) substitution rules

$$lt(f) \mapsto -lc(f)^{-1} red(f).$$

13

Example:

$$B_1 = \left\{ f_1 = x^2 + xy + y^2, f_2 = xz + yz, f_3 = y^3 - z^3 \right\}$$

yields the rule system (wrt. $<_{lex}$)

$$x^2 \mapsto -xy - y^2, \ xz \mapsto -yz, \ y^3 \mapsto z^3.$$

If we apply these rules in the given order to the polynomial

$$g = x^2 y^2 + x^2 z^2 + y^2 z^2,$$

we get step by step

$$\begin{array}{l} g \mapsto x^{2}z^{2} - xy^{3} - y^{4} + y^{2}z^{2} \\ \mapsto -xy^{3} - xyz^{2} - y^{4} \\ \mapsto -xyz^{2} - xz^{3} - y^{4} \\ \mapsto -xz^{3} - y^{4} + y^{2}z^{2} \\ \mapsto -y^{4} + y^{2}z^{2} + yz^{3} \\ \mapsto y^{2}z^{2} \end{array}$$

For $B = \{f_1, \ldots, f_m\} \subset R \setminus \{0\}$ define

 $\Sigma(B) := \{ x^{\alpha} : \exists f \in B : lt(f) \mid x^{\alpha} \}$

Each term from $\Sigma(B)$ can be reduced applying one of the rules obtained from B by smaller terms. $t \in \Sigma(B)$ is called non standard term and $t \in T(X) \setminus \Sigma(B)$ is called standard term.

Lt(B) denotes the PP-ideal generated by $\Sigma(B)$.

NF(f:polynomial, B:basis):polynomial

Input: Polynomial $f \in R$, finite set $B \subset R$.

Output: Polynomial
$$f' \in R$$
 with $f \equiv f' \pmod{B}$
and $f' = 0$ or $lt(f') \notin \Sigma(B)$.

while $(f \neq 0)$ and $(M := \{b \in B : lt(b) | lt(f)\} \neq \emptyset)$ do choose $b \in M$ $f := f - \frac{lm(f)}{lm(b)}b$ return f The algorithm terminates for Noetherian term orderings.

The result (and the time) of a normal form computation may depend on the *reduction path*.

Since $f \equiv NF(f, B) \pmod{B}$ this gives a first half answer to the ideal membership problem

If NF(f,B) = 0 then $f \in Id(B)$.

The algorithm can be refined to an Extended Division Algorithm.

$$g \mapsto g_1 = g - y^2 f_1 = x^2 z^2 - xy^3 - y^4 + y^2 z^2$$

$$\mapsto g_2 = g_1 - z^2 f_1 = -xy^3 - xyz^2 - y^4$$

$$\mapsto g_3 = g_2 + x f_3 = -xyz^2 - xz^3 - y^4$$

$$\mapsto g_4 = g_3 + y z f_2 = -xz^3 - y^4 + y^2 z^2$$

$$\mapsto g_5 = g_4 + z^2 f_2 = -y^4 + y^2 z^2 + yz^3$$

$$\mapsto g_6 = g_5 + y f_3 = y^2 z^2 = g'$$

yields $g = (y^2 + z^2)f_1 + (-yz - z^2)f_2 + (-x + y)f_3 + g'$.

This representation v has a special property; it avoids large intermediate terms.

For a finite set $B = \{b_1, \ldots, b_m\} \subset R$ and a polynomial $f \in R$ the algorithm **NFwithRelations** returns after a finite number of steps a representation

$$f = v_1 b_1 + \ldots + v_m b_m + r$$

with $v_1, \ldots, v_m, r \in R$ and r = 0 or $lt(r) \notin \Sigma(B)$ and $lt(f) \ge lt(v_i) lt(b_i)$ for all i.

NF can be applied recursively to terms in red(f), too. This yields a presentation $f \equiv \sum r_{\alpha} \mathbf{x}^{\alpha} \pmod{B}$ as linear combination of standard terms.

TNF(f:polynomial, B:basis):polynomial

```
Input: Polynomial f \in R, finite set B \subset R

Output: Polynomial f' \in R with f \equiv f' \pmod{Id(B)}

and f' = 0 or T(f') \cap \Sigma(B) = \emptyset
```

```
f:=NF(f,B)
if f = 0 then return f
else return lm(f) + TNF(red(f),B)
```

The algorithm terminates for Noetherian term orderings.

 $f \in B$ with $lt(f) \notin Gen(\Sigma(B))$ can be reduced by other base elements. Iterated application yields a result similar to the triangulation of a matrix within the Gauss algorithm.

Interreduce(B:basis):basis Input: Basis $B = \{b_1, \ldots, b_m\} \subset R$ Output: Basis B' with Id(B) = Id(B')and $|B'| = |Gen(\Sigma(B'))|$ while exists $f \in B$, $lt(f) \notin Gen(\Sigma(B))$ do $B = B - \{f\}$ f' = NF(f, B)if $f' \neq 0$ then $B = B \cup \{f'\}$ return B

Interreduce terminates if (T, <) is a Noetherian term ordering. Note that the while loop terminates due to Dickson's lemma. Noetherianity is required only for termination of NF, since $\Sigma(B)$ increases with every new $f' \neq 0$.

Groebner Bases – Definition and Motivation

The same idea can be applied to any $f \in Id(B)$ with $lt(f) \notin \Sigma(B)$. The idea of the Groebner algorithm is to scan I = Id(B) systematically for such elements.

Given an ideal I, start from $B = \emptyset$ and in every step enlarge B with an element $0 \neq f \in I$ with $lt(f) \notin \Sigma(B)$ as long as possible. We obtain a strictly increasing chain

 $\Sigma_0\subset \Sigma_1\subset \dots$

of monomial ideals that must be finite by Dickson's lemma. Eventually we get a basis G with $\Sigma(G) = \Sigma(I)$.

A subset $G \subset I$ of an ideal I is called Groebner basis of I if $\Sigma(G) = \Sigma(I)$.

Groebner Bases – First Properties

G is a subset of I but not required to generate I.

Theorem:

A Groebner $G \subset I$ of an ideal I generates I.

As an immediate corollary we obtain

Theorem (Hilbert's Basissatz)

Every ideal $I \subset R$ has a finite basis.

Indeed, we proved (not constructively so far) the existence of finite Groebner bases for every such ideal. Further properties are

For a Groebner basis $G \subset I$ we have

 $f \in I \iff NF(f,G) = 0.$

For a Groebner basis G and a polynomial $f \in R$ the total normal form TNF(f,G) is uniquely determined and does not depend on the reduction path.

S-Polynomials

For $0 \neq f, g \in R$ we define the *S*-Polynomial of (f,g) $S(f,g) := \frac{m}{lm(f)}f - \frac{m}{lm(g)}g = \frac{m}{lm(f)}red(f) - \frac{m}{lm(g)}red(g),$ where m = Icm(lt(f), lt(g)).

Due to cancellation of highest terms we have S(f,g) = 0or lt(S(f,g)) < m.

Characterization of Groebner Bases

The following condition for $G \subset I$ are equivalent: 1. G is a Groebner basis, i.e., $\Sigma(I) = \Sigma(G)$. 2. For all $f \in I$ and all reduction strategies we have NF(f,G) = 0. 2'. For all $f \in I$ exists a reduction strategy with NF(f,G) = 0. 3. For all pairs $g_1, g_2 \in G$ and all reduction strategies we have $NF(S(g_1, g_2), G) = 0$. 3'. For all pairs $g_1, g_2 \in G$ exists a reduction strategy with $NF(S(g_1, g_2), G) = 0$. 4. All f ∈ I have a representation

f = ∑_{g∈G} h_gg with ∀g (lt(f) ≥ lt(h_gg)).

5. The standard terms N(G) := T(X) \ Σ(G) are k-linearly independent (mod I).
5'. The standard terms N(G) form a k-linear basis of the factor ring R/I, i.e., all f ∈ R have a unique k-linear representation

f ≡ ∑ c_mm (mod I)

$$f \equiv \sum_{m \in N(G)} c_m m \pmod{I}$$

mit $c_m \in k$.

GBasis(B:basis):basis

```
Input: finite set B = \{f_1, \ldots, f_m\} \subset R.
Output: a Groebner basis G of I = Id(B).
G := B;
P := \{ (f_i, f_j) \mid 1 \le i < j \le m \};
While P \neq \emptyset do
 Choose p \in P; P := P \setminus \{p\};
 f := NF(S(p), G)
 if f \neq 0 then
   P := P \cup \{(g, f) \mid g \in G\};
   G := G \cup \{f\};
return G;
```

GBasis is Buchberger's algorithm. It terminates in a finite number of steps for any Noetherian term ordering.

The result may contain more elements than necessary.

If G is a Groebner basis of I and $G' \subset G$ a subset with $Gen(\Sigma(G)) = \{lt(g) : g \in G'\}$ then G' is a Groebner basis of I, too.

Such a Groebner basis is called minimal.

Minimal and Reduced Groebner Bases

 $Gen(\Sigma(I))$, hence $\{lt(g) : g \in G'\}$, is uniquely determined.

$$G'' = \{lt(g) - TNF(lt(g), G') : g \in G'\} \subset I$$

is called *the minimal reduced Groebner basis*. It is completely unique for a given ideal *I* and fixed term ordering.

A Criterion for Trivial Ideals

For $B \subset R$ are equivalent:

1. $V_K(B) = \emptyset$, i.e., B has no common zeroes over an algebraically closed extension K of k.

2. Id(B) = Id(1) is the unit ideal.

3. Any Groebner basis G = GBasis(B) contains ac onstant polynomial.

4. $\{1\}$ is the minimal reduced Groener basis of Id(B).

Elimination Orders and the Elimination Theorem

 $B \subset R = k[\mathbf{x}]$ is a finite set of polynomials, $\mathbf{x} = (x_1, \dots, x_k, y_1, \dots, y_m).$

Goal: Compute a basis of the elimination ideal

$$I' = Id(B) \bigcap k[y_1, \ldots, y_m].$$

Solution: Choose a term ordering on $T(\mathbf{x})$ where a term containing a factor x_i is greater than all terms not containing such factors (elimination ordering). Any matrix term ordering refining the weight vector w with $w(x_i) =$ $1, w(y_j) = 0$ does (e.g., the lex ordering with $x_i > y_j$ for all (i, j)).

The Elimination Theorem

If G = GBasis(B) is a (min. reduced) Groebner basis of B wrt. an elimination ordering for $x_1, \ldots, x_k, y_1, \ldots, y_m$ then

$$G' = \{g \in G : lt(g) \in T(y_1, \ldots, y_m)\}$$

is a (min. reduced) Groebner basis of the elimination ideal $I' = Id(B) \cap k[y_1, \dots, y_m]$. The lexicographic ordering is eliminating for any initial sequence of variables. Hence Groebner bases wrt. the lex. ordering are "triangular" and well suited to compute solution sets.

For G = GBasis(B) a (min. reduced) lex. Groebner basis of $B \subset R = k[\mathbf{x}]$ with $x_1 > \cdots > x_n$ the subsets

 $G_i = \{g \in G : lt(g) \in T(x_i, \dots, x_n)\}$

are (min. reduced) Groebner bases of the elimination ideals $Id(B) \cap k[x_i, ..., x_n]$. In particular, G_n contains the polynomial $g(x_n) \in I$ of smallest degree only in x_n , if such a polynomial exists and G is minimal and reduced. Based on that observation we get an inductive way to compute the solutions of a polynomial system B:

If $(x_{i+1}^0, \ldots, x_n^0)$ is a common zero of G_{i+1} , then $G_i \setminus G_{i+1}$ contains all polynomials required to determine x_i^0 such that (x_i^0, \ldots, x_n^0) is a common zero of G_i .

This requires to compute with algebraic numbers in an early stage. A better way (the Groebner factorizer) tries to factor intermediate polynomials $f = f_1 \cdot \ldots \cdot f_k$ to split the problem:

$$V(F \cup \{f\}) = \bigcup_{k} V(F \cup \{f_k\})$$

Independent Sets and Dimension

Dimension of an ideal $I \subset R$

$$\dim(R/I) = \max\left(d : \exists \left(x_{i_1}, \dots, x_{i_d}\right) \ I \bigcap k[x_{i_1}, \dots, x_{i_d}] = \{0\}\right).$$

A subset $x_{i_1}, \ldots, x_{i_d} \subset \mathbf{x}$ with $I \cap k[x_{i_1}, \ldots, x_{i_d}] = \{0\}$ is called an *independent set* modulo I.

For $R' = k[x_{i_1}, \dots, x_{i_d}]$ we have obviously $Lt(I) \bigcap R' = \{0\} \Rightarrow I \bigcap R' = \{0\}$ $(x_{i_1}, \ldots, x_{i_d})$ is called a *strongly independent set* modulo I (and the term ordering) if $\Sigma(I) \cap T(x_{i_1}, \ldots, x_{i_d}) = \emptyset$

and

$$d' = \max\left(d : \exists \left(x_{i_1}, \dots, x_{i_d}\right) \ \mathbf{\Sigma}(I) \cap T(x_{i_1}, \dots, x_{i_d}) = \emptyset\right)$$

the strong dimension of R/I. This is exactly dim(R/Lt(I)).

By definition $d' \leq \dim(R/I)$.

For an ideal the dimension and the strong dimension coincide.

The proof uses a deformation argument that is of separate interest.

Groebner Weighted Deformations

Example:

$$B = \left\{ x^2 + y + z - 3, x + y^2 + z - 3, x + y + z^2 - 3 \right\}$$

There is a positive integer weight vector w such that $Lt_{lex}(Id(B))$ and $Lt_{\leq}(Id(B))$ coincide for any term ordering < refining w.

Indeed, take w = (4, 3, 1) for this example

$$yz^{2} + \frac{1}{2z^{4}t} - \frac{2yt^{2} - \frac{5}{2z^{2}t^{3}} + 3t^{5}}{z^{6} - 10z^{4}t^{2} + 4z^{3}t^{3} + 19z^{2}t^{4} - 8zt^{5} - 6t^{6}}$$

$$x + yt + z^{2}t^{2} - 3t^{4}$$

$$y^{2} - yt^{3} - z^{2}t^{4} + zt^{5}$$

40

Existence of Groebner Weighted Deformations $G = \left\{ \mathbf{x}^{\alpha} - \sum_{\mathbf{x}^{\beta} \in N} c_{\alpha\beta} \mathbf{x}^{\beta} : \mathbf{x}^{\alpha} \in Gen(\Sigma) \right\}$ is a minimal reduced Groebner basis of the ideal I, with the set $N = T \setminus \Sigma(I)$ of standard terms. Then exists a positive integer weight vector $w \in \mathbb{Z}_+$ such that

$$\forall \alpha, \beta \left(c_{\alpha\beta} \neq 0 \Rightarrow w(\alpha) > w(\beta) \right)$$

For all term orderings <' that refine w, we have $\Sigma'(G) = \Sigma(G)$ and G is a Groebner basis also wrt. <'.

We define a family

$$G_t = \left\{ \mathbf{x}^{\alpha} - \sum_{\beta} c_{\alpha\beta} \mathbf{x}^{\beta} \cdot t^{w(\alpha) - w(\beta)} : \mathbf{x}^{\alpha} \in Gen(\Sigma) \right\}$$

of Groebner bases over the ring $R_t = k[t][x_1, \ldots, x_n]$ such that $G = G_1$ is the Groebner basis of the original ideal I and $G_0 = Lt(I)$ is the corresponding PP-ideal.

The set N of standard terms is not only a k-linear base of R/I but also a k[t]-free base of R_t/I_t . Hence the deformation $Spec(R_t/I_t)$ is flat over the base Spec(k[t]) and all fibers have the same dimension:

$$d' = \dim(R/Lt(I)) = \dim(R/I)$$

The Pair Criteria and Syzygies of Lt(I)

Main Syzygy Criterion

For $f,g \in R$ non trivial with relative prime leading terms we have always $NF(S(f,g), \{f,g\}) = 0$.

For more advanced criteria we fix some notation.

 $G = \{f_1, \ldots, f_N\}$ is the base under consideration in a running Groebner basis computation. Further we assume all $lc(f_i) = 1$

Set $m_i = lt(f_i)$, $m_I = lcm(m_i, i \in I)$ for a subset $I \subset \{1, \ldots, m\}$, $e_i \in R^N$ the *i*-th unit vector and $(1 \le i < j \le N)$ $s_{ij} = \frac{m_{ij}}{m_i} e_i - \frac{m_{ij}}{m_i} e_j \in R^N$ 43 All the s_{ij} form a generating set for the first syzygy module $S_1 = Ker(\phi_1)$ of Lt(G), i.e., the kernel of the map

 $\phi_1: \mathbb{R}^N \to \mathbb{R}$ given by $e_i \mapsto m_i$

Hence two other criteria for G to be a Groebner basis are

6. For each $s \in S_1$ exists a reduction strategy such that $NF(s \cdot B, G) = 0$.

6'. For each $s \in S_1$ and every reduction strategy we have $NF(s \cdot B, G) = 0$. It is enough to check (6.) for s in a base of S_1 . Hence it is enough to test a subset of the s_{ij} that generates S_1 .

To get a complete picture about such subsets we have to determine the relations between the s_{ij} , i.e., to compute the second syzygy module $S_2 = Ker(\phi_2)$ of Lt(G) with

$$\phi_2: R^{\binom{N}{2}} \to R^N$$
 given by $e_{ij} \mapsto s_{ij}$

A (not necessarily minimal) generating set of S_2 are the elements $(1 \le i < j < k \le N)$

$$s_{ijk} = \frac{m_{ijk}}{m_{ij}}e_{ij} - \frac{m_{ijk}}{m_{ik}}e_{ik} + \frac{m_{ijk}}{m_{ijk}}e_{jk}$$

The following strategy is usually applied if f_k enters into a partially computed GBasis $G = (f_i, 1 \le i < k)$:

(1) Skip (j,k) if there is a i < j with $m_{ijk} = m_{jk}$ (i.e., $m_i | m_{jk}$). The syzygy looks like [. . 1].

(2) Skip (i,k) if there is a i < j with $m_{ijk} = m_{ik}$ (i.e., $m_j | m_{ik}$) and $m_{ijk} \neq m_{jk}$ (i.e., $m_i \not| m_{jk}$, hence (j,k) was not skipped in the first run). The syzygy looks like [. 1 *], where * stands for a non-constant term.

(3) Scan the old pairs (i, j) and skip those with $m_{ijk} = m_{ij}$ (i.e., $m_k | m_{ij}$) and $m_{ijk} \neq m_{ik}$, $m_{ijk} \neq m_{jk}$ (i.e., $m_i \not| m_{jk}, m_j \not| m_{ik}$, hence neither (i, k) nor (j, k) was skipped in the first two runs). The syzygy looks like [1 * *]

This is more or less the **Gebauer-Möller criterion** for useless pairs.

Multimodular and Trace Algorithms

Consider the ideal $I \subset \mathbb{Z}[\mathbf{x}]$ generated by $B = \{f_1, \ldots, f_m\}$ and its relation to $I_0 = I \cdot \mathbb{Q}[\mathbf{x}]$ and to $I_p = I \cdot \mathbb{Z}_p[\mathbf{x}]$ for different primes p.

For a proper definition of $\Sigma(I)$ we get $\Sigma = \Sigma(I) = \Sigma(I_0)$. We say that p is a *lucky prime* if $\Sigma(I_p) = \Sigma$.

Define $C_m = \text{gcd}(lc(f) : f \in I, lt(f) = m)$ for $m \in \Sigma$.

p is lucky if $p \not| C_m$ for all $m \in Gen(\Sigma)$. Hence there are only finitely many unlucky primes.

Hilbert Series and Hilbert Driven GB Computation

 $R = \bigoplus_d [R]_d$ is the decomposition of R in homogeneous components. A *H*-module is an R-module M with a similar decomposition $M = \bigoplus_d [M]_d$, $dim_k([M]_d)$ finite and $[M]_d =$ 0 for $d \ll 0$.

In particular, any homogeneous ideal I and its factor ring R/I are H-modules.

Define the *Hilbert series* of M

$$H(M,t) = \sum_{d \in \mathbb{Z}} \dim_k([M]_d) t^d$$

For
$$R = k[x_1, ..., x_n]$$
 we have $H(R, t) = \frac{1}{(1-x)^n}$.

The general computation exploits the relation $(\deg(f) = d)$ $H(R/(I + (f)), t) = H(R/I, t) - t^d H(R/(I : (f)), t)$

Since $N(G) = T \setminus \Sigma(I)$ is a k-base of R/I we get $H(R/I, t) = H(R/Lt(I), t) = \sum |[N(G)]_d| t^d$

$$\overline{d\in\mathbb{Z}}$$

For homogeneous ideal in many cases the Hilbert series is known in advance. In this case the computation of S-polynomials in degree d can be terminated if $[Lt(\Sigma)]_d$ has the correct k-dimension. This version of Buchbergers algorithmus is called **Hilbert Driven Algorithm**.