Groebner Basics

Talk given at the Special Semester on Groebner Bases Linz 2006

Hans-Gert Gräbe, Dept. Computer Science, Univ. Leipzig, Germany http://www.informatik.uni-leipzig.de/~graebe

February 27, 2006

Notations

k a (computationally feasible) field
K / k alg. closed extension
$R=k\left[x_{1}, \ldots, x_{n}\right]=k[\mathrm{x}]$ the ring of polynomials over k
$\mathbb{A}^{n}:=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{i} \in K\right\}$ the n-dim. affine space
$B=\left\{f_{1}, \ldots, f_{s}\right\} \subset S$ a (finite) system of polynomials
$V=V(B):=\left\{\mathbf{a} \in \mathbb{A}^{n}: f_{i}(\mathbf{a})=0 \forall i\right\}$
the set of common zeroes.
Such a set $V \subset \mathbb{A}^{n}$ is an affine variety.
$I=I d(B)$ the ideal generated by B.
We have $V(B)=V(I d(B))$.

Monomial $\mathbf{x}^{\alpha}=x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{n}^{\alpha_{n}}, \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$

The set of terms

$$
T=T(\mathrm{x})=T\left(x_{1}, \ldots, x_{n}\right)=\left\{\mathbf{x}^{\alpha}: \alpha \in \mathbb{N}^{n}\right\}
$$

is a semigroup with unit $1=x^{0}$, the term monoid.

A polynomial in x_{1}, \ldots, x_{n} over k is a finite k-linear (i.e., $c_{\alpha} \in k$) combination of terms $f=\sum c_{\alpha} \mathbf{x}^{\alpha}$.

This representation is called distributive and can be computed with expand in most of the CAS.

It is unique, i.e., a canonical representation, if the coefficients are (representable and) represented in canonical form and the order of summands is fixed.

To fix that order one defines a total ordering $<$ on $T(x)$ that is additionally monotone

$$
s<t \Rightarrow s \cdot u<t \cdot u \quad \text { for all } s, t, u \in T(\mathbf{x})
$$

Such an ordering is called a term ordering.

Many sources require additionally that < is a well ordering, i.e., the two equivalent conditions hold
(a) Each subset $M \subset T$ has a smallest element.
(b) All strictly descending chains $t_{1}>t_{2}>\ldots$ in T are finite.

We call such term orderings Noetherian term orderings.

Lexicographical ordering (lex) with $x_{1}>x_{2}>\ldots>x_{n}$

$$
\begin{aligned}
& x_{1}^{a_{1}} x_{2}^{a_{2}} \cdot \ldots \cdot x_{n}^{a_{n}}>_{\text {lex }} x_{1}^{b_{1}} x_{2}^{b_{2}} \cdot \ldots \cdot x_{n}^{b_{n}} \\
& \Leftrightarrow \begin{cases}a_{1}>b_{1} & \text { or } \\
a_{1}=b_{1} & \text { and } x_{2}^{a_{2}} \cdot \ldots \cdot x_{n}{ }^{a_{n}}>_{\text {lex }} x_{2}^{b_{2}} \cdot \ldots \cdot x_{n}{ }^{b_{n}}\end{cases}
\end{aligned}
$$

Reverse lexicographical ordering (revlex) with $x_{1}<x_{2}<\ldots<x_{n}$

$$
\begin{aligned}
& x_{1}^{a_{1}} \cdot \ldots \cdot x_{n-1}^{a_{n-1}} x_{n}{ }^{a_{n}}>_{\text {revlex }} x_{1}^{b_{1}} \cdot \ldots \cdot x_{n-1}{ }^{b_{n-1}} x_{n}^{b_{n}} \\
&
\end{aligned} \quad \Leftrightarrow \begin{cases}a_{n}<b_{n} & \text { or } \\
a_{n}=b_{n} & \text { and } x_{1}^{a_{1}} \cdot \ldots \cdot x_{n-1}{ }^{a_{n-1}}>_{\text {revlex }} x_{1}^{b_{1}} \cdot \ldots \cdot x_{n-1} b_{n-1}\end{cases}
$$

Degree ordering (wrt. the standard grading)

$$
\begin{aligned}
& x_{1}^{a_{1}} \cdot \ldots \cdot x_{n}^{a_{n}}>_{\operatorname{deg} x x x} x_{1}^{b_{1}} \cdot \ldots \cdot x_{n}^{b_{n}} \\
&
\end{aligned} \quad \Leftrightarrow \begin{cases}\operatorname{deg}(\mathbf{a})>\operatorname{deg}(\mathbf{b}) & \text { or } \\
\operatorname{deg}(\mathbf{a})=\operatorname{deg}(\mathbf{b}) & \text { and } x_{1}^{a_{1}} \cdot \ldots \cdot x_{n}{ }^{a_{n}}>_{x x x} x_{1}^{b_{1}} \cdot \ldots \cdot x_{n}{ }^{b_{n}}\end{cases}
$$

$x X x$ is another term ordering, the tie-breaking ordering.
Widespread used are the degree lexicographic (deg-lex) and the degree reverse lexicographic (deg-revlex) term orderings.

The lexicographic and all degree orderings are Noetherian.

The pure revlex ordering is not Noetherian, since

$$
x_{1}>x_{1}^{2}>x_{1}^{3}>\ldots
$$

is an infinitely strictly descending chain of terms.

$$
\begin{aligned}
& \text { A term ordering }(T(\mathrm{x}),>) \text { is Noetherian iff } \\
& \text { (c) } m>1 \text { for all } m \in T, m \neq 1 \text {. }
\end{aligned}
$$

Characterization of Term Orderings

$\widetilde{T}=\left\{\mathrm{x}^{\alpha}: \alpha \in \mathbb{Z}^{n}\right\}$ is the set of generalized terms. A term ordering $<$ can be extended to \widetilde{T}.
< is characterized by its positivity cone

$$
C_{+}=\left\{\mathrm{x}^{\alpha} \in \widetilde{T}: \mathrm{x}^{\alpha}>1\right\}
$$

This cone is a half space supported by a (uniquely defined) linear functional $w \in\left(\mathbb{Z}^{n}\right)^{*} \cong \mathbb{R}^{n}$. We say that w is the weight vector of $<$ and $<$ refines w.
w is uniquely determined by the row vector

$$
\left(w\left(x_{1}\right), \ldots, w\left(x_{n}\right)\right)
$$

We write shortly $w\left(\mathbf{x}^{\alpha}\right)=w(\alpha)$.

Theorem (Characterization of Term Orderings)
 A term ordering can be described by a sequence of weight vectors $w_{1}, w_{2}, \ldots, w_{k} \in \mathbb{R}^{n}$ such that for $\mathbf{x}^{\alpha} \in \widetilde{T}$
 $$
\mathbf{x}^{\alpha}>1 \Leftrightarrow \exists j<k: w_{i}(\alpha)=0 \text { for } i \leq j \text { and } w_{j+1}(\alpha)>0
$$

w_{1} is uniquely defined, w_{j} only upto multiples of $w_{i}, i<j$.

Hence any term ordering can be given as matrix term ordering where the weights of the variables wrt. w_{i} are the entries of row i of the weight matrix.

A term order is Noetherian iff the first non zero entry in each column of the weight matrix is positive.

Weight Matrices for the Standard Term Orderings

$$
\left.\begin{array}{l}
>_{\text {lex }}:\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
0 & 0 & \ldots & \ldots
\end{array}\right) \quad 1
\end{array}\right) \quad>_{\text {deglex }}:\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 0 & \ldots & 0 \\
0 \\
0 & 1 & \ldots & 0 \\
0 \\
0 & 0 & \ldots & \\
0 & & \ldots & 1
\end{array}\right)
$$

Given a finite set $\Sigma \subset \widetilde{T} \backslash\{1\}$ consider the set

$$
\begin{aligned}
W_{\Sigma} & =\left\{w \in \mathbb{R}^{n}: \forall \mathrm{x}^{\alpha} \in \Sigma w(\alpha)>0\right\} \\
& =\bigcap_{\mathrm{x}^{\alpha} \in \Sigma}\left\{w \in \mathbb{R}^{n}: w(\alpha)>0\right\}
\end{aligned}
$$

This is the set of all weight vectors w such that for all refinements $<$ of w the terms from Σ are positive. As a finite intersection of open halfspaces this set is either empty or an open cone and hence n-dimensional. The closure of that cone is dual to the cone spanned by the $\mathbf{x}^{\alpha} \in \Sigma$ in \mathbb{Z}^{n}.

For $\Sigma=\left\{x_{1}, \ldots, x_{n}\right\}$ we get exactly the cone of Noetherian term orderings. Since $w=(11 \ldots 1)$ is in the interior part of that cone all refinements of w are Noetherian.

PP-Ideals and Monoid Ideals. Dickson's Lemma

An ideal $I \subset R$ is a PP-ideal, iff

$$
f=\sum c_{\alpha} \mathbf{x}^{\alpha} \in I \Rightarrow \forall \alpha\left(c_{\alpha} \neq 0 \Rightarrow \mathbf{x}^{\alpha} \in I\right)
$$

The set Σ of all $\mathrm{x}^{\alpha} \in I$ form a monoid ideal, i.e., a subset of T with

$$
\Sigma \cdot T:=\left\{\mathbf{x}^{\alpha} \cdot \mathbf{x}^{\beta}: \mathrm{x}^{\alpha} \in \Sigma, \mathrm{x}^{\beta} \in T\right\} \subset \Sigma .
$$

A subset $\Sigma_{0}=\left\{\mathbf{x}^{a_{1}}, \ldots, \mathrm{x}^{a_{m}}\right\}$ of a monoid ideal Σ is a basis, if $\Sigma_{0} \cdot T=\Sigma$, and a minimal basis, if additionally Σ_{0} is minimal wrt. inclusion and that property.

A monomial ideal $\Sigma \subset T$ has a uniquely determined minimal basis $G e n(\Sigma)$.

This minimal basis contains exactly the minimal wrt. term divisibility $\mathbf{x}^{\alpha} \in \Sigma$, i.e., with the property

$$
\mathbf{x}^{\beta} \in \Sigma, x^{\beta} \mid \mathbf{x}^{\alpha} \Rightarrow x^{\beta}=\mathbf{x}^{\alpha}
$$

Theorem (Dickson's Lemma)

Each monomial ideal $\Sigma \subset T$ has a finite basis.

This theorem holds for term monoids with finitely many variables.

Normal Forms

Fix a representation $0 \neq f(\mathrm{x})=\sum_{i=0}^{N} c_{i} \mathrm{x}^{\alpha_{i}} \in R$ with $\mathbf{x}^{\alpha_{i}}>\mathbf{x}^{\alpha_{j}}$ for $i<j$ and all $c_{i} \neq 0$.

We denote
the term set $T(f):=\left\{\mathrm{x}^{\alpha}: c_{\alpha} \neq 0\right\}$, the leading term $l t(f):=\mathrm{x}^{\alpha_{0}}$, the leading coefficient $l c(f):=c_{0}$, the leading monomial $\operatorname{lm}(f):=l c(f) \cdot l t(f)$, the reductum $\operatorname{red}(f):=f-\operatorname{lm}(f)$.

Main idea: Substitute larger terms by smaller ones, i.e., convert polynomial relations $f \in R$ into (algebraic) substitution rules

$$
l t(f) \mapsto-l c(f)^{-1} \operatorname{red}(f)
$$

Example:

$$
B_{1}=\left\{f_{1}=x^{2}+x y+y^{2}, f_{2}=x z+y z, f_{3}=y^{3}-z^{3}\right\}
$$

yields the rule system (wrt. $<_{l e x}$)

$$
x^{2} \mapsto-x y-y^{2}, x z \mapsto-y z, \quad y^{3} \mapsto z^{3}
$$

If we apply these rules in the given order to the polynomial

$$
g=x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}
$$

we get step by step

$$
\begin{aligned}
g & \mapsto x^{2} z^{2}-x y^{3}-y^{4}+y^{2} z^{2} \\
& \mapsto-x y^{3}-x y z^{2}-y^{4} \\
& \mapsto-x y z^{2}-x z^{3}-y^{4} \\
& \mapsto-x z^{3}-y^{4}+y^{2} z^{2} \\
& \mapsto-y^{4}+y^{2} z^{2}+y z^{3} \\
& \mapsto y^{2} z^{2}
\end{aligned}
$$

For $B=\left\{f_{1}, \ldots, f_{m}\right\} \subset R \backslash\{0\}$ define

$$
\Sigma(B):=\left\{x^{\alpha}: \exists f \in B: l t(f) \mid x^{\alpha}\right\}
$$

Each term from $\Sigma(B)$ can be reduced applying one of the rules obtained from B by smaller terms. $t \in \Sigma(B)$ is called non standard term and $t \in T(X) \backslash \Sigma(B)$ is called standard term.
$L t(B)$ denotes the PP-ideal generated by $\Sigma(B)$.

```
NF(f:polynomial, B:basis):polynomial
Input: \(\quad\) Polynomial \(f \in R\), finite set \(B \subset R\).
Output: Polynomial \(f^{\prime} \in R\) with \(f \equiv f^{\prime}(\bmod B)\)
    and \(f^{\prime}=0\) or \(l t\left(f^{\prime}\right) \notin \Sigma(B)\).
while \((f \neq 0)\) and \((M:=\{b \in B: l t(b) \mid l t(f)\} \neq \emptyset)\) do
    choose \(b \in M\)
    \(f:=f-\frac{l m(f)}{\operatorname{lm}(b)} b\)
return \(f\)
```

The algorithm terminates for Noetherian term orderings.

The result (and the time) of a normal form computation may depend on the reduction path.

Since $f \equiv N F(f, B)(\bmod B)$ this gives a first half answer to the ideal membership problem

$$
\text { If } N F(f, B)=0 \text { then } f \in \operatorname{Id}(B)
$$

The algorithm can be refined to an Extended Division AIgorithm.

$$
\begin{aligned}
& g \mapsto g_{1}=g-y^{2} f_{1} \\
& \mapsto g_{2}=g_{1}-z^{2} z^{2}-x y^{3}-y^{4}+y^{2} z^{2} \\
& \mapsto-x y^{3}-x y z^{2}-y^{4} \\
& \mapsto g_{3}=g_{2}+x f_{3}=-x y z^{2}-x z^{3}-y^{4} \\
& \mapsto g_{4}=g_{3}+y z f_{2}=-x z^{3}-y^{4}+y^{2} z^{2} \\
& \mapsto g_{5}=g_{4}+z^{2} f_{2}=-y^{4}+y^{2} z^{2}+y z^{3} \\
& \mapsto g_{6}=g_{5}+y f_{3}=y^{2} z^{2}=g^{\prime}
\end{aligned}
$$

$$
\text { yields } g=\left(y^{2}+z^{2}\right) f_{1}+\left(-y z-z^{2}\right) f_{2}+(-x+y) f_{3}+g^{\prime}
$$

```
NFwithRelations(f:polynomial, B:basis):
    (polynomial, vector of polynomials)
Input: \(\quad\) Polynomial \(f \in R\), finite set \(B=\left\{b_{1}, \ldots, b_{m}\right\} \subset R\)
Output: Polynomial \(f^{\prime} \in R\) with \(f^{\prime}=0\) or \(l t\left(f^{\prime}\right) \notin \Sigma(B)\)
    and vector \(v=\left(v_{1}, \ldots, v_{m}\right)\) with \(f=\sum_{i} v_{i} b_{i}+f^{\prime}\).
for \(i=1, \ldots, m\) do \(v_{i}:=0\)
while \((f \neq 0)\) and \((M:=\{b \in B: l t(b) \mid l t(f)\} \neq \emptyset)\) do
    choose \(b_{i} \in M\)
    \(f:=f-\frac{\operatorname{lm}(f)}{\operatorname{lm}\left(b_{i}\right)} b_{i}\)
    \(v_{i}:=v_{i}+\frac{\operatorname{lm}(f)}{\operatorname{lm}\left(b_{i}\right)}\)
return ( \(f, v\) )
```

This representation v has a special property; it avoids large intermediate terms.

For a finite set $B=\left\{b_{1}, \ldots, b_{m}\right\} \subset R$ and a polynomial $f \in R$ the algorithm NFwithRelations returns after a finite number of steps a representation

$$
\begin{aligned}
& \qquad f=v_{1} b_{1}+\ldots+v_{m} b_{m}+r \\
& \text { with } v_{1}, \ldots, v_{m}, r \in R \text { and } r=0 \text { or } l t(r) \notin \Sigma(B) \text { and } \\
& l t(f) \geq l t\left(v_{i}\right) l t\left(b_{i}\right) \text { for all } i .
\end{aligned}
$$

NF can be applied recursively to terms in $\operatorname{red}(f)$, too. This yields a presentation $f \equiv \sum r_{\alpha} \mathbf{x}^{\alpha}(\bmod B)$ as linear combination of standard terms.

```
TNF(f:polynomial, B:basis):polynomial
Input: Polynomial }f\inR\mathrm{ , finite set B}\subset
Output: Polynomial }\mp@subsup{f}{}{\prime}\inR\mathrm{ with }f\equiv\mp@subsup{f}{}{\prime}(\operatorname{mod}\operatorname{Id}(B)
    and f}\mp@subsup{f}{}{\prime}=0\mathrm{ or }T(\mp@subsup{f}{}{\prime})\cap\Sigma(B)=
f:=NF(f,B)
if f=0 then return f
else return lm}(f)+TNF(red(f),B
```

The algorithm terminates for Noetherian term orderings.
$f \in B$ with $l t(f) \notin \operatorname{Gen}(\Sigma(B))$ can be reduced by other base elements. Iterated application yields a result similar to the triangulation of a matrix within the Gauss algorithm.

```
Interreduce(B:basis):basis
Input: \(\quad\) Basis \(B=\left\{b_{1}, \ldots, b_{m}\right\} \subset R\)
Output: Basis \(B^{\prime}\) with \(\operatorname{Id}(B)=\operatorname{Id}\left(B^{\prime}\right)\)
                        and \(\left|B^{\prime}\right|=\left|\operatorname{Gen}\left(\Sigma\left(B^{\prime}\right)\right)\right|\)
while exists \(f \in B, \quad l t(f) \notin \operatorname{Gen}(\Sigma(B))\) do
    \(B=B-\{f\}\)
    \(f^{\prime}=N F(f, B)\)
    if \(f^{\prime} \neq 0\) then \(B=B \cup\left\{f^{\prime}\right\}\)
return \(B\)
```

Interreduce terminates if $(T,<)$ is a Noetherian term ordering. Note that the while loop terminates due to Dickson's lemma. Noetherianity is required only for termination of NF, since $\Sigma(B)$ increases with every new $f^{\prime} \neq 0$.

Groebner Bases - Definition and Motivation

The same idea can be applied to any $f \in I d(B)$ with $l t(f) \notin$ $\Sigma(B)$. The idea of the Groebner algorithm is to scan $I=$ $I d(B)$ systematically for such elements.

Given an ideal I, start from $B=\emptyset$ and in every step enlarge B with an element $0 \neq f \in I$ with $l t(f) \notin \Sigma(B)$ as long as possible. We obtain a strictly increasing chain

$$
\Sigma_{0} \subset \Sigma_{1} \subset \ldots
$$

of monomial ideals that must be finite by Dickson's lemma. Eventually we get a basis G with $\Sigma(G)=\Sigma(I)$.

> A subset $G \subset I$ of an ideal I is called Groebner basis of I if $\Sigma(G)=\Sigma(I)$.

Groebner Bases - First Properties

G is a subset of I but not required to generate I.

Theorem:

A Groebner $G \subset I$ of an ideal I generates I.

As an immediate corollary we obtain

Theorem (Hilbert's Basissatz)

Every ideal $I \subset R$ has a finite basis.

Indeed, we proved (not constructively so far) the existence of finite Groebner bases for every such ideal.

Further properties are

For a Groebner basis $G \subset I$ we have

$$
f \in I \Leftrightarrow N F(f, G)=0
$$

For a Groebner basis G and a polynomial $f \in R$ the total normal form $\operatorname{TNF}(f, G)$ is uniquely determined and does not depend on the reduction path.

S-Polynomials

For $0 \neq f, g \in R$ we define the S-Polynomial of (f, g)

$$
\begin{aligned}
S(f, g) & :=\frac{m}{\operatorname{lm}(f)} f-\frac{m}{\operatorname{lm}(g)} g=\frac{m}{\operatorname{lm}(f)} \operatorname{red}(f)-\frac{m}{\operatorname{lm}(g)} \operatorname{red}(g), \\
\text { where } m & =\operatorname{lcm}(l t(f), l t(g)
\end{aligned}
$$

Due to cancellation of highest terms we have $S(f, g)=0$ or $l t(S(f, g))<m$.

Characterization of Groebner Bases

The following condition for $G \subset I$ are equivalent:

1. G is a Groebner basis, i.e., $\Sigma(I)=\Sigma(G)$.
2. For all $f \in I$ and all reduction strategies we have $N F(f, G)=0$.
2'. For all $f \in I$ exists a reduction strategy with $N F(f, G)=0$.
3. For all pairs $g_{1}, g_{2} \in G$ and all reduction strategies we have $\operatorname{NF}\left(S\left(g_{1}, g_{2}\right), G\right)=0$.
3'. For all pairs $g_{1}, g_{2} \in G$ exists a reduction strategy with $\operatorname{NF}\left(S\left(g_{1}, g_{2}\right), G\right)=0$.
4. All $f \in I$ have a representation

$$
f=\sum_{g \in G} h_{g} g \quad \text { with } \quad \forall g\left(l t(f) \geq l t\left(h_{g} g\right)\right)
$$

5. The standard terms $N(G):=T(X) \backslash \Sigma(G)$ are k linearly independent $(\bmod I)$.
5'. The standard terms $N(G)$ form a k-linear basis of the factor ring R / I, i.e., all $f \in R$ have a unique k-linear representation

$$
f \equiv \sum_{m \in N(G)} c_{m} m \quad(\bmod I)
$$

mit $c_{m} \in k$.

```
GBasis(B:basis):basis
Input: \(\quad\) finite set \(B=\left\{f_{1}, \ldots, f_{m}\right\} \subset R\).
Output: a Groebner basis \(G\) of \(I=I d(B)\).
\(\mathrm{G}:=\mathrm{B}\);
\(P:=\left\{\left(f_{i}, f_{j}\right) \mid 1 \leq i<j \leq m\right\} ;\)
While \(P \neq \emptyset\) do
    Choose \(p \in P ; P:=P \backslash\{p\}\);
    \(f:=N F(S(p), G)\)
    if \(f \neq 0\) then
        \(P:=P \cup\{(g, f) \mid g \in G\} ;\)
        \(G:=G \cup\{f\} ;\)
return G;
```

GBasis is Buchberger's algorithm. It terminates in a finite number of steps for any Noetherian term ordering.

The result may contain more elements than necessary.

If G is a Groebner basis of I and $G^{\prime} \subset G$ a subset with $\operatorname{Gen}(\Sigma(G))=\left\{l t(g): g \in G^{\prime}\right\}$ then G^{\prime} is a Groebner basis of I, too.
Such a Groebner basis is called minimal.

Minimal and Reduced Groebner Bases

$G e n(\Sigma(I))$, hence $\left\{l t(g): g \in G^{\prime}\right\}$, is uniquely determined.

$$
G^{\prime \prime}=\left\{l t(g)-T N F\left(l t(g), G^{\prime}\right): g \in G^{\prime}\right\} \subset I
$$

is called the minimal reduced Groebner basis. It is completely unique for a given ideal I and fixed term ordering.

A Criterion for Trivial Ideals

For $B \subset R$ are equivalent:

1. $V_{K}(B)=\emptyset$, i.e., B has no common zeroes over an algebraically closed extension K of k.
2. $\operatorname{Id}(B)=\operatorname{Id}(1)$ is the unit ideal.
3. Any Groebner basis $G=G B a s i s(B)$ contains ac onstant polynomial.
4. $\{1\}$ is the minimal reduced Groener basis of $I d(B)$.

Elimination Orders and the Elimination Theorem

$B \subset R=k[\mathrm{x}]$ is a finite set of polynomials, $\mathbf{x}=\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{m}\right)$.

Goal: Compute a basis of the elimination ideal

$$
I^{\prime}=I d(B) \bigcap k\left[y_{1}, \ldots, y_{m}\right]
$$

Solution: Choose a term ordering on $T(\mathbf{x})$ where a term containing a factor x_{i} is greater than all terms not containing such factors (elimination ordering). Any matrix term ordering refining the weight vector w with $w\left(x_{i}\right)=$ $1, w\left(y_{j}\right)=0$ does (e.g., the lex ordering with $x_{i}>y_{j}$ for all $(i, j))$.

The Elimination Theorem

If $G=G B a s i s(B)$ is a (min. reduced) Groebner basis of B wrt. an elimination ordering for $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{m}$ then

$$
G^{\prime}=\left\{g \in G: l t(g) \in T\left(y_{1}, \ldots, y_{m}\right)\right\}
$$

is a (min. reduced) Groebner basis of the elimination ideal $I^{\prime}=I d(B) \cap k\left[y_{1}, \ldots, y_{m}\right]$.

The lexicographic ordering is eliminating for any initial sequence of variables. Hence Groebner bases wrt. the lex. ordering are "triangular" and well suited to compute solution sets.

For $G=G B a s i s(B)$ a (min. reduced) lex. Groebner basis of $B \subset R=k[\mathrm{x}]$ with $x_{1}>\cdots>x_{n}$ the subsets

$$
G_{i}=\left\{g \in G: l t(g) \in T\left(x_{i}, \ldots, x_{n}\right)\right\}
$$

are (min. reduced) Groebner bases of the elimination ideals $\operatorname{Id}(B) \cap k\left[x_{i}, \ldots, x_{n}\right]$.
In particular, G_{n} contains the polynomial $g\left(x_{n}\right) \in I$ of smallest degree only in x_{n}, if such a polynomial exists and G is minimal and reduced.

Based on that observation we get an inductive way to compute the solutions of a polynomial system B :

If $\left(x_{i+1}^{0}, \ldots, x_{n}^{0}\right)$ is a common zero of G_{i+1}, then $G_{i} \backslash$ G_{i+1} contains all polynomials required to determine x_{i}^{0} such that $\left(x_{i}^{0}, \ldots, x_{n}^{0}\right)$ is a common zero of G_{i}.

This requires to compute with algebraic numbers in an early stage. A better way (the Groebner factorizer) tries to factor intermediate polynomials $f=f_{1} \cdot \ldots \cdot f_{k}$ to split the problem:

$$
V(F \cup\{f\})=\bigcup_{k} V\left(F \cup\left\{f_{k}\right\}\right)
$$

Independent Sets and Dimension

Dimension of an ideal $I \subset R$

$$
\begin{aligned}
& \operatorname{dim}(R / I)= \\
& \quad \max \left(d: \exists\left(x_{i_{1}}, \ldots, x_{i_{d}}\right) I \bigcap k\left[x_{i_{1}}, \ldots, x_{i_{d}}\right]=\{0\}\right) .
\end{aligned}
$$

A subset $x_{i_{1}}, \ldots, x_{i_{d}} \subset \mathbf{x}$ with $I \cap k\left[x_{i_{1}}, \ldots, x_{i_{d}}\right]=\{0\}$ is called an independent set modulo I.

For $R^{\prime}=k\left[x_{i_{1}}, \ldots, x_{i_{d}}\right]$ we have obviously

$$
\operatorname{Lt}(I) \bigcap R^{\prime}=\{0\} \Rightarrow I \bigcap R^{\prime}=\{0\}
$$

$\left(x_{i_{1}}, \ldots, x_{i_{d}}\right)$ is called a strongly independent set modulo I (and the term ordering) if $\Sigma(I) \cap T\left(x_{i_{1}}, \ldots, x_{i_{d}}\right)=\emptyset$
and

$$
d^{\prime}=\max \left(d: \exists\left(x_{i_{1}}, \ldots, x_{i_{d}}\right) \quad \Sigma(I) \cap T\left(x_{i_{1}}, \ldots, x_{i_{d}}\right)=\emptyset\right)
$$

the strong dimension of R / I. This is exactly $\operatorname{dim}(R / L t(I))$.
By definition $d^{\prime} \leq \operatorname{dim}(R / I)$.

For an ideal the dimension and the strong dimension coincide.

The proof uses a deformation argument that is of separate interest.

Groebner Weighted Deformations

Example:

$$
B=\left\{x^{2}+y+z-3, x+y^{2}+z-3, x+y+z^{2}-3\right\}
$$

There is a positive integer weight vector w such that $L t_{\text {lex }}(\operatorname{Id}(B))$ and $L t<(I d(B))$ coincide for any term ordering $<$ refining w.

Indeed, take $w=(4,3,1)$ for this example

$$
\begin{aligned}
& y z^{2}+1 / 2 z^{4} t-2 y t^{2}-5 / 2 z^{2} t^{3}+3 t^{5} \\
& z^{6}-10 z^{4} t^{2}+4 z^{3} t^{3}+19 z^{2} t^{4}-8 z t^{5}-6 t^{6} \\
& x+y t+z^{2} t^{2}-3 t^{4} \\
& y^{2}-y t^{3}-z^{2} t^{4}+z t^{5}
\end{aligned}
$$

Existence of Groebner Weighted Deformations

 $G=\left\{\mathrm{x}^{\alpha}-\sum_{\mathrm{x}^{\beta} \in N} c_{\alpha \beta} \mathrm{x}^{\beta}: \mathrm{x}^{\alpha} \in \operatorname{Gen}(\Sigma)\right\}$ is a minimal reduced Groebner basis of the ideal I, with the set $N=T \backslash \Sigma(I)$ of standard terms. Then exists a positive integer weight vector $w \in \mathbb{Z}_{+}$such that$$
\forall \alpha, \beta\left(c_{\alpha \beta} \neq 0 \Rightarrow w(\alpha)>w(\beta)\right)
$$

For all term orderings $<^{\prime}$ that refine w, we have $\Sigma^{\prime}(G)=\Sigma(G)$ and G is a Groebner basis also wrt. $<^{\prime}$ 。

We define a family

$$
G_{t}=\left\{\mathbf{x}^{\alpha}-\sum_{\beta} c_{\alpha \beta} \mathbf{x}^{\beta} \cdot t^{w(\alpha)-w(\beta)}: \mathbf{x}^{\alpha} \in G e n(\Sigma)\right\}
$$

of Groebner bases over the ring $R_{t}=k[t]\left[x_{1}, \ldots, x_{n}\right]$ such that $G=G_{1}$ is the Groebner basis of the original ideal I and $G_{0}=L t(I)$ is the corresponding PP-ideal.

The set N of standard terms is not only a k-linear base of R / I but also a $k[t]$-free base of R_{t} / I_{t}. Hence the deformation $\operatorname{Spec}\left(R_{t} / I_{t}\right)$ is flat over the base $\operatorname{Spec}(k[t])$ and all fibers have the same dimension:

$$
d^{\prime}=\operatorname{dim}(R / L t(I))=\operatorname{dim}(R / I)
$$

The Pair Criteria and Syzygies of $L t(I)$

Main Syzygy Criterion

For $f, g \in R$ non trivial with relative prime leading terms we have always $\operatorname{NF}(S(f, g),\{f, g\})=0$.

For more advanced criteria we fix some notation.
$G=\left\{f_{1}, \ldots, f_{N}\right\}$ is the base under consideration in a running Groebner basis computation. Further we assume all $l c\left(f_{i}\right)=1$

Set $m_{i}=l t\left(f_{i}\right), m_{I}=\operatorname{lcm}\left(m_{i}, i \in I\right)$ for a subset $I \subset$ $\{1, \ldots, m\}, e_{i} \in R^{N}$ the i-th unit vector and ($1 \leq i<j \leq N$)

$$
s_{i j}=\frac{m_{i j}}{m_{i}} e_{i}-\frac{m_{i j}}{m_{i}} e_{j} \in R^{N}
$$

All the $s_{i j}$ form a generating set for the first syzygy module $S_{1}=\operatorname{Ker}\left(\phi_{1}\right)$ of $\operatorname{Lt}(G)$, i.e., the kernel of the map

$$
\phi_{1}: R^{N} \rightarrow R \quad \text { given by } \quad e_{i} \mapsto m_{i}
$$

Hence two other criteria for G to be a Groebner basis are
6. For each $s \in S_{1}$ exists a reduction strategy such that $N F(s \cdot B, G)=0$.
6'. For each $s \in S_{1}$ and every reduction strategy we have $N F(s \cdot B, G)=0$.

It is enough to check (6.) for s in a base of S_{1}. Hence it is enough to test a subset of the $s_{i j}$ that generates S_{1}.

To get a complete picture about such subsets we have to determine the relations between the $s_{i j}$, i.e., to compute the second syzygy module $S_{2}=\operatorname{Ker}\left(\phi_{2}\right)$ of $\operatorname{Lt}(G)$ with

$$
\phi_{2}: R^{\binom{N}{2}} \rightarrow R^{N} \quad \text { given by } \quad e_{i j} \mapsto s_{i j}
$$

A (not necessarily minimal) generating set of S_{2} are the elements $(1 \leq i<j<k \leq N)$

$$
s_{i j k}=\frac{m_{i j k}}{m_{i j}} e_{i j}-\frac{m_{i j k}}{m_{i k}} e_{i k}+\frac{m_{i j k}}{m_{i j k}} e_{j k}
$$

The following strategy is usually applied if f_{k} enters into a partially computed GBasis $G=\left(f_{i}, 1 \leq i<k\right)$:
(1) Skip (j, k) if there is a $i<j$ with $m_{i j k}=m_{j k}$ (i.e., $m_{i} \mid m_{j k}$). The syzygy looks like [. . 1].
(2) Skip (i, k) if there is a $i<j$ with $m_{i j k}=m_{i k}$ (i.e., $m_{j} \mid m_{i k}$) and $m_{i j k} \neq m_{j k}$ (i.e., $m_{i} \nmid m_{j k}$, hence (j, k) was not skipped in the first run). The syzygy looks like [. $1 *$], where $*$ stands for a non-constant term.
(3) Scan the old pairs (i, j) and skip those with $m_{i j k}=m_{i j}$ (i.e., $m_{k} \mid m_{i j}$) and $m_{i j k} \neq m_{i k}, m_{i j k} \neq m_{j k}$ (i.e., $m_{i} \nmid m_{j k}, m_{j} \nmid m_{i k}$, hence neither (i, k) nor (j, k) was skipped in the first two runs).
The syzygy looks like [1 * *]

This is more or less the Gebauer-Möller criterion for useless pairs.

Multimodular and Trace Algorithms

Consider the ideal $I \subset \mathbb{Z}[\mathbf{x}]$ generated by $B=\left\{f_{1}, \ldots, f_{m}\right\}$ and its relation to $I_{0}=I \cdot \mathbb{Q}[\mathrm{x}]$ and to $I_{p}=I \cdot \mathbb{Z}_{p}[\mathrm{x}]$ for different primes p.

For a proper definition of $\Sigma(I)$ we get $\Sigma=\Sigma(I)=\Sigma\left(I_{0}\right)$. We say that p is a lucky prime if $\Sigma\left(I_{p}\right)=\Sigma$.

Define $C_{m}=\operatorname{gcd}(l c(f): f \in I, l t(f)=m)$ for $m \in \Sigma$.
p is lucky if $p \nmid C_{m}$ for all $m \in \operatorname{Gen}(\Sigma)$.
Hence there are only finitely many unlucky primes.

Hilbert Series and Hilbert Driven GB Computation

$R=\oplus_{d}[R]_{d}$ is the decomposition of R in homogeneous components. A H-module is an R-module M with a similar decomposition $M=\oplus_{d}[M]_{d}, \operatorname{dim}_{k}\left([M]_{d}\right)$ finite and $[M]_{d}=$ 0 for $d \ll 0$.

In particular, any homogeneous ideal I and its factor ring R / I are H -modules.

Define the Hilbert series of M

$$
H(M, t)=\sum_{d \in \mathbb{Z}} \operatorname{dim}_{k}\left([M]_{d}\right) t^{d}
$$

For $R=k\left[x_{1}, \ldots, x_{n}\right]$ we have $H(R, t)=\frac{1}{(1-x)^{n}}$.
The general computation exploits the relation $(\operatorname{deg}(f)=d)$

$$
H(R /(I+(f)), t)=H(R / I, t)-t^{d} H(R /(I:(f)), t)
$$

Since $N(G)=T \backslash \Sigma(I)$ is a k-base of R / I we get

$$
H(R / I, t)=H(R / L t(I), t)=\sum_{d \in \mathbb{Z}}\left|[N(G)]_{d}\right| t^{d}
$$

For homogeneous ideal in many cases the Hilbert series is known in advance. In this case the computation of Spolynomials in degree d can be terminated if $[L t(\Sigma)]_{d}$ has the correct k-dimension. This version of Buchbergers algorithmus is called Hilbert Driven Algorithm.

