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Notations

k a (computationally feasible) field

K/k alg. closed extension

R = k[x1, . . . , xn] = k[x] the ring of polynomials over k

An := {(a1, . . . , an) : ai ∈ K} the n-dim. affine space

B = {f1, . . . , fs} ⊂ S a (finite) system of polynomials

V = V (B) := {a ∈ An : fi(a) = 0 ∀ i}
the set of common zeroes.
Such a set V ⊂ An is an affine variety.

I = Id(B) the ideal generated by B.
We have V (B) = V (Id(B)).
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Monomial xα = x
α1
1 · . . . · xαn

n , α = (α1, . . . , αn) ∈ Nn

The set of terms

T = T (x) = T (x1, . . . , xn) = {xα : α ∈ Nn}

is a semigroup with unit 1 = x0, the term monoid.

A polynomial in x1, . . . , xn over k is a finite k-linear (i.e.,

cα ∈ k) combination of terms f =
∑

cαxα.

This representation is called distributive and can be computed with
expand in most of the CAS.

It is unique, i.e., a canonical representation, if the coefficients are
(representable and) represented in canonical form and the order of
summands is fixed.
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To fix that order one defines a total ordering < on T (x)

that is additionally monotone

s < t ⇒ s · u < t · u for all s, t, u ∈ T (x)

Such an ordering is called a term ordering.

Many sources require additionally that < is a well ordering,

i.e., the two equivalent conditions hold

(a) Each subset M ⊂ T has a smallest element.

(b) All strictly descending chains t1 > t2 > . . . in T

are finite.

We call such term orderings Noetherian term orderings.
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Lexicographical ordering (lex) with x1 > x2 > . . . > xn

xa1

1 xa2

2 · . . . · xn
an >lex xb1

1 xb2

2 · . . . · xn
bn

⇔
{

a1 > b1 or

a1 = b1 and xa2

2 · . . . · xn
an >lex xb2

2 · . . . · xn
bn

Reverse lexicographical ordering (revlex) with x1 < x2 < . . . < xn

xa1

1 · . . . · xn−1
an−1xn

an >revlex xb1

1 · . . . · xn−1
bn−1xn

bn

⇔
{

an < bn or

an = bn and xa1

1 · . . . · xn−1
an−1 >revlex xb1

1 · . . . · xn−1
bn−1

Degree ordering (wrt. the standard grading)

xa1

1 · . . . · xn
an >degxxx xb1

1 · . . . · xn
bn

⇔
{
deg(a) > deg(b) or

deg(a) = deg(b) and xa1

1 · . . . · xn
an >xxx xb1

1 · . . . · xn
bn

xxx is another term ordering, the tie-breaking ordering.

Widespread used are the degree lexicographic (deg-lex) and the degree
reverse lexicographic (deg-revlex) term orderings.
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The lexicographic and all degree orderings are Noetherian.

The pure revlex ordering is not Noetherian, since

x1 > x2
1 > x3

1 > . . .

is an infinitely strictly descending chain of terms.

A term ordering (T (x), >) is Noetherian iff

(c) m > 1 for all m ∈ T, m 6= 1.
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Characterization of Term Orderings

T̃ = {xα : α ∈ Zn} is the set of generalized terms. A term
ordering < can be extended to T̃ .

< is characterized by its positivity cone

C+ =
{
xα ∈ T̃ : xα > 1

}
This cone is a half space supported by a (uniquely defined)
linear functional w ∈ (Zn)∗ ∼= Rn. We say that w is the
weight vector of < and < refines w.
w is uniquely determined by the row vector

(w(x1), . . . , w(xn)).

We write shortly w(xα) = w(α).
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Theorem (Characterization of Term Orderings)

A term ordering can be described by a sequence of

weight vectors w1, w2, . . . , wk ∈ Rn such that for xα ∈ T̃

xα > 1 ⇔ ∃j < k : wi(α) = 0 for i ≤ j and wj+1(α) > 0

w1 is uniquely defined, wj only upto multiples of wi, i < j.

Hence any term ordering can be given as matrix term or-

dering where the weights of the variables wrt. wi are the

entries of row i of the weight matrix.

A term order is Noetherian iff the first non zero entry in

each column of the weight matrix is positive.
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Weight Matrices for the Standard Term Orderings

>lex:

1 0 . . . 0
0 1 . . . 0

. . .
0 0 . . . 1

 >deglex:


1 1 . . . 1 1
1 0 . . . 0 0
0 1 . . . 0 0

. . .
0 0 . . . 1 0



>revlex:

 0 . . . 0 −1
0 . . . −1 0

. . .
−1 . . . 0 0

 >degrevlex:


1 1 . . . 1 1
0 0 . . . 0 −1
0 0 . . . −1 0

. . .
0 −1 . . . 0 0
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Given a finite set Σ ⊂ T̃ \ {1} consider the set

WΣ = {w ∈ Rn : ∀xα ∈ Σ w(α) > 0}
=

⋂
xα∈Σ

{w ∈ Rn : w(α) > 0}

This is the set of all weight vectors w such that for all

refinements < of w the terms from Σ are positive. As a

finite intersection of open halfspaces this set is either empty

or an open cone and hence n-dimensional. The closure of

that cone is dual to the cone spanned by the xα ∈ Σ in Zn.

For Σ = {x1, . . . , xn} we get exactly the cone of Noetherian

term orderings. Since w = (11 . . .1) is in the interior part

of that cone all refinements of w are Noetherian.
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PP-Ideals and Monoid Ideals. Dickson’s Lemma

An ideal I ⊂ R is a PP-ideal, iff

f =
∑

cαxα ∈ I ⇒ ∀α (cα 6= 0 ⇒ xα ∈ I) .

The set Σ of all xα ∈ I form a monoid ideal, i.e., a subset

of T with

Σ · T := {xα · xβ : xα ∈ Σ, xβ ∈ T} ⊂ Σ.

A subset Σ0 = {xa1, . . . ,xam} of a monoid ideal Σ is a

basis, if Σ0 ·T = Σ, and a minimal basis, if additionally Σ0

is minimal wrt. inclusion and that property.
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A monomial ideal Σ ⊂ T has a uniquely determined minimal

basis Gen(Σ).

This minimal basis contains exactly the minimal wrt. term

divisibility xα ∈ Σ, i.e., with the property

xβ ∈ Σ, xβ |xα ⇒ xβ = xα.

Theorem (Dickson’s Lemma)

Each monomial ideal Σ ⊂ T has a finite basis.

This theorem holds for term monoids with finitely many

variables.
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Normal Forms

Fix a representation 0 6= f(x) =
∑N

i=0 cix
αi ∈ R

with xαi > xαj for i < j and all ci 6= 0.

We denote

the term set T (f) := {xα : cα 6= 0},
the leading term lt(f) := xα0,
the leading coefficient lc(f) := c0,
the leading monomial lm(f) := lc(f) · lt(f),
the reductum red(f) := f − lm(f).

Main idea: Substitute larger terms by smaller ones, i.e.,
convert polynomial relations f ∈ R into (algebraic) substi-
tution rules

lt(f) 7→ −lc(f)−1 red(f).
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Example:

B1 =
{
f1 = x2 + xy + y2, f2 = xz + yz, f3 = y3 − z3

}
yields the rule system (wrt. <lex)

x2 7→ −xy − y2, xz 7→ −yz, y3 7→ z3.

If we apply these rules in the given order to the polynomial

g = x2y2 + x2z2 + y2z2,

we get step by step

g 7→ x2z2 − xy3 − y4 + y2z2

7→ −xy3 − xyz2 − y4

7→ −xyz2 − xz3 − y4

7→ −xz3 − y4 + y2z2

7→ −y4 + y2z2 + yz3

7→ y2z2
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For B = {f1, . . . , fm} ⊂ R \ {0} define

Σ(B) := {xα : ∃ f ∈ B : lt(f) |xα}

Each term from Σ(B) can be reduced applying one of the

rules obtained from B by smaller terms. t ∈ Σ(B) is called

non standard term and t ∈ T (X) \Σ(B) is called standard

term.

Lt(B) denotes the PP-ideal generated by Σ(B).
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NF(f:polynomial, B:basis):polynomial

Input: Polynomial f ∈ R, finite set B ⊂ R.

Output: Polynomial f ′ ∈ R with f ≡ f ′ (mod B)

and f ′ = 0 or lt(f ′) 6∈ Σ(B).

while (f 6= 0) and (M := {b ∈ B : lt(b) | lt(f)} 6= ∅) do

choose b ∈ M

f := f − lm(f)
lm(b)b

return f
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The algorithm terminates for Noetherian term orderings.

The result (and the time) of a normal form computation

may depend on the reduction path.

Since f ≡ NF (f, B) (mod B) this gives a first half answer

to the ideal membership problem

If NF (f, B) = 0 then f ∈ Id(B).
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The algorithm can be refined to an Extended Division Al-

gorithm.

g 7→ g1 = g − y2 f1 = x2z2 − xy3 − y4 + y2z2

7→ g2 = g1 − z2 f1 = −xy3 − xyz2 − y4

7→ g3 = g2 + x f3 = −xyz2 − xz3 − y4

7→ g4 = g3 + y z f2 = −xz3 − y4 + y2z2

7→ g5 = g4 + z2 f2 = −y4 + y2z2 + yz3

7→ g6 = g5 + y f3 = y2z2 = g′

yields g = (y2+z2)f1+(−y z−z2)f2+(−x+y)f3+g′.
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NFwithRelations(f:polynomial, B:basis):
(polynomial, vector of polynomials)

Input: Polynomial f ∈ R, finite set B = {b1, . . . , bm} ⊂ R

Output: Polynomial f ′ ∈ R with f ′ = 0 or lt(f ′) 6∈ Σ(B)
and vector v = (v1, . . . , vm) with f =

∑
i vi bi + f ′.

for i = 1, . . . , m do vi := 0
while (f 6= 0) and (M := {b ∈ B : lt(b) | lt(f)} 6= ∅) do
choose bi ∈ M

f := f − lm(f)
lm(bi)

bi

vi := vi +
lm(f)
lm(bi)

return (f, v)
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This representation v has a special property; it avoids large

intermediate terms.

For a finite set B = {b1, . . . , bm} ⊂ R and a polynomial

f ∈ R the algorithm NFwithRelations returns after

a finite number of steps a representation

f = v1 b1 + . . . + vm bm + r

with v1, . . . , vm, r ∈ R and r = 0 or lt(r) 6∈ Σ(B) and

lt(f) ≥ lt(vi) lt(bi) for all i.
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NF can be applied recursively to terms in red(f), too. This

yields a presentation f ≡
∑

rαxα (mod B) as linear combi-

nation of standard terms.

TNF(f:polynomial, B:basis):polynomial

Input: Polynomial f ∈ R, finite set B ⊂ R

Output: Polynomial f ′ ∈ R with f ≡ f ′ (mod Id(B))

and f ′ = 0 or T (f ′) ∩Σ(B) = ∅

f:=NF(f,B)

if f = 0 then return f

else return lm(f) + TNF (red(f), B)

The algorithm terminates for Noetherian term orderings.
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f ∈ B with lt(f) 6∈ Gen(Σ(B)) can be reduced by other base

elements. Iterated application yields a result similar to the

triangulation of a matrix within the Gauss algorithm.

Interreduce(B:basis):basis

Input: Basis B = {b1, . . . , bm} ⊂ R

Output: Basis B′ with Id(B) = Id(B′)
and

∣∣B′∣∣ = ∣∣Gen(Σ(B′))
∣∣

while exists f ∈ B, lt(f) 6∈ Gen(Σ(B)) do

B = B − {f}
f ′ = NF (f, B)

if f ′ 6= 0 then B = B ∪
{
f ′

}
return B
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Interreduce terminates if (T, <) is a Noetherian term or-

dering. Note that the while loop terminates due to Dick-

son’s lemma. Noetherianity is required only for termination

of NF, since Σ(B) increases with every new f ′ 6= 0.

Groebner Bases – Definition and Motivation

The same idea can be applied to any f ∈ Id(B) with lt(f) 6∈
Σ(B). The idea of the Groebner algorithm is to scan I =

Id(B) systematically for such elements.
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Given an ideal I, start from B = ∅ and in every step enlarge

B with an element 0 6= f ∈ I with lt(f) 6∈ Σ(B) as long as

possible. We obtain a strictly increasing chain

Σ0 ⊂ Σ1 ⊂ . . .

of monomial ideals that must be finite by Dickson’s lemma.

Eventually we get a basis G with Σ(G) = Σ(I).

A subset G ⊂ I of an ideal I is called Groebner

basis of I if Σ(G) = Σ(I).
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Groebner Bases – First Properties

G is a subset of I but not required to generate I.

Theorem:

A Groebner G ⊂ I of an ideal I generates I.

As an immediate corollary we obtain

Theorem (Hilbert’s Basissatz)

Every ideal I ⊂ R has a finite basis.

Indeed, we proved (not constructively so far) the existence
of finite Groebner bases for every such ideal.
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Further properties are

For a Groebner basis G ⊂ I we have

f ∈ I ⇔ NF (f, G) = 0.

For a Groebner basis G and a polynomial f ∈ R

the total normal form TNF (f, G) is uniquely de-

termined and does not depend on the reduction

path.
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S-Polynomials

For 0 6= f, g ∈ R we define the S-Polynomial of (f, g)

S(f, g) :=
m

lm(f)
f −

m

lm(g)
g =

m

lm(f)
red(f)−

m

lm(g)
red(g),

where m = lcm(lt(f), lt(g).

Due to cancellation of highest terms we have S(f, g) = 0

or lt(S(f, g)) < m.
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Characterization of Groebner Bases

The following condition for G ⊂ I are equivalent:

1. G is a Groebner basis, i.e., Σ(I) = Σ(G).

2. For all f ∈ I and all reduction strategies we have

NF (f, G) = 0.

2’. For all f ∈ I exists a reduction strategy with

NF (f, G) = 0.

3. For all pairs g1, g2 ∈ G and all reduction strategies

we have NF (S(g1, g2), G) = 0.

3’. For all pairs g1, g2 ∈ G exists a reduction strategy

with NF (S(g1, g2), G) = 0.
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4. All f ∈ I have a representation

f =
∑
g∈G

hg g with ∀ g (lt(f) ≥ lt(hg g)).

5. The standard terms N(G) := T (X) \ Σ(G) are k-

linearly independent (mod I).

5’. The standard terms N(G) form a k-linear basis of

the factor ring R/I, i.e., all f ∈ R have a unique

k-linear representation

f ≡
∑

m∈N(G)

cmm (mod I)

mit cm ∈ k.
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GBasis(B:basis):basis

Input: finite set B = {f1, . . . , fm} ⊂ R.

Output: a Groebner basis G of I = Id(B).

G:=B;

P := {(fi, fj) |1 ≤ i < j ≤ m};
While P 6= ∅ do

Choose p ∈ P; P := P \ {p};
f := NF (S(p), G)

if f 6= 0 then

P := P ∪ {(g, f) | g ∈ G};
G := G ∪ {f};

return G;
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GBasis is Buchberger’s algorithm. It terminates in

a finite number of steps for any Noetherian term or-

dering.

The result may contain more elements than necessary.

If G is a Groebner basis of I and G′ ⊂ G a subset with

Gen(Σ(G)) = {lt(g) : g ∈ G′} then G′ is a Groebner

basis of I, too.

Such a Groebner basis is called minimal.
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Minimal and Reduced Groebner Bases

Gen(Σ(I)), hence {lt(g) : g ∈ G′}, is uniquely determined.

G′′ = {lt(g)− TNF (lt(g), G′) : g ∈ G′} ⊂ I

is called the minimal reduced Groebner basis. It is com-

pletely unique for a given ideal I and fixed term ordering.
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A Criterion for Trivial Ideals

For B ⊂ R are equivalent:

1. VK(B) = ∅, i.e., B has no common zeroes over

an algebraically closed extension K of k.

2. Id(B) = Id(1) is the unit ideal.

3. Any Groebner basis G = GBasis(B) contains ac

onstant polynomial.

4. {1} is the minimal reduced Groener basis of

Id(B).
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Elimination Orders and the Elimination Theorem

B ⊂ R = k[x] is a finite set of polynomials,

x = (x1, . . . , xk, y1, . . . , ym).

Goal: Compute a basis of the elimination ideal

I ′ = Id(B)
⋂

k[y1, . . . , ym].

Solution: Choose a term ordering on T (x) where a term

containing a factor xi is greater than all terms not con-

taining such factors (elimination ordering). Any matrix

term ordering refining the weight vector w with w(xi) =

1, w(yj) = 0 does (e.g., the lex ordering with xi > yj for all

(i, j)).
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The Elimination Theorem

If G = GBasis(B) is a (min. reduced) Groeb-

ner basis of B wrt. an elimination ordering for

x1, . . . , xk, y1, . . . , ym then

G′ = {g ∈ G : lt(g) ∈ T (y1, . . . , ym)}

is a (min. reduced) Groebner basis of the eli-

mination ideal I ′ = Id(B)
⋂

k[y1, . . . , ym].
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The lexicographic ordering is eliminating for any initial se-

quence of variables. Hence Groebner bases wrt. the lex.

ordering are “triangular” and well suited to compute solu-

tion sets.

For G = GBasis(B) a (min. reduced) lex. Groebner

basis of B ⊂ R = k[x] with x1 > · · · > xn the subsets

Gi = {g ∈ G : lt(g) ∈ T (xi, . . . , xn)}

are (min. reduced) Groebner bases of the elimination

ideals Id(B)
⋂

k[xi, . . . , xn].

In particular, Gn contains the polynomial g(xn) ∈ I

of smallest degree only in xn, if such a polynomial

exists and G is minimal and reduced.
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Based on that observation we get an inductive way to com-

pute the solutions of a polynomial system B:

If (x0
i+1, . . . , x0

n) is a common zero of Gi+1, then Gi\
Gi+1 contains all polynomials required to determine

x0
i such that (x0

i , . . . , x0
n) is a common zero of Gi.

This requires to compute with algebraic numbers in an

early stage. A better way (the Groebner factorizer) tries

to factor intermediate polynomials f = f1 · . . . · fk to split

the problem:

V (F ∪ {f}) =
⋃
k

V (F ∪ {fk})
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Independent Sets and Dimension

Dimension of an ideal I ⊂ R

dim(R/I) =

max
(
d : ∃

(
xi1, . . . , xid

)
I

⋂
k[xi1, . . . , xid] = {0}

)
.

A subset xi1, . . . , xid ⊂ x with I
⋂

k[xi1, . . . , xid] = {0} is

called an independent set modulo I.

For R′ = k[xi1, . . . , xid] we have obviously

Lt(I)
⋂

R′ = {0} ⇒ I
⋂

R′ = {0}
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(xi1, . . . , xid) is called a strongly independent set modulo I

(and the term ordering) if Σ(I) ∩ T (xi1, . . . , xid) = ∅

and

d′ = max
(
d : ∃

(
xi1, . . . , xid

)
Σ(I) ∩ T (xi1, . . . , xid) = ∅

)
the strong dimension of R/I. This is exactly dim(R/Lt(I)).

By definition d′ ≤ dim(R/I).

For an ideal the dimension and the strong dimension

coincide.

The proof uses a deformation argument that is of separate
interest.
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Groebner Weighted Deformations

Example:

B =
{
x2 + y + z − 3, x + y2 + z − 3, x + y + z2 − 3

}
There is a positive integer weight vector w such that Ltlex(Id(B))

and Lt<(Id(B)) coincide for any term ordering < refining

w.

Indeed, take w = (4,3,1) for this example

yz2 + 1/2z4t− 2yt2 − 5/2z2t3 + 3t5

z6 − 10z4t2 + 4z3t3 + 19z2t4 − 8zt5 − 6t6

x + yt + z2t2 − 3t4

y2 − yt3 − z2t4 + zt5
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Existence of Groebner Weighted Deformations

G =
{
xα −

∑
xβ∈N cαβxβ : xα ∈ Gen(Σ)

}
is a minimal

reduced Groebner basis of the ideal I, with the set

N = T \Σ(I) of standard terms. Then exists a posi-

tive integer weight vector w ∈ Z+ such that

∀α, β
(
cαβ 6= 0 ⇒ w(α) > w(β)

)
For all term orderings <′ that refine w, we have

Σ′(G) = Σ(G) and G is a Groebner basis also wrt.

<′.
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We define a family

Gt =

xα −
∑
β

cαβxβ · tw(α)−w(β) : xα ∈ Gen(Σ)


of Groebner bases over the ring Rt = k[t][x1, . . . , xn] such

that G = G1 is the Groebner basis of the original ideal I

and G0 = Lt(I) is the corresponding PP-ideal.

The set N of standard terms is not only a k-linear base

of R/I but also a k[t]-free base of Rt/It. Hence the defor-

mation Spec (Rt/It) is flat over the base Spec(k[t]) and all

fibers have the same dimension:

d′ = dim(R/Lt(I)) = dim(R/I)
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The Pair Criteria and Syzygies of Lt(I)

Main Syzygy Criterion

For f, g ∈ R non trivial with relative prime leading

terms we have always NF (S(f, g), {f, g}) = 0.

For more advanced criteria we fix some notation.

G = {f1, . . . , fN} is the base under consideration in a run-
ning Groebner basis computation. Further we assume all
lc(fi) = 1

Set mi = lt(fi), mI = lcm(mi, i ∈ I) for a subset I ⊂
{1, . . . , m}, ei ∈ RN the i-th unit vector and (1 ≤ i < j ≤ N)

sij =
mij

mi
ei −

mij

mi
ej ∈ RN
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All the sij form a generating set for the first syzygy module

S1 = Ker(φ1) of Lt(G), i.e., the kernel of the map

φ1 : RN → R given by ei 7→ mi

Hence two other criteria for G to be a Groebner basis

are

6. For each s ∈ S1 exists a reduction strategy such

that NF (s ·B, G) = 0.

6’. For each s ∈ S1 and every reduction strategy

we have NF (s ·B, G) = 0.
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It is enough to check (6.) for s in a base of S1. Hence it

is enough to test a subset of the sij that generates S1.

To get a complete picture about such subsets we have to

determine the relations between the sij, i.e., to compute

the second syzygy module S2 = Ker(φ2) of Lt(G) with

φ2 : R(N
2) → RN given by eij 7→ sij

A (not necessarily minimal) generating set of S2 are the

elements (1 ≤ i < j < k ≤ N)

sijk =
mijk

mij
eij −

mijk

mik
eik +

mijk

mijk
ejk
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The following strategy is usually applied if fk enters into a

partially computed GBasis G = (fi,1 ≤ i < k):

(1) Skip (j, k) if there is a i < j with mijk = mjk (i.e., mi|mjk).
The syzygy looks like [. . 1].

(2) Skip (i, k) if there is a i < j with mijk = mik (i.e., mj|mik)
and mijk 6= mjk (i.e., mi 6 |mjk, hence (j, k) was not skipped in
the first run). The syzygy looks like [. 1 ∗], where ∗ stands
for a non-constant term.

(3) Scan the old pairs (i, j) and skip those with mijk = mij

(i.e., mk|mij) and mijk 6= mik, mijk 6= mjk (i.e., mi 6 |mjk, mj 6 |mik,
hence neither (i, k) nor (j, k) was skipped in the first two runs).
The syzygy looks like [1 ∗ ∗]

This is more or less the Gebauer-Möller criterion for use-

less pairs.
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Multimodular and Trace Algorithms

Consider the ideal I ⊂ Z[x] generated by B = {f1, . . . , fm}
and its relation to I0 = I · Q[x] and to Ip = I · Zp[x] for

different primes p.

For a proper definition of Σ(I) we get Σ = Σ(I) = Σ(I0).

We say that p is a lucky prime if Σ(Ip) = Σ.

Define Cm = gcd (lc(f) : f ∈ I, lt(f) = m) for m ∈ Σ.

p is lucky if p6 |Cm for all m ∈ Gen(Σ).

Hence there are only finitely many unlucky primes.
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Hilbert Series and Hilbert Driven GB Computation

R = ⊕d[R]d is the decomposition of R in homogeneous

components. A H-module is an R-module M with a similar

decomposition M = ⊕d[M ]d, dimk([M ]d) finite and [M ]d =

0 for d � 0.

In particular, any homogeneous ideal I and its factor ring

R/I are H-modules.

Define the Hilbert series of M

H(M, t) =
∑
d∈Z

dimk([M ]d) td
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For R = k[x1, . . . , xn] we have H(R, t) = 1
(1−x)n.

The general computation exploits the relation (deg(f) = d)

H(R/(I + (f)), t) = H(R/I, t)− tdH(R/(I : (f)), t)

Since N(G) = T \Σ(I) is a k-base of R/I we get

H(R/I, t) = H(R/Lt(I), t) =
∑
d∈Z

|[N(G)]d| td

For homogeneous ideal in many cases the Hilbert series

is known in advance. In this case the computation of S-

polynomials in degree d can be terminated if [Lt(Σ)]d has

the correct k-dimension. This version of Buchbergers al-

gorithmus is called Hilbert Driven Algorithm.
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