A level-set approach for problem of crack detection from electrical measurements

Antonio Leitão

acgleitao@gmail.com

Department of Mathematics Federal University of St. Catarina, Brazil

Workshop 5 – Inverse Problems on Large Scales RICAM, Nov 28 - Dec 2, 2022

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00

Outline

Introduction

- Over the parameter space
- Output State Numerical experiments
- Tikhonov regularization

Collaborators (current project):

E. Hafemann (UFSC), A. De Cezaro (Rio Grande), A. Osses (Santiago)

A. DeCezaro, E. Haffeman, A. Osses, A.L., A regularization method based on level-sets for the problem of crack detection from electrical measurements, Inv. Probl., submitted

Previous Collaborators:

O. Scherzer(2004/05), X.-C. Tai(2009/13), U. Ascher(2010), O. Dorn(2003)

Introduction ••••••	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00

Outline

Introduction

- Over the parameter space
- Numerical experiments
- Tikhonov regularization

Introduction •••••	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
Abstract				

• Inverse problem: to determine the position and shape of a crack in a bounded domain $\Omega \subset \mathbb{R}^2$ from electrical measurements on the boundary $\partial \Omega$.

Figure: Tipical crack scenarios b_k^{\star} , k = 1, 2, 3.

Introduction	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
Abstract				

• Based on the level-set approach in [2] and on the regularization strategy in [3], we propose a Tikhonov type method for stabilizing the inverse problem.

- D. Alvarez, O. Dorn, N. Irishina, M. Moscoso, *Crack reconstruction using a level-set strategy*, Journal of Computational Physics 228 (2009)
- A. De Cezaro, A. Leitão, X.-C. Tai, *On multiple level-set regularization methods for inverse problems*, Inverse Problems 25 (2009)

• An iterative method of multiple level-set type is derived from the optimality conditions for the Tikhonov functional, and a relation between this method and the iterated Tikhonov method is establised.

ntroduction ⊃○○●○○○○	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
The Model problem				

- We assume that the domain Ω has Lipschitz boundary and represents the specimen under investigation.
- A set of currents profiles $\{\eta_j\}_{j=1}^N$ are applied at $\partial\Omega$, for with, we have access to measurements of the corresponding potentials $\{u_i\}_{i=1}^N$ on $\partial\Omega$.
- The corresponding electric potential *u_i* satisfies

 $\nabla \cdot (b(x)\nabla u_j(x)) = 0, x \in \Omega, \qquad b(x)(u_j(x))_v = \eta_j(x), x \in \partial\Omega. \quad (1)$

with $\int_{\partial\Omega} \eta_j = 0$, for $j = 1, \cdots, N$

Figure: Typical NtD experiment. (LEFT) Crack b_2^{\star} . (RIGHT) Solutions u_1 , u_2 and u_8 of (1) for the Neumann data η_1 , η_2 and η_8 respectively.

Introduction	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
The Model problem				

• Insulating cracks with finite conductivity contrast between the interior and the exterior of the crack are modeled by the conductivity coefficient b(x).

- $b(x) = b_i$, if x is inside the crack;
- $b(x) = b_e$, if x is outside the crack;

$$- b_e >> b_i;$$

— $\beta > 0$ fixed crack thickness.

• This corresponds to the assumption that cracks can be modeled as a thin structure with small thickness along a curve contained in Ω .

• The inverse problem we are concerned with consists in identifying the coefficient function b(x) from a finite number N of experiments, where the current profiles η_j , j = 1, ..., N, are chosen in an appropriate way and the corresponding measurements $\gamma_j := u_j|_{\partial\Omega}$ are available.

Introduction	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
The Model problem				

• Notation:

• If $\eta_j \in H^{-1/2}(\partial\Omega)$, the Neumann BVP in (1) has a unique solution

$$u_j \in H^1_* := \{ u \in H^1(\Omega); \int_{\partial \Omega} u_j = 0 \}.$$

• The crack detection problem can be written in terms of the system of nonlinear operator equations

$$F_j: D_F \subset X \rightarrow Y$$

 $b \mapsto F_j(b) = u_j|_{\partial\Omega} =: \gamma_j$ (2)

Introduction	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
The Model problem				

• Literature overview (far from being complete):

— A. Friedman, M. Vogelius, Determining cracks by boundary measurements, Indiana University Mathematics Journal 38 (1989)

— M. Bruhl, M. Hanke, M. Pidcock, Crack detection using electrostatic measurements, ESAIM: Mathematical Modelling and Num. Anal. 35 (2001)

— Y. Boukari, H. Haddar, The factorization method applied to cracks with impedance boundary conditions, Inv. Probl. & Imaging 7 (2013)

 J. Guo, X. Zhu, The factorization method for cracks in EIT, Comp. Appl. Math. 40 (2021)

 A. Hauptmann, M. Ikehata, H. Itou, S. Siltanen, Revealing cracks inside conductive bodies by electric surface measurements, Inverse Problems 35 (2018)

 W-K. Won-Kwang Park, Performance analysis of multi-frequency topological derivative for reconstructing perfectly conducting cracks, Journal of Comput. Physics 335 (2017)

Introduction	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
Main results				

• Main results:

i) Modelling the parameter space:

The parameters $b \in D_F$ are represented using pairs of level-set functions $(\phi, \psi) \in H^1(\Omega)^2$, i.e., $b = P(\phi, \psi)$ where *P* is a discontinuous operator;

ii) Tikhonov regularization approach:

The multiple level-set approach in *i*) is used to define a Tikhonov functional based on $TV-H^1$ regularization;

iii) Iterative method:

The optimality conditions for this Tikhonov functional allow the derivation of an iterative multiple level-set type method for solving the crack identification problem.

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography

Outline

Introduction

- Output the parameter space
- Numerical experiments
- Tikhonov regularization

· Solve the abstract operator equation

$$F(u) \,=\, y\,, \quad \|y^\delta - y\|_Y \,\leq\, \delta\,,$$

 $F : \mathbb{D} \subset X \to Y$ is a Fréchet diff. mapping X Banach, Y Hilbert space.

- Assumption: the solution *u* of the Inv.Probl. above is a simple function defined on a bounded domain $\Omega \subset \mathbb{R}^d$, d = 2, 3, and assuming at most *N* different values,
- Ansatz: A solution *u* can be represented in the form

$$u = c_1 H(\phi^1) H(\phi^2) + c_2 H(\phi^1) (1 - H(\phi^2)) + c_3 (1 - H(\phi^1)) H(\phi^2) + c_4 (1 - H(\phi^1)) (1 - H(\phi^2)) =: P(\phi^1, \phi^2),$$

("color level-set" or "multiple level-sel"; [Tai/Chan'04], [Chan/Vese'02] + Tai, Dorn, Ascher, van den Doel, A.L.).

• Rewrite the inverse problem in the form:

$$F(P(\phi^1,\phi^2)) \ = \ y\,,$$

and solve it in terms of (ϕ^1, ϕ^2) , the level-set functions.

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
Motivation: Multiple le	ve-set methods for inverse problems			

- Choose a Tikhonov functional:
- The least square approach leads to the Santosa model

$$\mathcal{F}_{\alpha}(\phi^1,\phi^2) := \|F(P(\phi^1,\phi^2)) - y^{\delta}\|_Y^2,$$

- The ROF approach leads to the Chan-Vese model

$$\mathcal{F}_{lpha}(\phi^1,\phi^2):=\|\mathcal{F}(\mathcal{P}(\phi^1,\phi^2))-y^{\delta}\|_Y^2+lpha\sum_{j=1}^2|\mathcal{H}(\phi^j)|_{\scriptscriptstyle \mathbb{BV}}\,,$$

(in general one cannot guarantee the existence of a minimizers) – The BV-H¹ approach leads to the models in [Scherzer/AL'05] and [Tai/AL'09]

$$\mathcal{G}_{\alpha}(\phi^1,\phi^2) := \| \mathcal{F}(\mathcal{P}(\phi^1,\phi^2)) - y^{\delta} \|_{Y}^2 + \alpha \sum_{j=1}^{2} \left\{ \beta | \mathcal{H}(\phi^j)|_{\mathbb{B}\mathbb{V}} + \| \phi^j - \phi_0^j \|_{\mathcal{H}^1(\Omega)}^2 \right\}.$$

- (PLAY VIDEO) Example: Inverse Potential Problem in 2D.

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00	
Level-set representation for cracks					

Multiple level-set representation in [2] for cracks:

- A level-set function $\phi: \Omega \to \mathbb{R}$ is chosen such that its zero level-set $\Gamma_{\phi} := \{x \in \Omega; \ \phi(x) = 0\}$ defines a connected curve within Ω ; the cracks are located 'along' Γ_{ϕ} .
- Another level-set function ψ : Ω → ℝ is chosen such the cracks are contained in the set B := {x ∈ Ω; ψ(x) < 0}.

— The intersections of the level-set curve $\Gamma_{\psi} := \{x \in \Omega; \psi(x) = 0\}$ with Γ_{ϕ} coincide with the endpoints of the cracks.

- The position of the cracks corresponds to the set

$$S = S(\varphi, \psi) := \Gamma_{\varphi} \cap B.$$

ntroduction	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
evel-set representat	ion for cracks			

• We consider the cracks to have small fixed thickness $\beta > 0$ and conductivity $b_i > 0$ much smaller than the background value $b_e > 0$ (the three constants are known).

• The position of the cracks is represented by the set

$$S_{\beta} = S_{\beta}(\phi, \psi) := \{ x \in \Omega; \ 0 < \phi(x) < \beta \} \cap \{ x \in \Omega; \ \psi(x) < 0 \}.$$

Figure: Multiple level-set representation for cracks.

Lovel-set representati	on for cracks			
	00000000			
Introduction	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography

• The conductivity distribution b(x) in (1) is modeled by

$$b(x) = b_e + (b_i - b_e) \chi_{S_\beta}(x),$$
 (3)

where $\chi_{S_{\beta}}$ is the indicator function of the set S_{β} .

(multiple level-set representation of the parameter *b*)

Following [3] we introduce the Heaviside projector

$$(H(\phi))(x) := \begin{cases} 1, & \text{if } \phi(x) > 0 \\ 0, & \text{if } \phi(x) \le 0 \end{cases},$$

and the translation $(H_{\beta}(\phi))(x) := H(\phi(x) - \beta)$.

• The conductivity distribution b(x) can be written in the form

$$b = (b_i - b_e) [H(\phi) - H_{\beta}(\phi)] H(\psi) + b_e =: P(\phi, \psi).$$
 (4)

Introduction	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography
	0000000			
Level-set representation	on for cracks			

• As already observed in [3], the operator H maps $H^1(\Omega)$ into the space

 $\mathcal{V}_{0,1} := \{ w \in L^{\infty}(\Omega) \, | \, w = \chi_{\mathcal{S}}, \, \mathcal{S} \subset \Omega \text{ measurable}, \, \mathcal{H}^{1}(\partial \mathcal{S}) < \infty \}, \quad (5)$

 $(\mathcal{H}^1(S))$ denotes the one-dimensional Hausdorff-measure of the set S)

• The operator *P* in (4) maps $H^1(\Omega) \times H^1(\Omega)$ into the admissible class

$$\mathcal{V} := \{ w \in L^{\infty}(\Omega) \, | \, w = b_e + (b_i - b_e) \chi_{\mathcal{S}}, \, \mathcal{S} \subset \Omega \text{ measurable}, \, \mathcal{H}^1(\partial \mathcal{S}) < \infty \},$$

• Within this framework, the inverse problem (2) can be written in the form of the system of operator equations

$$F_j(P(\phi,\psi)) = \gamma_j^{\delta}, \, j = 1, \dots, N.$$
(6)

(once a solution (ϕ, ψ) of (6) is obtained, a corresponding solution of (2) is given by $b = P(\phi, \psi)$)

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
Towards stable approx	kimate solutions			

A Thikhonov approach:

• We follow [3] and introduce the Tikhonov functional

$$\begin{aligned} \mathcal{G}_{\alpha}(\phi,\psi) &:= \sum_{j=1}^{N} \|F_{j}(P(\phi,\psi)) - \gamma_{j}^{\delta}\|_{Y}^{2} + \alpha \big\{ |H(\phi)|_{\mathbb{B}\mathbb{V}} + |H_{\beta}(\phi)|_{\mathbb{B}\mathbb{V}} + |H(\psi)|_{\mathbb{B}\mathbb{V}} \\ &+ \|\phi - \phi_{0}\|_{H^{1}(\Omega)}^{2} + \|\psi - \psi_{0}\|_{H^{1}(\Omega)}^{2} \big\}, \end{aligned}$$
(7)

based on $TV-H^1$ penalization.

- The H^1 -terms act simultaneously as a control on the size of the norm and as a regularization on the space $H^1(\Omega)$.
- The BV-seminorm terms are well know for penalizing the length of the Hausdorff measure of the boundary of the sets $\{x : \phi(x) > 0\}$, $\{x : \phi(x) > \beta\}$ and $\{x : \psi(x) > 0\}$.

Introduction	

Modelling the parameter space

Numerical experiments

Tikhonov regularizatior

Bibliography 00

Outline

Introduction

- Over the parameter space
- Numerical experiments
- Tikhonov regularization

Figure: Exact cracks b_k^{\star} , k = 1, 2, 3 used in the numerical experiments.

Figure: Initial guess for the level-set method: (LEFT) ϕ_0 , (CENTER) ψ_0 , (RIGHT) corresponding crack $P_{\epsilon}(\phi_0, \psi_0)$.

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
Initial guess for the let	vel-set method			

Figure: Initial guess for the level-set method: (LEFT) ϕ_0 , (RIGHT) ψ_0 .

Figure: Crack scenario b_3^* with $\delta = 1\%$. Evolution of $b_k = P_{\varepsilon}(\varphi_k, \psi_k)$ for $0 \le k \le 1500$.

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
Crack scenario b_3^{\star} with	$h \delta = 1\%$			

Figure: Crack scenario b_3^* with $\delta = 1\%$. Evolution of the level-set functions φ_k and ψ_k for $0 \le k \le 1500$.

Figure: Reconstructions: Crack scenarios b_1^{\star} , b_2^{\star} , b_3^{\star} divided by columns. (TOP ROW) noise level $\delta = 1\%$. (BOTOM ROW) noise level $\delta = 20\%$.

Figure: Residual/Error: Crack scenarios b_1^* , b_2^* , b_3^* divided by columns. (TOP ROW) Relative residual. (BOTTOM ROW) Relative iteration error.

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
Crack scenario b_2^{\star} re	visited / N = 4,8,16			

Figure: Crack scenario b_2^* revisited: Noise level $\delta = 20\%$. Reconstruction results for distinct values of *N*.

Figure: Crack scenario b_1^* revisited: $\delta = 20\%$ and N = 16. Reconstruction results for distinct current patterns.

Introduction	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography
			0000000	

Outline

Introduction

- Output the parameter space
- Numerical experiments
- Tikhonov regularization

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
Main assumptions				

(A1) $\Omega \subseteq \mathbb{R}^2$ is bounded with piecewise C^1 boundary $\partial \Omega$.

(A2) System (6) has a solution, i.e. there exists $b^* \in \mathcal{U}$ s.t. $F_j(b^*) = \gamma_j$, j = 1, ..., N. There exist functions $\varphi^*, \psi^* \in H^1(\Omega)$ satisfying $P(\varphi^*, \psi^*) = b^*$, with $|\nabla \varphi^*| \neq 0, |\nabla \psi^*| \neq 0$ in a neighborhood of $\{\varphi^* \in [-\beta/2, \beta/2]\}$, $\{\psi^* = 0\}$ respectively. It holds $H(\varphi^* + \beta/2) = z^1$, $H(\varphi^* - \beta/2) = z^2$, $H(\psi^*) = z^3$, for some $z^1, z^2, z^3 \in \mathcal{V}_{0,1}$.

• Continuous approximations to the operators *P* and *H*. Given ε > 0, define

$$\mathcal{P}_{\varepsilon}(\phi, \psi) := (b_i - b_e) [H_{\varepsilon}(\phi) - H_{\beta,\varepsilon}(\phi)] H_{\varepsilon}(\psi) + b_e , \qquad (8)$$

and

$$\mathcal{H}_{\epsilon}(\phi) := \left\{ egin{array}{cc} 0, & \mathrm{if} \ \phi < -\epsilon \ 1 + rac{\phi}{\epsilon}, & \mathrm{if} \ \phi \in [-\epsilon, 0] \ 1, & \mathrm{if} \ \phi > 0. \end{array}
ight.$$

(the operators $H_{\beta,\epsilon}$ are defined analogously)

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography
Generalized minimizer	s			

Definition (Generalized minimizers)

a) A tuple of functions $(z^1, z^2, z^3, \varphi, \psi) \in (L^{\infty}(\Omega))^3 \times (H^1(\Omega))^2$ is called admissible if there exist sequences $\{\varphi_k\}_{k \in \mathbb{N}}, \{\psi_k\}_{k \in \mathbb{N}}$ in $H^1(\Omega)$, and a sequence $\{\varepsilon_k\}_{k \in \mathbb{N}}$ of positive numbers converging to zero such that

$$\lim_{k\to\infty} \|\varphi_k-\varphi\|_{L^2(\Omega)}=0\,,\quad \lim_{k\to\infty} \|\psi_k-\psi\|_{L^2(\Omega)}=0\,,$$

 $\lim_{k\to\infty} \|\mathcal{H}_{\varepsilon_k}(\varphi_k) - z^1\|_{L^1} = \lim_{k\to\infty} \|\mathcal{H}_{\beta,\varepsilon_k}(\varphi_k) - z^2\|_{L^1} = \lim_{k\to\infty} \|\mathcal{H}_{\varepsilon_k}(\psi_k) - z^3\|_{L^1} = 0.$

b) A minimizer of \hat{G}_{α} is considered to be any admissible tuple of the form $(z^1, z^2, z^3, \phi, \psi)$ minimizing

$$\hat{\mathcal{G}}_{\alpha}(z^{1}, z^{2}, z^{3}, \varphi, \psi) := \sum_{j=1}^{N} \left\| \mathcal{F}_{j}(q(z^{1}, z^{2}, z^{3})) - \gamma_{j}^{\delta} \right\|_{Y}^{2} + \alpha \rho(z^{1}, z^{2}, z^{3}, \varphi, \psi)$$
(9)

over all admissible tuples.

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
Generalized minimize	rs			

Definition (continuation)

Here the functional ρ is defined by

$$D(z^{1}, z^{2}, z^{3}, \varphi, \psi) := \inf \left\{ \liminf_{k \to \infty} \left(\mu_{1} | H_{\varepsilon_{k}}(\varphi_{k} + \frac{\beta}{2}) |_{\mathbb{B}\mathbb{V}} + \mu_{2} | H_{\varepsilon_{k}}(\varphi_{k} - \frac{\beta}{2}) |_{\mathbb{B}\mathbb{V}} \right. \\ \left. + \mu_{3} | H_{\varepsilon_{k}}(\psi_{k}) |_{\mathbb{B}\mathbb{V}} + \mu_{4} \| \varphi_{k} - \varphi_{0} \|_{H^{1}}^{2} + \mu_{5} \| \psi_{k} - \psi_{0} \|_{H^{1}}^{2} \right) \right\}, \quad (10)$$

where the infimum is taken with respect to all sequences $\{\epsilon_k\}$ and $\{(\phi_k,\psi_k)\}$ satisfying (a).

c) A generalized minimizer of $\mathcal{G}_{\alpha}(\phi,\psi)$ is a minimizer of $\hat{\mathcal{G}}_{\alpha}(z^{1},z^{2},z^{3},\phi,\psi)$ on the set of admissible tuples.

Lemma (Closedness of the set of admissible tuples)

Let $(z_k^1, z_k^2, z_k^3, \varphi_k, \psi_k)$ be a sequence of admissible tuples converging in $(L^1(\Omega))^3 \times (L^2(\Omega))^2$ to some $(z^1, z^2, z^3, \varphi, \psi) \in (L^{\infty}(\Omega))^3 \times (H^1(\Omega))^2$. Then $(z^1, z^2, z^3, \varphi, \psi)$ is an admissible tuple.

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00	
Generalized minimizers					

Lemma (coercivity and l.s.c. of ρ on the set of admissible tuples)

For each admissible quintuple $(z^1,z^2,z^3,\phi,\psi),$ we have

$$\sum_{i=1}^{3} \mu_{i} |z^{i}|_{\mathbb{BV}} + \mu_{4} \| \varphi - \varphi_{0} \|_{H^{1}}^{2} + \mu_{5} \| \psi - \psi_{0} \|_{H^{1}}^{2} \leq \rho(z^{1}, z^{2}, z^{3}, \varphi, \psi) .$$
 (11)

Moreover, given a sequence $\{(z_k^1, z_k^2, z_k^3, \varphi_k, \psi_k)\}_{k \in \mathbb{N}}$ of admissible tuples such that $z_k^i \to z^i$ in $L^1(\Omega)$, $\varphi_k \rightharpoonup \varphi$ in $H^1(\Omega)$, $\psi_k \rightharpoonup \psi$ in $H^1(\Omega)$, where $(z^1, z^2, z^3, \varphi, \psi)$ is some admissible tuple, then

$$\rho(z^1, z^2, z^3, \varphi, \psi) \leq \liminf_{k \in \mathbb{N}} \rho(z^1_k, z^2_k, z^3_k, \varphi_k, \psi_k)$$

(i.e., p is weak-lower semi-continuous)

Introduction
00000000

Modelling the parameter space

Numerical experiments

Tikhonov regularization

Bibliography 00

Well-Posedness of \mathcal{G}_{α}

Proposition (Regularity property of the operators F_j)

Let the boundary data in the BVP (1) satisfy $\eta_j \in (W^{1-1/q,q}(\partial\Omega))'$, for q = p/(p-1), for any $p \in (2, p_0)$. Then, the operators $F_j : D(F) \subset L^1(\Omega) \to Y$ are continuous on D(F) with respect to the $L^1(\Omega)$ -topology.

Theorem (Well-Posedness of the functionals G_{α})

The functional G_{α} in (7) attains generalized minimizers on the set of admissible tuples.

Sketch of the proof. First, notice that the set of admissible tuples is not empty. Given a minimizing sequence of admissible quintuples for $\hat{\mathcal{G}}_{\alpha}$, it follows from the coercivity of ρ , the Sobolev compact embedding (of H^1 in L^2) and the compact embedding of BV into L^1 , that this minimizing sequence converges to some tuple which is admissible (due to Lemma 1). From the weak lower semi-continuity of ρ together with the cont. of F_i and the

cont. of q, we conclude that the limit tuple is a minimizer of $\hat{\mathcal{G}}_{\alpha}$.

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00	
Convergence for exact and noisy data					

• Main convergence and stability results.

Theorem (Convergence for exact data)

Assume that we have exact data, i.e. $\gamma_j^{\delta} = \gamma_j$. For every $\alpha > 0$, let $(z_{\alpha}^1, z_{\alpha}^2, z_{\alpha}^3, \varphi_{\alpha}, \psi_{\alpha})$ denote a minimizer of $\hat{\mathcal{G}}_{\alpha}$ on the set of admissible tuples. Then, for every sequence of positive numbers $\{\alpha_k\}_{k\in\mathbb{N}}$ converging to zero there exists a subsequence, denoted again by $\{\alpha_k\}_{l\in\mathbb{N}}$, such that $(z_{\alpha_k}^1, z_{\alpha_k}^2, z_{\alpha_k}^3, \phi_{\alpha_k}^1, \phi_{\alpha_k}^2)$ is strongly convergent in $(L^1(\Omega))^3 \times (L^2(\Omega))^2$. Moreover, the limit is a solution of (6).

Theorem (Convergence for noisy data)

Let $\alpha = \alpha(\delta)$ be a function satisfying $\lim_{\delta \to 0} \alpha(\delta) = 0$ and $\lim_{\delta \to 0} \delta^2 \alpha(\delta)^{-1} = 0$. Moreover, let $\{\delta_k\}_{k \in \mathbb{N}}$ be a sequence of positive numbers converging to zero and $\gamma^{\delta_k} \in Y$ be corresponding noisy data satisfying (?). Then, there exist a subsequence (denoted again by $\{\delta_k\}$) and a sequence $\{\alpha_k := \alpha(\delta_k)\}$ such that $(z_{\alpha_k}^1, z_{\alpha_k}^2, z_{\alpha_k}^3, \varphi_{\alpha_k}, \psi_{\alpha_k})$ converges in $(L^1(\Omega))^3 \times (L^2(\Omega))^2$ to solution of (6).

smoothed functional					
			000000000		
ntroduction	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography	

· Consider the smoothed Tikhonov functional

$$\begin{aligned} \mathcal{G}_{\varepsilon,\alpha}(\phi,\psi) &:= \sum_{j=1}^{N} \|F_{j}(P_{\varepsilon}(\phi,\psi)) - \gamma_{j}^{\delta}\|_{Y}^{2} + \alpha \left\{ |H_{\varepsilon}(\phi)|_{\mathbb{B}\mathbb{V}} + |H_{\beta,\varepsilon}(\phi)|_{\mathbb{B}\mathbb{V}} + |H_{\varepsilon}(\psi)|_{\mathbb{B}\mathbb{V}} \right. \\ &+ \left\| \phi - \phi_{0} \right\|_{H^{1}(\Omega)}^{2} + \left\| \psi - \psi_{0} \right\|_{H^{1}(\Omega)}^{2} \right\}, \end{aligned}$$

where $P_{\epsilon}(\phi,\psi) := q(H_{\epsilon}(\phi), H_{\beta,\epsilon}(\phi), H_{\epsilon}(\psi)).$

Lemma (Well posedness of $\mathcal{G}_{\varepsilon,\alpha}$)

Given α , $\varepsilon > 0$ and $\phi_0, \psi_0 \in H^1(\Omega)$, the functional $\mathcal{G}_{\varepsilon,\alpha}$ in (12) attains a minimizer on $(H^1(\Omega))^2$.

Theorem (Relation between minimizers of G_{α} and $G_{\epsilon,\alpha}$)

Let $\alpha > 0$ be given. For each $\varepsilon > 0$ denote by $(\varphi_{\varepsilon_k,\alpha}, \psi_{\varepsilon_k,\alpha})$ a minimizer of $\mathcal{G}_{\varepsilon,\alpha}$. There exists a sequence of positive numbers $\{\varepsilon_k\}$ converging to zero such that $(\mathcal{H}_{\varepsilon_k}(\varphi_{\varepsilon_k,\alpha}), \mathcal{H}_{\varepsilon_k}(\psi_{\varepsilon_k,\alpha}), \mathcal{H}_{\beta,\varepsilon_k}(\psi_{\varepsilon_k,\alpha}), \varphi_{\varepsilon_k,\alpha}, \psi_{\varepsilon_k,\alpha})$ converges strongly in $(L^1(\Omega))^3 \times (L^2(\Omega))^2$ and the limit minimizes $\hat{\mathcal{G}}_{\alpha}$ in the set of admissible 4-tuples.

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography 00
Step of the iterative m	ultiple level-set method			

- Conditions of optimality for $\mathcal{G}_{\epsilon,\alpha}$

$$\alpha(\Delta - I)(\varphi_{k+1} - \varphi_k) = R^1_{\varepsilon,\alpha}(\varphi_k, \psi_k), \text{ in } \Omega$$
(13a)

$$(\varphi_{k+1} - \varphi_k)_v = 0, \text{ at } \partial\Omega$$
 (13b)

$$\alpha(\Delta - I)(\psi_{k+1} - \psi_k) = R_{\varepsilon,\alpha}^2(\phi_k, \psi_k), \text{ in } \Omega$$
(13c)

$$(\Psi_{k+1} - \Psi_k)_{\nu} = 0, \text{ at } \partial\Omega$$
 (13d)

where

$$\begin{aligned} R^{1}_{\varepsilon,\alpha}(\phi,\psi) &= \Theta^{1}_{\varepsilon} F'_{j}(P_{\varepsilon}(\phi,\psi))^{*} \left(F_{j}(P_{\varepsilon}(\phi,\psi)) - \gamma^{\delta}_{j}\right) + \\ &+ terms \ related \ to \ |\nabla H_{\varepsilon}(\phi)|_{\mathbb{BV}}, \ |\nabla H_{\beta,\varepsilon}(\phi)|_{\mathbb{BV}}, \ (14a) \\ R^{2}_{\varepsilon,\alpha}(\phi,\psi) &= \Theta^{2}_{\varepsilon} F'_{j}(P_{\varepsilon}(\phi,\psi))^{*} \left(F_{j}(P_{\varepsilon}(\phi,\psi)) - \gamma^{\delta}_{j}\right) + \\ &+ terms \ related \ to \ |\nabla H_{\varepsilon}(\psi)|_{\mathbb{BV}}, \end{aligned}$$

and

$$\Theta^{1}_{\varepsilon}(\phi, \psi) = (b_{i} - b_{e}) H_{\varepsilon}(\psi) [H'_{\varepsilon}(\phi) - H'_{\beta,\varepsilon}(\phi)], \qquad (15a)$$

$$\Theta_{\varepsilon}^{2}(\phi, \psi) = (b_{i} - b_{e}) \left[H_{\varepsilon}(\phi) - H_{\beta,\varepsilon}(\phi) \right] H_{\varepsilon}'(\psi) .$$
(15b)

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography ●○

Bibliography

- A. De Cezaro, E. Haffeman, A. Osses, A.L., A regularization method based on level-sets for the problem of crack detection from electrical measurements, Inverse Problems (2022), submitted
- D. Alvarez, O. Dorn, N. Irishina, M. Moscoso, *Crack reconstruction using a level-set strategy*, Journal of Computational Physics 228 (2009)
- A. DeCezaro, X.-C. Tai, A.L., *On multiple level-set regularization methods for inverse problems*, Inverse Problems 25 (2009)
- F. Frühauf, O. Scherzer, A.L., Analysis of regularization methods for the solution of ill-posed problems involving discontinuous operators, SIAM Journal of Numerical Analysis 43 (2005)
- O. Scherzer, A.L., On the relation between constraint regularization, level sets, and shape optimization, Inverse Problems 19 (2003)
- F. Santosa, A level-set approach for inverse problems involving obstacles, ESAIM Control Optim. Calc. Var. 1 (1995/96)
- X.-C. Tai, T.F. Chan, A survey on multiple level set methods with appl. for identifying piecewise constant functions, Int.J.Num.Anal.Model.1 (2004)

Introduction 00000000	Modelling the parameter space	Numerical experiments	Tikhonov regularization	Bibliography ⊙●
The end				

Thank You !!!