On the recovery of coefhcients in

nonlinear wave equations

Barbara Kaltenbacher =~ William Rundell

Alpen-Adria-Universitat Klagenfurt ~ Texas A&M University,

Supported in part by the

Austrian Science Fund FWF National Science Foundation



The classical wave equation u,; — Aw = 0 holds in a homogeneous medium where there
is no attenuation of the wave: the solution u(x, t) has purely sinusodial behaviour for all ¢.

More realistic models will allow, for example, a wave speed ¢ = ¢(x) or indeed a general
elliptic operator £ as well as nonlinearities dictated by the underlying physics.
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is no attenuation of the wave: the solution u(x, t) has purely sinusodial behaviour for all ¢.

More realistic models will allow, for example, a wave speed ¢ = ¢(x) or indeed a general
elliptic operator £ as well as nonlinearities dictated by the underlying physics.

We also must include the effects of damping: classically this is just Du = b ;.

However, this leads to all solutions w(x, t) having exponential decay in time and this situation
often does not correspond to observations — a much slower decay rate is indicated.



The problem of imaging with ultrasound in a lossy media amounts to identification of the space
dependent coefficient () for the attenuated Westervelt equation in pressure formulation

(v— /4:(:1:)?}2)7% —c(x)*AMv+Dv=r in Qx(0,T)
v=0 on 90 x (0,T) ; v(0) = vg(x), v:(0) =wv1(x) In Q
Here €2 is a bounded subset of R™ (But we focus on n = 1 for the inverse problems).

The typical observations are g(z,t) = u(x,t), x>, te (r,T), 7 >0.
[These can be purely time trace (3 = {x}) or purely spatial (7 = T')]



Ourinterest has continued to extend the scope of the inverse problem to seek further information

e The wave speed c(z) may also be unknown: Lu = cAw or indeed a more general
elliptic operator. We may be required to recover both ~(x) and c¢(z).
Reformulation to include a ‘slowness” term s = 1/¢?

(s(z)u — /Z;(a:)uQ)tt — Au+Dv =0

e In the literature the Damping operator D has taken many forms:

o bLOY, bLPO, Zf;v b;0;"". Here 0 is a fractional derivative in time of
Abel type and Djrbashian-Caputo form. £7 is a “fractional Laplacian” operator.

o The key point is that fractional space derivatives lead to solutions with only power law
time decay - courtesy of the modification e=** — E,(—At*).
Critical fact: the Mittag-Leffler function E,, (—x) decays linearly forall = > 0 .

e The nonlinearity may be more complex: (v — k(z) f(v)),,
and the inverse problem is to recover f (in additionto ... .)



Overposed measurements to obtain these unknowns will be

e g(z,t) =v(x,T), r€ X CQ, te(0,7T). eitheratsingle point ¥ = {xq} or,
in the spatially higher dimensional case — on some surface > contained in €2.

e Time trace data, h(xg, t) for afixed point zo € €2 or zg on 0L, t > 0.
o An important subcase is when only large time measurements are possible ¢t > 1.



Existence and Uniqueness of the forwards operator

Assume Q C R4, d € {1,2,3}, 0Q € C?7.
Let U := L>=°(0,T; H}(Q) N H*(Q)) N H(0,T; H}(2)) n C([0,T].
Let x, c(x) € L*>°(Q2) and o € (0,1).

Suppose the initial conditions ug € Ha (Q)NH?(2), u1 € H' () and the forcing function
re (HY(0,T;L*(0)))*.
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remark: Global existence in time requires a nontrivial damping term.
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Suppose the initial conditions ug € Ha (Q)NH?(2), u1 € H' () and the forcing function
re (HY(0,T;L*(0)))*.

Theorem . There exists a unique solution v € U of the Westervelt equation for some fixed
T, 0< T <T.

remark: Global existence in time requires a nontrivial damping term.

Theorem . Take anyfixed 7 < 1,7 >0, M > 0 and f € CYY([-M, M]) such that
—7 < f < 7T on|[-M,M)]. Then there exists a unique solution v € U of the f(u)
version of the general nonlinear Westervelt equation.



The inverse problems represented by the (generalised) Westervelt equation are challenging
on (at least) three counts.
e First, the underlying equation is nonlinear and the nonlinearity is in the highest order term.

e Second, the unknown coefficient «(x) is directly coupled to this term.

e Third, time-trace data g(¢) is in the “orthogonal” time direction and is well known to lead to
severe ill-conditioning of the inversion of the map: data(¢) — unknown (z)

Further, for large times as the solution « decays, the term coupling to « decays (as does the
term f(w)): hence the significant advantage of fractional diffusion for the inverse problem.
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e First, the underlying equation is nonlinear and the nonlinearity is in the highest order term.

e Second, the unknown coefficient «(x) is directly coupled to this term.

e Third, time-trace data g(¢) is in the “orthogonal” time direction and is well known to lead to
severe ill-conditioning of the inversion of the map: data (¢) — unknown ()

Further, for large times as the solution « decays, the term coupling to « decays (as does the
term f(w)): hence the significant advantage of fractional diffusion for the inverse problem.

Assume that damping is by the model D = bL£P9 : with 0 < a < 1, B € [0,1].

We considerthe maps G : kK — u where u solves the Westervelt equation and its linearisation

z=G'" (k)oK

(1 — 2ku) 24 + 2Lz 4+ Dz — dkuy 20 — 25U 2 = 20K(U uge + uf) in Q x (0,7T)
2(0) =0, z(0)=0 inQ

for a given x and dx. Here £ = —CQ(Q”J)A subject to homogeneous conditions on 02,

C

c(x) € L>(€2). We denote the spectrurﬁ of L by {\.}.




We now look at the Laplace transformed solutions of the linearised equation:
1

WA, s) = oO\s)

with — w(\, s) = 52 4+ bAPs® 4 2\




We now look at the Laplace transformed solutions of the linearised equation:
1

WA, s) = oO\s)

with — w(\, s) = 52 4+ bAPs® 4 2\

Lemma: For fixed A, the function w(\, s) has precisely two complex-conjugate roots lying
in the left hand complex plane and for A = A the roots differ and the poles are single.

The key point:

& We are going to convert time values into w(s) values for s real and positive.

& Computing the poles/residues from this information is analytic continuation.

& The further the poles lie from the measured values the greater the ill-conditioning.
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Newton’s method

We define the iterate ~. 1 implicitly by the linearised problem

F'(kk) (ki1 — k) = g — F(kg),
or its frozen version
F'(Kko)(Kkt1 — kk) = g — F(ki),



Newton’s method

We define the iterate ~. 1 implicitly by the linearised problem
F'(kg) (k1 — ki) = g — F(kg)
or its frozen version
F'(ko)(kk+1 — ki) = g — F(kr),

Theorem. The linearised derivative of the map F' taking ~ to the time trace u(:,t) on the
measurement surface at x = 0 is injective.
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measurement surface at < = 0 is injective.

The problem is severely ill-conditioned and will rely on a regularized least squares variant

K1 = argming . || F' (k) + F' (ko) (R — ki) — glly + Y|k — Kol x
of the frozen Newton method.
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The key point:

& We are going to convert time values into w(s) values for s real and positive.

& Computing the poles/residues from this information is analytic continuation.

& The further the poles lie from the measured values the greater the ill-conditioning.

Theorem. The linearised derivative of the map F' taking ~ to the time trace u(:,t) on the
measurement surface at < = 0 is injective.

The problem is severely ill-conditioned and will rely on a regularized least squares variant

K1 = argming . || F' (k) + F' (ko) (R — ki) — glly + Y|k — Kol x
of the frozen Newton method.

In the pictures to follow boundary conditions were «(0) = 0 and «/(1) = 0.

Due to the coupling w(z,:)x(x), we “lose” small « -value information — which means at the
left hand (x = 0) endpoint.



Reconstructions of a piecewise linear ~(x): Frozen Newton. (Noise = 0.1%)

0.15

0.10

0.05

0.00

0.15

0.10

0.05

0.00

| () a=1.0
I I I I |
0.0 0.2 0.4 0.6 0.8 1.0
K\
] ( ) a = 0.5
| | | | |
0.0 0.2 0.4 0.6 0.8 1.0

0.15

0.10

0.05

0.00

0.15

0.10

0.05

0.00

K\
] ( ) a=0.9

| | | | 1
0.0 0.2 0.4 0.6 0.8 1.0
| () a = 0.25

| | | | |
0.0 0.2 0.4 0.6 0.8 1.0



0.15 - w() =09

0.10 1

0.05 1

0.00 . . | | |
00 02 04 06 08

1.0

0.15

0.10

0.05

0.00

o = 0.25

0.0

0.2

0.4

0.6

0.8

Reconstructions of «(x) for o = 0.25, 0.9  Noise = 0.5% (blue) and 1% (green)

1

1.0



0O—® loglo(an) 0 loglo(an)
*
. 8
“%g 8
Sty s
—4 - "ago, CoSsEsNgy: 4o gy
e_O SO
.’2000 éééééé&%éég*****
e “o 99990088000
.. OO ....SOOO
o ©°4 o,
[ ) o ®
—8 * a = 0.25 ’. Oo —8 - * a = 0.25
o a=0.5 ° o a=20.5
o a«=20.9 '. o a=20.9
e =1.0 ° e =1.0
n
_12 | | | | | | _12 | | | |
0 5 10 15 20 25 30 0 5 10 15 20

Singular values of I for various « values: left; c = 1,right; c =5



Reconstructions of a piecewise linear ~(x): Frozen Newton. (Noise = 0.1%)
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Other work, recent and in planning.

We have at least 4 terms of physical interest that could be recovered:

The imaging constant «(x)

The wave speed ¢(x)

The nonlinear term f(v)

The damping operator D — in its many possible forms.

(v — k(@) f(v),, — c(x)?Lv + Do =r




Other work, recent and in planning.

e Given x(x) we can to show the unique recovery of the nonlinear term f in (1 — xf(u)).

Both a Newton-type scheme and one based on Picard iteration are feasible. In the latter case
convergence is very slow but can be significantly improved by using Anderson acceleration.

Reconstructions using the Newton scheme are good from either time-trace data w (32, ¢) or
final ime w(x,T") data.
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o If all else is known in the equation we can recover a multi-term fractional order damping term
Du = Zj\f: -b;0;" . In fact, this can be done solely from very large time measurements.

Key observations are: for large times the nonlinearity in « has essentially vanished and we
have a linear wave equation with damping ID. After taking a Laplace transform, we have

- 1
known(s) = : Br =0
| ; 52+ P + 2opsy by s N ( |
Values of s can be obtained for s sufficiently small by using a Tauberian theorem that converts
large ¢ into small s. Then solve the finite dimensional (nonlinear) equation for {b;, a,;, N }.
We hope to extend this to include recovery of terms involving space fractional 5, exponents.
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e Given x(x) we can to show the unique recovery of the nonlinear term f in (1 — xf(u)).

Both a Newton-type scheme and one based on Picard iteration are feasible. In the latter case
convergence is very slow but can be significantly improved by using Anderson acceleration.

Reconstructions using the Newton scheme are good from either time-trace data w(32,¢) or
final time w(x,T") data.

o If all else is known in the equation we can recover a multi-term fractional order damping term
Du = Z;.V: -b;0;"" . In fact, this can be done solely from very large time measurements.

Key observations are: for large times the nonlinearity in « has essentially vanished and we
have a linear wave equation with damping ID. After taking a Laplace transform, we have

- 1
known(s) = : Br =10
( ) nz::l 82 4+ 62)\77, + Zng bk Sk )\gk ( k )

Values of s can be obtained for s sufficiently small by using a Tauberian theorem that converts
large ¢ into small s. Then solve the finite dimensional (nonlinear) equation for {b;, a;, N }.

We hope to extend this to include recovery of terms involving space fractional 5, exponents.

e The simultaneous recovery of c¢(xz) and x(x). We have made progress. An important
observation is that large time measurements are useful for recovering ¢(x) but not for x(z):
this gives a partial decoupling of the two terms. The degree of ill-conditioning is very high.
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A soon-to-appear book on inverse problems involving fractional operators

Barbara Kaltenbacher and William Rundell, Inverse problems for Fractional Differential
Equations, Graduate Studies in Mathematics, American Math Society, 2023.



