Multiscale iterative methods for decomposition, deblurring and denoising of images

Elena Resmerita

Institute of Mathematics Alpen-Adria Universität Klagenfurt Austria

Inverse Problems on Large Scales November 28, 2022

Elena Resmerita

Multiscale iterative methods for image reconstruction

RICAM, November 28, 2022 1

イロト 不得 トイヨト イヨト

Collaborators

Joel Barnett (UCLA)

Wen Li (Fordham University)

Luminita Vese (UCLA)

- W. Li, E. Resmerita and L. Vese, Multiscale hierarchical image decomposition and refinements: Qualitative and quantitative results, *SIAM Journal on Imaging Sciences 14 (2), 844-877* (2021).
- J. Barnett, W. Li, E. Resmerita and L. Vese, Multiscale hierarchical decomposition methods for images corrupted by multiplicative noise, *preprint* (2022).

Introduction

• Let $f \in BV(\Omega)$ be the representation of an image, where $BV(\Omega) = \left\{ u \in L^1(\Omega) : TV(u) < \infty \right\}, \quad \Omega \subset \mathbb{R}^2.$

• Recall the ROF model:
Given the noisy version
$$f^{\delta}$$
 of the ground truth image f , find

$$u_0 = \arg \min_{u \in BV(\Omega)} \left\{ \frac{\lambda_0}{2} \| f^{\delta} - u \|^2 + TV(u) \right\}$$

to approximate f.

Rudin, Osher, Fatemi 1992

Elena Resmerita

э

イロト イロト イヨト イヨト

Denoising images corrupted by Gaussian noise Approximate the ground truth f

when a noisy version f^{δ} of the ground truth is given:

Elena Resmerita

Multiscale iterative methods for image reconstruction

RICAM, November 28, 2022 5

э

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Step 0 ($\lambda_0 = 0.0001$)

Elena Resmerita

Multiscale iterative methods for image reconstruction

RICAM, November 28, 2022 6

Residual after Step 0

Elena Resmerita

Multiscale iterative methods for image reconstruction

RICAM, November 28, 2022 7

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣

Multiscale hierarchical decomposition method (MHDM)

- The residual might contain also texture, which can be seen as cartoon at finer scales.
- Then increase the parameter λ_0 and perform ROF for the residual as the new data, and so on.

Algorithm Multiscale Hierarchical Decomposition (MHDM)

Start with $\lambda_0 > 0$ and compute $u_0 \in \arg \min_{u \in BV(\Omega)} \{\frac{\lambda_0}{2} \| f^{\delta} - T u \|_{L^2(\Omega)}^2 + TV(u) \}.$ Set $x_0 = u_0$, $v_0 = f^{\delta} - T x_0$. for k = 1, ... do Increase $\lambda_k = 2\lambda_{k-1}$ and compute $u_k \in \arg \min_{u \in BV(\Omega)} \{\frac{\lambda_k}{2} \| v_{k-1} - T u \|_{L^2(\Omega)}^2 + TV(u) \}.$ Set $x_k = u_0 + \dots + u_k$ and $v_k = f^{\delta} - T x_k$.

Tadmor, Nezzar, Vese 2004, 2008

Elena Resmerita

イロト 不得 トイヨト イヨト

Step 9 ($\lambda_9 = 0.1024$): $x_9 = u_0 + u_1 + \dots + u_9$ Pictures provided by Tobias Wolf (University of Klagenfurt)

Multiscale iterative methods for image reconstruction

Elena Resmerita

Multiscale iterative methods for image reconstruction

RICAM, November 28, 2022 10

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

$$f^{\delta} = (u_0 + u_1 + u_2 + u_3) + v_3$$

Elena Resmerita

Multiscale iterative methods for image reconstruction

RICAM, November 28, 2022 11

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ の < ⊙

Known convergence results for MHDM (exact data)

J stands for TV, but it can be a more general seminorm.

$$u_k \in \arg\min_{u \in BV(\Omega} \left\{ \frac{\lambda_k}{2} \| T(u + x_{k-1}) - f \|^2 + J(u) \right\}, \ k \ge 0.$$

It has been shown that (Tx_k) converges to f as follows,

$$\lim_{k\to\infty} \|T^*(f-Tx_k)\|_*=0,$$

where T^* is the adjoint of T and $\|\cdot\|_*$ is

$$\|g\|_* = \sup_{\varphi: J(\varphi) \neq 0} \frac{\langle g, \varphi \rangle}{J(\varphi)}, \quad \forall g \in L^2(\Omega).$$

Tadmor, Nezzar, Vese 2004, 2008

$$\lim_{k\to\infty}\|f-Tx_k\|=0$$

Modin, Nachman, Rondi 2019

Elena Resmerita

Multiscale iterative methods for image reconstruction

イロト イヨト イヨト イヨト

Properties of (x_k)

Proposition

The residual $||Tx_k - f||^2$ decreases as k increases and the following estimate holds:

$$\|Tx_k - f\|^2 \leq \frac{2J(z)}{(k+1)\lambda_0}, \quad \forall k \geq 0.$$
(1)

Consequently, $\lim_{k\to\infty} Tx_k = f$ in the $L^2(\Omega)$ norm.

Corollary (image denoising) Assume that T = I and $f \in BV(\Omega)$. Then

$$||x_k - f|| \le \sqrt{\frac{2J(f)}{(k+1)\lambda_0}} = O(1/\sqrt{k+1}), \quad \forall k \ge 0.$$
 (2)

Li, Resmerita, Vese 2021

Elena Resmerita

A D A A B A A B A A B A

The noisy data case

• Let $f^{\delta} \in L^{2}(\Omega)$ be the noisy blurred image. That is,

$$f^{\delta} = Tz + n$$

where *n* is additive noise and $||f - f^{\delta}|| \le \delta$, $\delta > 0$.

- We aim at recovering z and its decomposition (ill-posed problem!).
- MHDM: Find $u_k \in BV(\Omega)$ as a minimizer of

$$\frac{\lambda_k}{2} \|T(u+x_{k-1})-f^{\delta}\|^2 + J(u).$$

Let $k_*(\delta) \coloneqq \max\{k \in \mathbb{N} : || Tx_k - f^{\delta} ||^2 \ge \tau \delta^2\}$, for some $\tau > 1$.

Proposition

The following inequality holds

$$\|Tx_k - f^{\delta}\|^2 \le \delta^2 + \frac{2J(z)}{(k+1)\lambda_0}, \quad \forall k \ge 0$$

and the stopping index defined above is finite. If $(k_*(\delta))$ is unbounded as $\delta \to 0$, then one has $\lim_{\delta \to 0} Tx_{k_*(\delta)} = f$.

Elena Resmerita

Multiscale iterative methods for image reconstruction

What about convergence results for (x_k) ?

• The tight MHDM: Find a solution u_k of

$$\min_{u\in BV(\Omega)}\left\{\frac{\lambda_k}{2}\|T(u+x_{k-1})-f\|^2+\lambda_ka_kJ(u+x_{k-1})+J(u)\right\},\ x_{k-1}=\sum_{j=0}^{k-1}u_j.$$

Proposition

If $\sum_{k=0}^{\infty} a_k < \infty$ and $\limsup_{k \to \infty} \frac{2^k}{\lambda_k a_k} = 0$, then there is a subsequence of (x_k) which converges w.r.t. $d(u, v) = ||u - v||_{L^1} + |J(u) - J(v)|$ to a J minimizing solution of Tu = f.

Modin, Nachman, Rondi 2019

• A refinement of the tight MHDM: *u_k* solves

$$\min_{u\in BV(\Omega)}\left\{\frac{\lambda_k}{2}\|T(u+x_{k-1})-f\|^2+\lambda_ka_kJ(u+x_{k-1})+R_k(u)\right\},\quad k\geq 0,$$

Similar convergence results can be shown for this MHDM extension.

Li, Resmerita, Vese 2021

Elena Resmerita

MHDM versions for denoising-deblurring

x, (MHDM)

x, (Tight MHDM)

x, (Refinement of Tight MHDM)

x₁ (MHDM)

x1 (Tight MHDM)

x1 (Refinement of Tight MHDM)

 $\begin{aligned} \mathsf{MHDM}(RMSE &= 0.0304, d(x_1, z) = 6.06 \times 10^6) \\ \mathsf{Tight} \ \mathsf{MHDM}(RMSE &= 0.0298, d(x_1, z) = 6.03 \times 10^6) \\ \mathsf{Refined} \ \mathsf{Tight} \ \mathsf{MHDM}(RMSE &= 0.0293, d(x_1, z) = 5.53 \times 10^6) \\ \mathsf{Multiscale iterative methods for image reconstruction} \\ \mathsf{Refined} \ \mathsf{Tight} \ \mathsf{MHDM}(RMSE &= 0.0293, d(x_1, z) = 5.53 \times 10^6) \\ \mathsf{Refined} \ \mathsf{Tight} \ \mathsf{MHDM}(RMSE &= 0.0293, d(x_1, z) = 5.53 \times 10^6) \\ \mathsf{Refined} \ \mathsf{Tight} \ \mathsf{MHDM}(RMSE &= 0.0293, d(x_1, z) = 5.53 \times 10^6) \\ \mathsf{Refined} \ \mathsf{Tight} \ \mathsf{MHDM}(RMSE &= 0.0293, d(x_1, z) = 5.53 \times 10^6) \\ \mathsf{Refined} \ \mathsf{Tight} \ \mathsf{MHDM}(RMSE &= 0.0293, d(x_1, z) = 5.53 \times 10^6) \\ \mathsf{Refined} \ \mathsf{Tight} \ \mathsf{MHDM}(RMSE &= 0.0293, d(x_1, z) = 5.53 \times 10^6) \\ \mathsf{Refined} \ \mathsf{Refined} \ \mathsf{Tight} \ \mathsf{MHDM}(RMSE &= 0.0293, d(x_1, z) = 5.53 \times 10^6) \\ \mathsf{Refined} \ \mathsf{Refined$

MHDM versions for denoising-deblurring: Errors

Errors of deblurring-denoising results of the degraded pollen image.

Elena Resmerita

Multiscale iterative methods for image reconstruction

< □ > < □ > < □ > < □ > < □ >

MHDM for denoising images corrupted by multiplicative noise

- Approximate the true image z from $f^{\delta} = z \cdot \eta$, where η multiplicative noise.
- Natural noise in radar, synthetic aperture radar (SAR), ultrasound etc.
- More difficult than the additive noise, since the multiplicative noise is data dependent.

How about $\log(f^{\delta}) = \log(z) + \log(\eta)$, then applying ROF? The mean of the reconstruction would be much smaller than that of the original image! Aubert and Aujol 2008

GOAL: Adapt summed-MHDM to multiplicative noise.

Consider several existing models

 1994 Rudin and Osher: Multiscale denoising proposed by Tadmor, Nezzar and Vese (TNV) in 2004, explored in 2008,

$$\min_{u} \left\{ TV(u) + \lambda \int_{\Omega} \left(\frac{f^{\delta}}{u} - 1 \right)^2 \right\}$$

• 2008 Aubert and Aujol (AA): Gamma noise model

$$\min_{u} \left\{ TV(u) + \lambda \int \left(\log(u) + \frac{f^{\delta}}{u} \right) \right\}$$

• 2008 Shi and Osher (SO): Gamma noise convex model

$$\min_{w}\left\{TV(w) + \lambda \int \left(af^{\delta}e^{-w} + \frac{b}{2}(f^{\delta})^{2}e^{-2w} + cw\right)\right\} \quad u = e^{w}$$

Elena Resmerita

・ロト ・四ト ・ヨト ・ヨト

Multiplicative MHDM framework

Model name	Minimization functional			
AA MHDM	$\left \lambda_k \int_{\Omega} \left(\frac{f^{\delta}}{u x_{k-1}} + \log(u x_{k-1}) - \log(f^{\delta}) - 1 \right) + TV(u) \right $			
SO MHDM	$\lambda_k \int_{\tilde{\Omega}} \left(f^{\delta} e^{-(y_{k-1}+w)} + y_{k-1} + w - \log(f^{\delta}) - 1 \right) + TV(w)$			
AA-log MHDM	$\lambda_k \int_{\Omega} \left(\frac{f}{u x_{k-1}} + \log(u x_{k-1}) - \log(f^{\delta}) - 1 \right) + TV(\log(u))$			
TNV	$\lambda_k \int_{\Omega} \left(\frac{f^{\delta}}{u x_{k-1}} - 1 \right)^2 + TV(u)$			
TNV-log	$\lambda_k \int_{\Omega} \left(\frac{f^{\delta}}{u_{x_{k-1}}} - 1 \right)^2 + TV(\log(u))$			

Barnett, Li, Resmerita, Vese 2022

Elena Resmerita

Multiscale iterative methods for image reconstruction

イロト イヨト イヨト イヨト

Theoretical results for the denoising problem

- All these MHDM models are well-defined.
- The residual $H(f^{\delta}, x_k)$ is decreasing.
- For the log-models:

$$H(f^{\delta}, x_k) \leq \delta^2 + \frac{2TV(\log(z))}{(k+1)\lambda_0}.$$

Moreover, $(x_{k^*(\delta)})$ converges a.e to z on a subsequence, with

$$k^*(\delta) := \max\{k \in \mathbb{N} : H(f^{\delta}, x_k) \ge \tau \delta^2\}, \text{ for some } \tau > 1.$$

• Similar results hold for tight and refined versions.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Numerical tests for denoising

Multiscale iterative methods for image reconstruction

イロト イヨト イヨト イヨト

Table: SNR values (higher is better) from various denoising recoveries at the minimizing indices k_{min} and the stopping criteria $k^*(\delta)$. Bold entries are the maximum of their respective columns.

	Barbara Ma		Mar	ndril	Geometry	
SNR at	k _{min}	k^*	k _{min}	k^*	k _{min}	k^*
SO MHDM (EL)	19.70	19.08	20.38	20.06	28.21	24.82
SO Tight (EL)	19.71	18.98	20.37	19.89	29.46	27.50
SO Refined (EL)	19.88	19.33	20.73	20.32	30.11	29.66
SO MHDM (ADMM)	19.31	19.12	19.93	19.93	34.67	31.53
SO Tight (ADMM)	19.74	19.36	20.46	20.19	34.60	34.60
AA MHDM	19.53	19.14	20.21	20.05	28.21	24.77
AA-log MHDM	19.65	19.04	20.35	20.02	28.21	24.83
AA-log Tight	19.67	18.93	20.37	19.79	30.22	26.11
AA-log Refined	19.64	19.21	20.55	20.41	27.12	13.81
TNV-log	19.53	17.97	20.37	19.02	25.70	23.17
TNV-log Tight	19.54	17.35	20.42	17.89	26.39	21.02
TNV	19.73		20.40		25.94	
Dong	19.13		20.22		31.32	

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Numerical tests for denoising

Dong, AA-log refined and SO refined (EL)

Elena Resmerita

Multiscale iterative methods for image reconstruction

RICAM, November 28, 2022 24

イロト イヨト イヨト イヨト

Numerical tests for denoising

TNV, AA-log tight and SO tight (ADMM)

Elena Resmerita

Multiscale iterative methods for image reconstruction

RICAM, November 28, 2022 25

э

イロト イヨト イヨト イヨト

Table: SNR values (higher is better) for restoring noisy-blurred images at the k_{min} . Bold entries are the maximums of their respective columns.

SNR at <i>k_{min}</i>	Barbara	Mandril	Geometry
AA MHDM	17.69	18.65	26.45
AA-log MHDM	17.69	18.64	26.66
AA-log Tight	17.74	18.66	28.76
AA-log Refined	17.54	18.47	27.12
TNV-log	17.30	18.13	24.17
TNV-log Tight	17.35	18.16	25.17
TNV	17.32	18.17	24.23
Dong	17.36	17.24	28.32

э

イロン イ団 とく ヨン イヨン

Summary and further work

- Error estimates for the multiscale hierarchical decomposition method (MHDM) and for its extensions (tight, refined).
- Early stopping criteria have been provided in the case of noisy data.
- MHDM schemes have been proposed, analyzed and tested for images corrupted by multiplicative noise.

To investigate: MHDM theory for blurred noisy images involving multiplicative noise, for color images, etc.

< ロ > < 同 > < 回 > < 回 >

The 3rd Alps-Adriatic Workshop on Inverse Problems July 3-7, 2023, University of Klagenfurt

Elena Resmerita

Multiscale iterative methods for image reconstruction

RICAM, November 28, 2022 28

< (日) × < 三 × <