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Outline

▶ �rst order algorithms for approximate OT and WB?

▶ some properties of OT solutions and approximate solutions;

▶ Euclidean and nonlinear saddle-point algorithms;

▶ basic complexity bounds;

▶ improvements: acceleration, linesearch;

▶ extensions, examples.



(Discrete) Optimal transportation problem (OT)

Data: distributions (µi)i=1,...,n (νj)j=1,...n (to simplify), with µi ≥ 0, νj ≥ 0,∑
i µi =

∑
j νj = 1;

a cost matrix (Ci ,j)i ,j , with (wlog) Ci ,j ≥ 0.

Problem: minimal cost assignment (or transportation) from µ to ν (a

minimal cost �ow problem).

min
X≥0

C : X =:
∑
i ,j

Ci ,jXi ,j :
∑
j

Xi ,j = (X1n)i = µi ,
∑
i

Xi ,j = (XT1n)i = νj

(OT )
(in particular

∑
i ,j Xi ,j = 1).

We denote ∆n the unit simplex in Rn, ∆n×n the unit simplex in Rn×n,

∆µ,ν :=

{
(xi ,j) ∈ Rn×n

+ :
∑
j

xi ,j = µj ,
∑
i

xi ,j = νj

}
⊂ ∆n×n.



(Discrete) Wasserstein barycenter problem (WB)

An extension is the discrete transportation barycenter problem: given (µl),
l = 1, . . . ,m in ∆1, we look for the �barycenter� ν of the measures, given the

cost matrices C l , and the scalar weights w l ≥ 0 with
∑m

l=1 w
l = 1, solving:

min
ν∈∆n

min
X l∈∆µl ,ν

m∑
l=1

w lC l : X l . (WB)

Here, ν is the common second marginal of the transportation plans (X l)l . For
C l = C given by Ci ,j = |xi − xj |2, (xi)ni=1 a sampling of some domain in Rd , ν

will be an approximation of the (2-)Wasserstein barycenter of the (µl)l with
weights (w l)l .



Our goal

� We want to study non-linear continuous optimization algorithms for

approximate (OT) or (WB);

� Why? linear programming works very well (network simplex implemented in

python-OT);

� Theoretical complexity scales a bit better (∼ n5/2 rather than n3 or n4);

� E�cient LP for (WB)?

� Straightforward extension to nonlinear problems such as:

min
X :X1n=µ

C : X + ψ(XT1n)

for ψ a convex function.



Classical trick for approximate OT: entropic regularization

� Replace X ≥ 0 by the entropic barrier γ
∑

i ,j Xi ,j lnXi ,j = γX : (lnX ),
γ > 0; [Cuturi 2013]

� Allows for explicit solution for one �xed marginal (X1n = µ or XT1n = ν);

� Alternating maximization for the dual / alternating �Bregman� projection in

the primal on each marginal leads to the Sinkhorn algorithm [Sinkhorn,

S-Knopp, 64�67];

� Very e�cient for large γ (→ large error), hard to implement and slow for

small γ (involves exp(−C/γ)).



Approximate OT: rates

Many recent works have addressed the complexity of solving the OT up to

some error: given ε > 0, one looks for X admissible with C : X ≤ C : X ∗ + ε.
First order / randomized / alternating minimization approaches. Here

∥C∥ = maxi ,j |Ci ,j |.
▶ Sinkhorn: O(n2∥C∥2/ε2) (up to log factors) [Dvurechensky Gasnikov

Kroshnin 18]. Randomized �Randkhorn� is O(n7/3(∥C∥/ε)4/3)
[Lin-Ho-Chen-Cuturi-Jordan 2020];

▶ Accelerated �rst order methods: O(n5/2∥C∥/ε) (a bit worse wr n, better

wr ε) [DGK18], [Lin Ho Jordan 2019];

▶ [Sherman 2017] �Area convexity�: non-linear (Bregman type) descent

with a non-convex but �area convex� Bregman function: O(n2∥C∥/ε) in
theory, very slow in practice;

▶ [Blanchet-Kent-Jambulapati-Sidford 2020] : O(n2∥C∥/ε) using linear

programming techniques (for �packing�) / interior point type

(Newton/matrix scaling) (Implementation?) + This is optimal.



Approximate OT: rates

Our contribution: we show that standard saddle-point (that is, Prox method

of [Nemirovsky 2004] or non-linear primal-dual [C-Pock 2016]) yield the nearly

optimal rate O(n5/2∥C∥/ε), and that heuristic improvements (line-search,

[Malitsky-Pock 2018]) yield competitive methods wr the state-of-the art.

▶ Would need to be compared with implementation of [Blanchet et al.

2020];

▶ Not competitive with Network Simplex for middle-sized OT problems.

▶ Yet quite better than LP based methods for barycenter problems.

Generalizes easily to nonlinear.



Some basic facts about OT

1. Duality:

min
X∈∆µ,ν

C : X = min
X≥0

max
f ,g

C : X + f · (µ− X1n) + g · (ν − XT1n)

= max
f ,g

min
X≥0

f · µ+ g · ν + X : (C − f ⊗ 1n − 1n ⊗ g)

= max
f ,g
{f · µ+ g · ν : f ⊗ 1n + 1n ⊗ g ≤ C} .

The Lagrangian:

L(X , f , g) := C : X + f · (µ− X1n) + g · (ν − XT1n)

(cf Monge / Kantorovich / Rubinstein in the continuous setting.)



Some basic facts about OT
2. Bounds: Here we assume (wlog): Ci ,j ≥ 0, mini Ci ,j = minj Ci ,j = 0.

Why? because (Ci ,j + a)i ,j , a ∈ R, (Ci ,j + ai)i ,j , a ∈ Rn, (Ci ,j + bj)i ,j , b ∈ Rn

yield the same solutions. (Indeed:

(C + a ⊗ 1n) : X = C : X + a · (X1n) = C : X + a · µ, etc.)
We also assume µi , νj > 0 (else we can remove the corresponding coordinate).

Basic remark: (X , f , g) solution (saddle-point of L) → (X , (fi + a)i , (gj − a)j)
solution. As a consequence:

Lemma: There is a saddle-point with |fi |, |gj | ≤ ∥C∥/2.
(Again ∥C∥ = maxi ,j Ci ,j . This is sharp.)

Proof: Relies on complementary conditions. Assume wlog fi ≥ 0, mini fi = 0 (fi ← fi −mini ′ fi ′)

Complementary shows: Xi ,j > 0⇒ fi + gj = Ci ,j .

Then fi + gj ≤ Ci ,j ⇒ gj ≤ mini Ci ,j − fi ≤ 0 (as minj Ci ,j = 0). Using then that mini fi = 0 and that for all i

(j), ∃j (i) with fi + gj = Ci ,j (since
∑

i Xi ,j > 0,
∑

j Xi ,j > 0), we easily deduce that there is i0, j0 with

fi0 = gi0
= Ci0,j0 = 0 and then:

0 ≤ fi ≤ ∥C∥ , −∥C∥ ≤ gj ≤ 0.

Then (fi − ∥C∥/2, gj + ∥C∥/2) satis�es the thesis of the Lemma.
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A consequence

The problem is equivalent to

min
X≥0

max
|fi |,|gj |≤λ

L(X , f , g)

= min
X≥0

C : X + λ|µ− X1n|1 + λ|ν − XT1n|1

as soon as λ ≥ ∥C∥/2. We solve the saddle-point with a primal-dual method.



Primal-dual algorithm

Recall: L(X , f , g) = C : X + f · (µ− X1n) + g · (ν − XT1n).



f k+1 = argmax|f |≤λ− 1
2σ
∥f − f k∥2 + f · (µ− X k1n) = Π[−λ,λ](f

k + σ(µ− X k1n))

gk+1 = argmax|g|≤λ− 1
2σ
∥g − gk∥2 + g · (ν − (X k)T1n)

f̃ k+1 = 2f k+1 − f k , g̃k+1 = 2gk+1 − gk ,

X k+1 = argminX≥0
1
τ
DX (X ,X

k) + X : (C − f̃ k+1 ⊗ 1n − 1n ⊗ g̃k+1).

with DX (X ,X
k) a �Bregman distance1�, such as ∥X − X k∥2/2 (in this case

X k+1 = (X k − τ(C − f̃ k+1 ⊗ 1n − 1n ⊗ g̃k+1))+ is also easy to compute).

1
DX (X ,X

k) := ψ(X )− ψ(X k)−∇ψ(X k) · (X − X k) for ψ some convex function with

domain Rn×n+ or ∆n×n



Primal-dual algorithm: basic estimates

Letting X̄ k = (1/k)
∑k

i=1 X
i , etc, we have the following [C-Pock, 2016]: for

all X , f , g,

L(X̄ k , f , g)− L(X , f̄ k , ḡk) ≤
2

k

(
1

τ
DX (X ,X

0) +
∥f − f 0∥2 + ∥g − g0∥2

2σ

)
And introducing the primal-dual gap (primal - dual values)

G(X̄ , f̄ , ḡ) := max
|f |≤λ,|g|≤λ,X∈∆n×n

L(X̄ , f , g)− L(X , f̄ , ḡ)

one gets (choosing f 0 = g0 = 0):

G(X̄ k , f̄ k , ḡk) ≤
2

k

(
1

τ
max
X

DX (X ,X
0) +

nλ2

σ

)
.



Global rate?

A crucial point: this rate holds under restrictive assumptions on τ, σ. Namely:

τσL2 ≤ 1 where L := max
∥X∥X≤1

max
∥(f ,g)∥Y≤1

X : (f ⊗ 1n + 1n ⊗ g).

Here, the choices of the norms in X ∋ X ,Y ∋ (f , g) are important. For Y, we
use ∥ · ∥2 the Euclidean norm.

For X , we need the Bregman function ψ from which DX is obtained:

DX (X ,X
′) := ψ(X )− ψ(X ′)−∇ψ(X ′) · (X − X ′)

to be 1-convex: DX (X ,X
′) ≥ ∥X − X ′∥2X/2.



Global rate?

For ψ(X ) = ∥X∥22/2 (Euclidean), one has

L = max∑
i ,j X

2
i ,j≤1

max∑
i f

2
i
+g2

i
≤1

∑
i ,j

Xi ,j(fi + gj) = max∑
i f

2
i
+g2

i
≤1

√∑
i ,j

(fi + gj)2 =
√
2n

Hence one can choose τ = 1/(2nσ) and one gets a rate:

2

k

(
1

τ
+

nλ2

σ

)
=

2

k

(
2nσ +

nλ2

σ

)
minσ→

4
√
2nλ

k

Hence one needs ∼ λn/ε iterations (and λn3/ε computations) to reach a

precision ε (using the optimal steps). Same as Network simplex, but no

sparsity, and very slow in practice.



Improvement by non-linear optimization

To improve the rate we use ψ(X ) = X · lnX =
∑

i ,j Xi ,j lnXi ,j if X ∈ ∆n×n,

and +∞ else, and non-linear proximal updates:

Dψ(X ,X
′) =

∑
i ,j Xi ,j ln(Xi ,j/X

′
i ,j) is the KL divergence. Then ψ is 1-strongly

convex on the simplex, wr the ℓ1 norm (cf Pinsker's inequality).

Hence, the right norm for X is ℓ1 and

L = max∑
i ,j |Xi ,j |≤1

max∑
i f

2
i
+g2

i
≤1

∑
i ,j

Xi ,j(fi + gj) = max∑
i f

2
i
+g2

i
≤1

max
i ,j
|fi + gj | =

√
2

→ improvement by a factor
√
n (choosing again the optimal τ, σ), but we

lose a factor log n (�diameter� of the unit simplex in the KL divergence).



Improvement by non-linear optimization

▶ The estimate on the gap has to be turned into an estimate for an

approximate feasible point. This is obtained by a rounding procedure

(Altschuller, Niles-Weed, Rigollet 2017) (for which we slightly improved

the constant);

▶ Same complexity as the most recent approaches based on �rst order

methods (except �area convexity� / [Blanchet et al]): n5/2∥C∥/ε (× ln n);

▶ Nonlinear updates are easily performed exactly (similar to Sinkhorn-type

update);

▶ Sinkhorn-type update: one can enforce X1n = µ (or XT1n = ν) at each

iteration and drop the corresponding dual variable (simpler, and slightly

faster);

▶ ε needs not be �xed in advance (may use other stopping criterion);

▶ Not as fast as best methods such as [Dvurechensky et al, 18].

▶ Generalizes to WB problem which has the same structure.



Further improvements? Acceleration, line-search

Acceleration: One can smooth the problem (as for Sinkhorn), as also

proposed by [Dvurechensky et al, 18], by adding γX · lnX = γψ(X ) (→
γ-convex in ℓ1):

Lγ(X , f , g) = L(X , f , g) + γX · lnX .

Dvurechensky et al. propose then to compute the dual (which has then

Lipschitz gradient in (ℓ1, ℓ∞) and use an accelerated gradient scheme inspired

by Nesterov's/Tseng's accelerated methods.

On the other hand, the primal objective becomes �relatively strongly convex�

wr to ψ(X ) = γX ˙lnX [Lu, Freund, Nesterov 18], that is, Lγ(·, f , g)− γψ is

convex (for all (f , g)), and one can revert to an accelerated method as shown

in [C-Pock 16].

The rate of convergence is now O(1/(γk2)) (with essentially the same

constants), however the global complexity is unchanged, as one needs to

choose γ ∼ ε (and then k ∼ 1/ε) to maintain an error of order ε.



Improvements? Acceleration, line-search

Linesearch: [Malitsky and Pock 2018] introduce a primal-dual algorithm with

linesearch in the Euclidean case. It was observed in [Jiang-Vandenberghe

2022] that it could be extended to the case where one variable has a

non-linear prox function, as in our case.

We extend this result to the (relatively) strongly convex case, improving in

fact both settings from [Malitsky-Pock] and [Jiang-VdB].

The theoretical rate is the same as before, and the complexity is not changed.

But the empirical convergence is improved.

(Numerics)



Wasserstein barycenter

Similarly to OT, we can solve the barycenter problem with the saddle-point

formulation:

min
X l∈∆n×n,l=1,...,m

max
|f l |,|gl |≤λ

m∑
l=1

wl

(
C l : X l + f l · (µl − X l1n) + g l · ((Xm − X l)T1n)

)
[
+ γ

m∑
l=1

wlX
l · lnX l

]
.

→ one can adapt the same algorithms. One can also remove the variables f l

and solve the X problems directly with the constraint X l1n = µl .



Remark: scaled entropy kernel

We propose to replace the entropy ψ by, for δ > 0 small:

ψδ(X ) =
1

(1− δ)2ψ
(
δ

n2
1n ⊗ 1n + (1− δ)X

)
for X ≥ 0, and +∞ else, which is still 1-convex on the unit simplex (for the ℓ1
norm).

The idea is that ∇ψδ(X ) is now �nite when some Xi ,j = 0, so this does not

rule out sparse solutions.

Remark 1: this is stupid since this kernel does not act as a barrier any longer

for the constraint X ≥ 0;

Remark 2: this is not totally stupid as one still may solve the corresponding

�prox� e�ciently.
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Remark: scaled entropy kernel

Letting X δ := δ
n2
1n ⊗ 1n + (1− δ)X the corresponding prox is solved by

computing:

min
X δ≥δ/n2

Y : X δ +
1

τ(1− δ)DX (X
δ, X̄ δ).

Optimality conditions are:

Yi ,j +
1

τ(1− δ)(logX
δ
i ,j − log X̄ δ

i ,j) + αi ,j = β

with αi ,j > 0 only when X δ
i ,j = δ/n2 and β the Lagrange multiplier for the

constraint
∑

X δ
i ,j = 1 → Xi ,j = X̄ δ

i ,j exp(−τ(1− δ)Yi ,j)e
−β or δ/n2.



Remark: scaled entropy kernel

One shows (from optimality) that there exists s > 0 such that

X δ
i ,j = max

{
1

s
X̄ δ
i ,j exp(−τ(1− δ)Yi ,j),

δ

n2

}
.



Remark: scaled entropy kernel

One shows (from optimality) that there exists s > 0 such that

sX δ
i ,j = max

{
X̄ δ
i ,j exp(−τ(1− δ)Yi ,j), s

δ

n2

}
.



Remark: scaled entropy kernel

One shows (from optimality) that there exists s > 0 such that

s =
∑
i ,j

max

{
X̄ δ
i ,j exp(−τ(1− δ)Yi ,j), s

δ

n2

}
.

Letting Zi ,j := X̄ δ
i ,j exp(−τ(1− δ)Yi ,j), one needs to solve s = T (s) where

T (s) =
∑

i ,j max{Zi ,j , sδ/n
2} is δ-Lipschitz: very contractive if δ is small.

Alternatively, we can use Newton's method to solve s − Ts = 0.



Some Results:



Barycenter problems

(Barycenters computed via various algorithms)



To do?

▶ nonlinear problems? (Wasserstein �ows?)

▶ faster matrix/vector products for W 2
2 (convolutions)?

▶ Exploit sparsity (sptX ∗ ≤ 2n − 1)

(cf Network simplex, or sparse interior point method [Zanetti-Gondzio

2022])



Thank you for your attention.


