First order methods and rates for approximate optimal transport and Wasserstein barycenter problems

Antonin Chambolle
CEREMADE, CNRS et Université Paris-Dauphine (PSL), France (Joint with Juan-Pablo Contreras, U. Adolfo Ibañez, Chile) Inverse Problem on Large Scales, RICAM, Linz, 28/11-2/12 2022

Outline

- first order algorithms for approximate OT and WB?
- some properties of OT solutions and approximate solutions;
- Euclidean and nonlinear saddle-point algorithms;
- basic complexity bounds;
- improvements: acceleration, linesearch;
- extensions, examples.

(Discrete) Optimal transportation problem (OT)

Data: distributions $\left(\mu_{i}\right)_{i=1, \ldots, n}\left(\nu_{j}\right)_{j=1, \ldots n}$ (to simplify), with $\mu_{i} \geq 0, \nu_{j} \geq 0$, $\sum_{i} \mu_{i}=\sum_{j} \nu_{j}=1$;
a cost matrix $\left(C_{i, j}\right)_{i, j}$, with (wlog) $C_{i, j} \geq 0$.
Problem: minimal cost assignment (or transportation) from μ to ν (a minimal cost flow problem).

$$
\begin{equation*}
\min _{X \geq 0} C: X=: \sum_{i, j} C_{i, j} X_{i, j}: \sum_{j} X_{i, j}=\left(X \mathbf{1}_{n}\right)_{i}=\mu_{i}, \sum_{i} X_{i, j}=\left(X^{\top} \mathbf{1}_{n}\right)_{i}=\nu_{j} \tag{OT}
\end{equation*}
$$

(in particular $\sum_{i, j} X_{i, j}=1$).
We denote Δ_{n} the unit simplex in $\mathbb{R}^{n}, \Delta_{n \times n}$ the unit simplex in $\mathbb{R}^{n \times n}$,

$$
\Delta_{\mu, \nu}:=\left\{\left(x_{i, j}\right) \in \mathbb{R}_{+}^{n \times n}: \sum_{j} x_{i, j}=\mu_{j}, \sum_{i} x_{i, j}=\nu_{j}\right\} \subset \Delta_{n \times n}
$$

(Discrete) Wasserstein barycenter problem (WB)

An extension is the discrete transportation barycenter problem: given $\left(\mu^{\prime}\right)$, $I=1, \ldots, m$ in Δ_{1}, we look for the "barycenter" ν of the measures, given the cost matrices C^{\prime}, and the scalar weights $w^{\prime} \geq 0$ with $\sum_{l=1}^{m} w^{\prime}=1$, solving:

$$
\begin{equation*}
\min _{\nu \in \Delta_{n}} \min _{X^{\prime} \in \Delta_{\mu, \nu}} \sum_{l=1}^{m} w^{\prime} C^{\prime}: X^{\prime} \tag{WB}
\end{equation*}
$$

Here, ν is the common second marginal of the transportation plans $\left(X^{\prime}\right)_{/}$. For $C^{\prime}=C$ given by $C_{i, j}=\left|x_{i}-x_{j}\right|^{2},\left(x_{i}\right)_{i=1}^{n}$ a sampling of some domain in \mathbb{R}^{d}, ν will be an approximation of the (2-)Wasserstein barycenter of the $\left(\mu^{\prime}\right)$, with weights $\left(w^{\prime}\right)_{l}$.

Our goal

- We want to study non-linear continuous optimization algorithms for approximate (OT) or (WB);
- Why? linear programming works very well (network simplex implemented in python-OT);
- Theoretical complexity scales a bit better ($\sim n^{5 / 2}$ rather than n^{3} or $\left.n^{4}\right)$;
- Efficient LP for (WB)?
- Straightforward extension to nonlinear problems such as:

$$
\min _{x: X 1_{n}=\mu} C: X+\psi\left(X^{\top} \mathbf{1}_{n}\right)
$$

for ψ a convex function.

Classical trick for approximate OT: entropic regularization

- Replace $X \geq 0$ by the entropic barrier $\gamma \sum_{i, j} X_{i j} \ln X_{i, j}=\gamma X:(\ln X)$, $\gamma>0$; [Cuturi 2013]
- Allows for explicit solution for one fixed marginal $\left(X \mathbf{1}_{n}=\mu\right.$ or $\left.X^{\top} \mathbf{1}_{n}=\nu\right)$;
- Alternating maximization for the dual / alternating "Bregman" projection in the primal on each marginal leads to the Sinkhorn algorithm [Sinkhorn, S-Knopp, 64-67];
- Very efficient for large $\gamma(\rightarrow$ large error), hard to implement and slow for small γ (involves $\exp (-C / \gamma)$).

Approximate OT: rates

Many recent works have addressed the complexity of solving the OT up to some error: given $\varepsilon>0$, one looks for X admissible with $C: X \leq C: X^{*}+\varepsilon$. First order / randomized / alternating minimization approaches. Here $\|C\|=\max _{i, j}\left|C_{i, j}\right|$.

- Sinkhorn: $O\left(n^{2}\|C\|^{2} / \varepsilon^{2}\right)$ (up to log factors) [Dvurechensky Gasnikov Kroshnin 18]. Randomized "Randkhorn" is $O\left(n^{7 / 3}(\|C\| / \varepsilon)^{4 / 3}\right)$ [Lin-Ho-Chen-Cuturi-Jordan 2020];
- Accelerated first order methods: $O\left(n^{5 / 2}\|C\| / \varepsilon\right)$ (a bit worse wr n, better wr ε) [DGK18], [Lin Ho Jordan 2019];
- [Sherman 2017] "Area convexity": non-linear (Bregman type) descent with a non-convex but "area convex" Bregman function: $O\left(n^{2}\|C\| / \varepsilon\right)$ in theory, very slow in practice;
- [Blanchet-Kent-Jambulapati-Sidford 2020]: $O\left(n^{2}\|C\| / \varepsilon\right)$ using linear programming techniques (for "packing") / interior point type (Newton/matrix scaling) (Implementation?) + This is optimal.

Approximate OT: rates

Our contribution: we show that standard saddle-point (that is, Prox method of [Nemirovsky 2004] or non-linear primal-dual [C-Pock 2016]) yield the nearly optimal rate $O\left(n^{5 / 2}\|C\| / \varepsilon\right)$, and that heuristic improvements (line-search, [Malitsky-Pock 2018]) yield competitive methods wr the state-of-the art.

- Would need to be compared with implementation of [Blanchet et al. 2020];
- Not competitive with Network Simplex for middle-sized OT problems.
- Yet quite better than LP based methods for barycenter problems. Generalizes easily to nonlinear.

Some basic facts about OT

1. Duality:

$$
\begin{aligned}
& \min _{X \in \Delta_{\mu, \nu}} C: X=\min _{X \geq 0} \max _{f, g} C: X+f \cdot\left(\mu-X \mathbf{1}_{n}\right)+g \cdot\left(\nu-X^{\top} \mathbf{1}_{n}\right) \\
&=\max _{f, g} \min _{X \geq 0} f \cdot \mu+g \cdot \nu+X:\left(C-f \otimes \mathbf{1}_{n}-\mathbf{1}_{n} \otimes g\right) \\
&=\max _{f, g}\left\{f \cdot \mu+g \cdot \nu: f \otimes \mathbf{1}_{n}+\mathbf{1}_{n} \otimes g \leq C\right\} .
\end{aligned}
$$

The Lagrangian:

$$
\mathcal{L}(X, f, g):=C: X+f \cdot\left(\mu-X \mathbf{1}_{n}\right)+g \cdot\left(\nu-X^{\top} \mathbf{1}_{n}\right)
$$

(cf Monge / Kantorovich / Rubinstein in the continuous setting.)

Some basic facts about OT

2. Bounds: Here we assume (wlog): $C_{i, j} \geq 0, \min _{i} C_{i, j}=\min _{j} C_{i, j}=0$. Why? because $\left(C_{i, j}+a\right)_{i, j}, a \in \mathbb{R},\left(C_{i, j}+a_{i}\right)_{i, j}, a \in \mathbb{R}^{n},\left(C_{i, j}+b_{j}\right)_{i, j}, b \in \mathbb{R}^{n}$ yield the same solutions. (Indeed:
$\left(C+a \otimes \mathbf{1}_{n}\right): X=C: X+a \cdot\left(X \mathbf{1}_{n}\right)=C: X+a \cdot \mu$, etc. $)$
We also assume $\mu_{i}, \nu_{j}>0$ (else we can remove the corresponding coordinate).
Basic remark: (X, f, g) solution (saddle-point of $\mathcal{L}) \rightarrow\left(X,\left(f_{i}+a\right)_{i},\left(g_{j}-a\right)_{j}\right)$ solution. As a consequence:

Lemma: There is a saddle-point with $\left|f_{i}\right|,\left|g_{j}\right| \leq\|C\| / 2$. (Again $\|C\|=\max _{i, j} C_{i, j}$. This is sharp.)

Some basic facts about OT

2. Bounds: Here we assume (wlog): $C_{i, j} \geq 0, \min _{i} C_{i, j}=\min _{j} C_{i, j}=0$. Why? because $\left(C_{i, j}+a\right)_{i, j}, a \in \mathbb{R},\left(C_{i, j}+a_{i}\right)_{i, j}, a \in \mathbb{R}^{n},\left(C_{i, j}+b_{j}\right)_{i, j}, b \in \mathbb{R}^{n}$ yield the same solutions. (Indeed:
$\left(C+a \otimes \mathbf{1}_{n}\right): X=C: X+a \cdot\left(X \mathbf{1}_{n}\right)=C: X+a \cdot \mu$, etc. $)$
We also assume $\mu_{i}, \nu_{j}>0$ (else we can remove the corresponding coordinate).
Basic remark: (X, f, g) solution (saddle-point of $\mathcal{L}) \rightarrow\left(X,\left(f_{i}+a\right)_{i},\left(g_{j}-a\right)_{j}\right)$ solution. As a consequence:

Lemma: There is a saddle-point with $\left|f_{i}\right|,\left|g_{j}\right| \leq\|C\| / 2$. (Again $\|C\|=\max _{i j} C_{i, j}$. This is sharp.)

Proof: Relies on complementary conditions. Assume wlog $f_{i} \geq 0, \min _{i} f_{i}=0\left(f_{i} \leftarrow f_{i}-\min _{i^{\prime}} f_{i^{\prime}}\right)$
Complementary shows: $X_{i, j}>0 \Rightarrow f_{i}+g_{j}=C_{i, j}$.
Then $f_{i}+g_{j} \leq C_{i, j} \Rightarrow g_{j} \leq \min _{i} C_{i, j}-f_{i} \leq 0\left(\right.$ as $\left.\min _{j} C_{i, j}=0\right)$. Using then that $\min _{i} f_{i}=0$ and that for all i (j), $\exists j$ (i) with $f_{i}+g_{j}=\bar{C}_{i, j}$ (since $\sum_{i} X_{i, j}>0, \sum_{j} X_{i, j}>0$), we easily deduce that there is i_{0}, j_{0} with $f_{i_{0}}=g_{i_{0}}=C_{i_{0} j_{0}}=0$ and then:

$$
0 \leq f_{i} \leq\|C\|, \quad-\|C\| \leq g_{j} \leq 0
$$

Then $\left(f_{i}-\|C\| / 2, g_{j}+\|C\| / 2\right)$ satisfies the thesis of the Lemma.

A consequence

The problem is equivalent to

$$
\begin{aligned}
\min _{X \geq 0} \max _{\left|f_{i}\right|,\left|g_{j}\right| \leq \lambda} & \mathcal{L}(X, f, g) \\
& =\min _{X \geq 0} C: X+\lambda\left|\mu-X \mathbf{1}_{n}\right|_{1}+\lambda\left|\nu-X^{\top} \mathbf{1}_{n}\right|_{1}
\end{aligned}
$$

as soon as $\lambda \geq\|C\| / 2$. We solve the saddle-point with a primal-dual method.

Primal-dual algorithm

Recall: $\quad \mathcal{L}(X, f, g)=C: X+f \cdot\left(\mu-X \mathbf{1}_{n}\right)+g \cdot\left(\nu-X^{\top} \mathbf{1}_{n}\right)$.

$$
\left\{\begin{array}{l}
f^{k+1}=\arg \max _{|f| \leq \lambda}-\frac{1}{2 \sigma}\left\|f-f^{k}\right\|^{2}+f \cdot\left(\mu-X^{k} \mathbf{1}_{n}\right)=\Pi_{[-\lambda, \lambda]}\left(f^{k}+\sigma\left(\mu-X^{k} \mathbb{1}_{n}\right)\right) \\
g^{k+1}=\arg \max _{|g| \leq \lambda}-\frac{1}{2 \sigma}\left\|g-g^{k}\right\|^{2}+g \cdot\left(\nu-\left(X^{k}\right)^{T} \mathbf{1}_{n}\right) \\
\tilde{f}^{k+1}=2 f^{k+1}-f^{k}, \quad \tilde{g}^{k+1}=2 g^{k+1}-g^{k}, \\
X^{k+1}=\arg \min _{X \geq 0} \frac{1}{\tau} D_{X}\left(X, X^{k}\right)+X:\left(C-\tilde{f}^{k+1} \otimes \mathbf{1}_{n}-\mathbf{1}_{n} \otimes \tilde{g}^{k+1}\right) .
\end{array}\right.
$$

with $D_{X}\left(X, X^{k}\right)$ a "Bregman distance ${ }^{1 "}$ ", such as $\left\|X-X^{k}\right\|^{2} / 2$ (in this case $X^{k+1}=\left(X^{k}-\tau\left(C-\tilde{f}^{k+1} \otimes \mathbf{1}_{n}-\mathbf{1}_{n} \otimes \tilde{g}^{k+1}\right)\right)^{+}$is also easy to compute).

[^0]
Primal-dual algorithm: basic estimates

Letting $\bar{X}^{k}=(1 / k) \sum_{i=1}^{k} X^{i}$, etc, we have the following [C-Pock, 2016]: for all X, f, g,

$$
\mathcal{L}\left(\bar{X}^{k}, f, g\right)-\mathcal{L}\left(X, \bar{f}^{k}, \bar{g}^{k}\right) \leq \frac{2}{k}\left(\frac{1}{\tau} D_{X}\left(X, X^{0}\right)+\frac{\left\|f-f^{0}\right\|^{2}+\left\|g-g^{0}\right\|^{2}}{2 \sigma}\right)
$$

And introducing the primal-dual gap (primal - dual values)

$$
\mathcal{G}(\bar{X}, \bar{f}, \bar{g}):=\max _{|f| \leq \lambda,|g| \leq \lambda, X \in \Delta_{n \times n}} \mathcal{L}(\bar{X}, f, g)-\mathcal{L}(X, \bar{f}, \bar{g})
$$

one gets (choosing $f^{0}=g^{0}=0$):

$$
\mathcal{G}\left(\bar{X}^{k}, \bar{f}^{k}, \bar{g}^{k}\right) \leq \frac{2}{k}\left(\frac{1}{\tau} \max _{X} D_{X}\left(X, X^{0}\right)+\frac{n \lambda^{2}}{\sigma}\right) .
$$

Global rate?

A crucial point: this rate holds under restrictive assumptions on τ, σ. Namely:

$$
\tau \sigma L^{2} \leq 1 \text { where } L:=\max _{\|X\|_{x} \leq 1} \max _{\| f, g) \| y \leq 1} X:\left(f \otimes \mathbf{1}_{n}+\mathbf{1}_{n} \otimes g\right) .
$$

Here, the choices of the norms in $\mathcal{X} \ni X, \mathcal{Y} \ni(f, g)$ are important. For \mathcal{Y}, we use $\|\cdot\|_{2}$ the Euclidean norm.
For \mathcal{X}, we need the Bregman function ψ from which D_{X} is obtained:

$$
D_{X}\left(X, X^{\prime}\right):=\psi(X)-\psi\left(X^{\prime}\right)-\nabla \psi\left(X^{\prime}\right) \cdot\left(X-X^{\prime}\right)
$$

to be 1-convex: $D_{X}\left(X, X^{\prime}\right) \geq\left\|X-X^{\prime}\right\|_{\mathcal{X}}^{2} / 2$.

Global rate?

For $\psi(X)=\|X\|_{2}^{2} / 2$ (Euclidean), one has

$$
L=\max _{\sum_{i, j} x_{i, j} \leq 1} \max _{\sum_{i} f_{i}^{2}+g_{i}^{2} \leq 1} \sum_{i, j} X_{i, j}\left(f_{i}+g_{j}\right)=\max _{\sum_{i} f_{i}^{2}+g_{i}^{2} \leq 1} \sqrt{\sum_{i, j}\left(f_{i}+g_{j}\right)^{2}}=\sqrt{2 n}
$$

Hence one can choose $\tau=1 /(2 n \sigma)$ and one gets a rate:

$$
\frac{2}{k}\left(\frac{1}{\tau}+\frac{n \lambda^{2}}{\sigma}\right)=\frac{2}{k}\left(2 n \sigma+\frac{n \lambda^{2}}{\sigma}\right) \xrightarrow{\min _{\sigma}} \frac{4 \sqrt{2} n \lambda}{k}
$$

Hence one needs $\sim \lambda n / \varepsilon$ iterations (and $\lambda n^{3} / \varepsilon$ computations) to reach a precision ε (using the optimal steps). Same as Network simplex, but no sparsity, and very slow in practice.

Improvement by non-linear optimization

To improve the rate we use $\psi(X)=X \cdot \ln X=\sum_{i, j} X_{i, j} \ln X_{i, j}$ if $X \in \Delta_{n \times n}$, and $+\infty$ else, and non-linear proximal updates:
$D_{\psi}\left(X, X^{\prime}\right)=\sum_{i, j} X_{i, j} \ln \left(X_{i, j} / X_{i, j}^{\prime}\right)$ is the KL divergence. Then ψ is 1 -strongly convex on the simplex, wr the ℓ_{1} norm (cf Pinsker's inequality).
Hence, the right norm for X is ℓ_{1} and

$$
L=\max _{\sum_{i, j} \mid X_{i, j} \leq 1 \leq 1 \sum_{i} f_{i}^{2}+g_{i}^{2} \leq 1} \sum_{i, j} X_{i, j}\left(f_{i}+g_{j}\right)=\max _{\sum_{i} f_{i}^{2}+g_{i}^{2} \leq 1} \max _{i, j}\left|f_{i}+g_{j}\right|=\sqrt{2}
$$

\rightarrow improvement by a factor \sqrt{n} (choosing again the optimal τ, σ), but we lose a factor $\log n$ ("diameter" of the unit simplex in the KL divergence).

Improvement by non-linear optimization

- The estimate on the gap has to be turned into an estimate for an approximate feasible point. This is obtained by a rounding procedure (Altschuller, Niles-Weed, Rigollet 2017) (for which we slightly improved the constant);
- Same complexity as the most recent approaches based on first order methods (except "area convexity" / [Blanchet et al]): $n^{5 / 2}\|C\| / \varepsilon(\times \ln n)$;
- Nonlinear updates are easily performed exactly (similar to Sinkhorn-type update);
- Sinkhorn-type update: one can enforce $X \mathbf{1}_{n}=\mu$ (or $X^{\top} \mathbf{1}_{n}=\nu$) at each iteration and drop the corresponding dual variable (simpler, and slightly faster);
- ε needs not be fixed in advance (may use other stopping criterion);
- Not as fast as best methods such as [Dvurechensky et al, 18].
- Generalizes to WB problem which has the same structure.

Further improvements? Acceleration, line-search

Acceleration: One can smooth the problem (as for Sinkhorn), as also proposed by [Dvurechensky et al, 18], by adding $\gamma X \cdot \ln X=\gamma \psi(X)(\rightarrow$ γ-convex in ℓ_{1}):

$$
\mathcal{L}_{\gamma}(X, f, g)=\mathcal{L}(X, f, g)+\gamma X \cdot \ln X .
$$

Dvurechensky et al. propose then to compute the dual (which has then Lipschitz gradient in (ℓ_{1}, ℓ_{∞}) and use an accelerated gradient scheme inspired by Nesterov's/Tseng's accelerated methods.

On the other hand, the primal objective becomes "relatively strongly convex" wr to $\psi(X)=\gamma X \ln X$ [Lu, Freund, Nesterov 18], that is, $\mathcal{L}_{\gamma}(\cdot, f, g)-\gamma \psi$ is convex (for all (f, g)), and one can revert to an accelerated method as shown in [C-Pock 16].
The rate of convergence is now $O\left(1 /\left(\gamma k^{2}\right)\right)$ (with essentially the same constants), however the global complexity is unchanged, as one needs to choose $\gamma \sim \varepsilon$ (and then $k \sim 1 / \varepsilon$) to maintain an error of order ε.

Improvements? Acceleration, line-search

Linesearch: [Malitsky and Pock 2018] introduce a primal-dual algorithm with linesearch in the Euclidean case. It was observed in [Jiang-Vandenberghe 2022] that it could be extended to the case where one variable has a non-linear prox function, as in our case.
We extend this result to the (relatively) strongly convex case, improving in fact both settings from [Malitsky-Pock] and [Jiang-VdB].
The theoretical rate is the same as before, and the complexity is not changed. But the empirical convergence is improved.

Wasserstein barycenter

Similarly to OT, we can solve the barycenter problem with the saddle-point formulation:

$$
\min _{X^{\prime} \in \Delta_{n \times n}, l=1, \ldots, m\left|f^{\prime}\right|,\left|g^{\prime}\right| \leq \lambda} \sum_{l=1}^{m} w_{l}\left(C^{\prime}: X^{\prime}+f^{\prime} \cdot\left(\mu^{\prime}-X^{\prime} \mathbf{1}_{n}\right)+g^{\prime} \cdot\left(\left(X^{m}-X^{\prime}\right)^{\top} \mathbf{1}_{n}\right)\right)
$$

$$
\left[+\gamma \sum_{l=1}^{m} w_{l} X^{\prime} \cdot \ln X^{\prime}\right]
$$

\rightarrow one can adapt the same algorithms. One can also remove the variables f^{\prime} and solve the X problems directly with the constraint $X^{\prime} \mathbf{1}_{n}=\mu^{\prime}$.

Remark: scaled entropy kernel

We propose to replace the entropy ψ by, for $\delta>0$ small:

$$
\psi_{\delta}(X)=\frac{1}{(1-\delta)^{2}} \psi\left(\frac{\delta}{n^{2}} \mathbf{1}_{n} \otimes \mathbf{1}_{n}+(1-\delta) X\right)
$$

for $X \geq 0$, and $+\infty$ else, which is still 1-convex on the unit simplex (for the ℓ_{1} norm).
The idea is that $\nabla \psi_{\delta}(X)$ is now finite when some $X_{i, j}=0$, so this does not rule out sparse solutions.

Remark: scaled entropy kernel

We propose to replace the entropy ψ by, for $\delta>0$ small:

$$
\psi_{\delta}(X)=\frac{1}{(1-\delta)^{2}} \psi\left(\frac{\delta}{n^{2}} \mathbf{1}_{n} \otimes \mathbf{1}_{n}+(1-\delta) X\right)
$$

for $X \geq 0$, and $+\infty$ else, which is still 1-convex on the unit simplex (for the ℓ_{1} norm).
The idea is that $\nabla \psi_{\delta}(X)$ is now finite when some $X_{i, j}=0$, so this does not rule out sparse solutions.
Remark 1: this is stupid since this kernel does not act as a barrier any longer for the constraint $X \geq 0$;

Remark: scaled entropy kernel

We propose to replace the entropy ψ by, for $\delta>0$ small:

$$
\psi_{\delta}(X)=\frac{1}{(1-\delta)^{2}} \psi\left(\frac{\delta}{n^{2}} \mathbf{1}_{n} \otimes \mathbf{1}_{n}+(1-\delta) X\right)
$$

for $X \geq 0$, and $+\infty$ else, which is still 1-convex on the unit simplex (for the ℓ_{1} norm).
The idea is that $\nabla \psi_{\delta}(X)$ is now finite when some $X_{i, j}=0$, so this does not rule out sparse solutions.
Remark 1: this is stupid since this kernel does not act as a barrier any longer for the constraint $X \geq 0$;
Remark 2: this is not totally stupid as one still may solve the corresponding "prox" efficiently.

Remark: scaled entropy kernel

Letting $X^{\delta}:=\frac{\delta}{n^{2}} \mathbf{1}_{n} \otimes \mathbf{1}_{n}+(1-\delta) X$ the corresponding prox is solved by computing:

$$
\min _{X^{\delta} \geq \delta / n^{2}} Y: X^{\delta}+\frac{1}{\tau(1-\delta)} D_{X}\left(X^{\delta}, \bar{X}^{\delta}\right)
$$

Optimality conditions are:

$$
Y_{i, j}+\frac{1}{\tau(1-\delta)}\left(\log X_{i, j}^{\delta}-\log \bar{X}_{i, j}^{\delta}\right)+\alpha_{i, j}=\beta
$$

with $\alpha_{i, j}>0$ only when $X_{i, j}^{\delta}=\delta / n^{2}$ and β the Lagrange multiplier for the constraint $\sum X_{i, j}^{\delta}=1 \rightarrow X_{i, j}=\bar{X}_{i, j}^{\delta} \exp \left(-\tau(1-\delta) Y_{i, j}\right) e^{-\beta}$ or δ / n^{2}.

Remark: scaled entropy kernel

One shows (from optimality) that there exists $s>0$ such that

$$
X_{i, j}^{\delta}=\max \left\{\frac{1}{s} \bar{X}_{i, j}^{\delta} \exp \left(-\tau(1-\delta) Y_{i, j}\right), \frac{\delta}{n^{2}}\right\}
$$

Remark: scaled entropy kernel

One shows (from optimality) that there exists $s>0$ such that

$$
s X_{i, j}^{\delta}=\max \left\{\bar{X}_{i, j}^{\delta} \exp \left(-\tau(1-\delta) Y_{i, j}\right), s \frac{\delta}{n^{2}}\right\}
$$

Remark: scaled entropy kernel

One shows (from optimality) that there exists $s>0$ such that

$$
s=\sum_{i, j} \max \left\{\bar{X}_{i, j}^{\delta} \exp \left(-\tau(1-\delta) Y_{i, j}\right), s \frac{\delta}{n^{2}}\right\} .
$$

Letting $Z_{i, j}:=\bar{X}_{i, j}^{\delta} \exp \left(-\tau(1-\delta) Y_{i, j}\right)$, one needs to solve $s=T(s)$ where $T(s)=\sum_{i, j} \max \left\{Z_{i, j}, s \delta / n^{2}\right\}$ is δ-Lipschitz: very contractive if δ is small. Alternatively, we can use Newton's method to solve $s-T s=0$.

Some Results:

Barycenter problems

(Barycenters computed via various algorithms)

- nonlinear problems? (Wasserstein flows?)
- faster matrix/vector products for W_{2}^{2} (convolutions)?
- Exploit sparsity $\left(s p t X^{*} \leq 2 n-1\right)$
(cf Network simplex, or sparse interior point method [Zanetti-Gondzio 2022])

Thank you for your attention.

[^0]: ${ }^{1} D_{X}\left(X, X^{k}\right):=\psi(X)-\psi\left(X^{k}\right)-\nabla \psi\left(X^{k}\right) \cdot\left(X-X^{k}\right)$ for ψ some convex function with domain $\mathbb{R}_{+}^{n \times n}$ or $\Delta_{n \times n}$

