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Motivation

Main goal
Detecting heart ischemia, at early stages of their development from
noninvasive measurements such as body surface (ECG) or unknown
shape and/or position of ischemic areas from intracardiac (iECG)
measurements

Applications to medical imaging
New and challenging inverse problems for nonlinear partial
differential equations
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Ischemic regions

Ischemia: a region of the tissue not properly supplied with blood
Effects: alterated electric properties of the cardiac tissue
Outcomes: myocardial infarction, muscle damages, ventricular
arrhythmia and fibrillation
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Modelling heart ischemia

The ischemic region is a non-excitable tissue that can be modeled as a
conductivity inclusion with low conductivity

The cardiac electrical activity can be described in terms of the
monodomain model, consisting of a boundary value problem for a
semilinear reaction-diffusion equation.

I Sundes-Lines-Cai-Nielsen-Mardal-Tveito, Computing the Electrical Activity in the Heart, Springer
2006

I Colli Franzone-Pavarino-Scacchi, Mathematical Cardiac Electrophysiology, Springer 2014
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The monodomain model

ut − div(A0∇u) + Iion(u) = 0 in Ω× (0, T )

(A0∇u) · n = 0 on ∂Ω× (0, T )
u(·, 0) = u0 in Ω

u transmembrane potential
Iion = Ku(u− u1)(u− u2) ionic current at a cellular level
A0 is a Lipschitz continuous anisotropic tensor (conductivity)
u0 electrical stimulus
In the presence of an ischemic region: D ⊂ Ω

Altered conductivity tensor

A0(x)←A1(x)χΩ\D(x) +A0(x)χD(x), Iion(u)← Iion(u)(1− χD)

E. Beretta (NYU AD ) Cavity detection Tomography across scales 7 / 30



Related work

Inverse problem
Assume that the transmembrane potential u(D) can be measured on
∂Ω or on a part Γ ⊂ ∂Ω. Can we then determine D?

E.B., C. Cerutti, A. Manzoni, D. Pierotti ”On a semilinear elliptic boundary value problem arising
in cardiac electrophysiology” M3AS, 26 (2016) no 4, 645-670
E. B., A. Manzoni and L. Ratti ”A reconstruction algorithm based on topological gradient for an
inverse problem related to a semilinear elliptic boundary value problem” Inv. Probl., Vol 33 No. 3,
(2017)
E. B., C. Cavaterra, C. Cerutti, A. Manzoni, L. Ratti ”On the inverse problem of locating small
dimensions ischemias for the monodomain equation of cardiac electrophysiology: theoretical
analysis and numerical reconstruction, Inv. Probl. 33 (2017)
E. B., L. Ratti, M. Verani ”A phase field approach for the interface reconstruction in a nonlinear
elliptic problem arising from cardiac electrophysiology” Comm. Math. Sci., 16 no. 7 (2018)
E. B., C. Cavaterra, L. Ratti ”On the determination of ischemic regions in the monodomain model
of cardiac electrophysiology from boundary measurements” Nonlinearity, (2020)
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Modelling an ischemic region as a cavity

The ischemic region is a non-excitable tissue that can be modeled
as an electrical insulator
Lopez-Perez, Sebastian, Izquierdo, Ruiz, Bishop and Ferrero, Frontiers in Physiology, (2019)

The cardiac electrical activity can be described in terms of the
monodomain model, consisting of a boundary value problem for a
semilinear reaction-diffusion equation.
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A simplified model to start

We consider the steady-state monodomain problem −div(A0(x)∇u) + Iion(u) = f, in Ω \D
∂A0u

∂n = 0, on ∂Ω ∪ ∂D
(1)

Iion(u) = u3

f initial electrical stimulus
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Main a-priori assumptions

1 On the reference medium: ∂Ω ∈ C0,1 (of Lipschitz class),

2 On the unknown cavity: D ∈ D where

D = {D ⊂ Ω : compact, simply conn., D ∈ C0,1, dist(D, ∂Ω) ≥ 2d0},

3 On the data:

f ∈ L∞(Ω), f ≥ 0, supp(f) ⊂ Ωd0 = {x ∈ Ω : dist(x, ∂Ω) ≤ d0},

4 On the conductivity tensor: A0(x) uniformly elliptic, with
Lipschitz entries.
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Geometrical setting
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Well-posedness of the forward problem

B.-Cerutti- Pierotti (2022)

Theorem (Existence and uniqueness for the forward problem)
For f ∈ (H1)′ and Ω \D Lipschitz the Neumann problem −div(A0(x)∇u) + u3 = f, in Ω \D

∂A0u

∂n = 0, on ∂Ω ∪ ∂D.
(2)

has a unique solution u ∈ H1(Ω \D) satisfying

‖u‖H1(Ω\D) ≤ C(‖f‖(H1)′ + ‖f‖1/3(H1)′) (3)

where the constant C = max{ 1
λ , |Ω \D|

1/3} and (H1)′ = H1(Ω \D)′.
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A key estimate

Theorem
Let f ∈ L2(Ω \D). Then the solution u of the Neumann problem
satisfies

(
ess inf f

)1/3
≤ u(x) ≤

(
ess sup f

)1/3
a.e. x ∈ Ω \D .

Remark
This estimate allows to extend the well-posedness of the direct problem
to a more general class of cavities with finite perimeter by an
approximation procedure and to prove continuity of solutions with
respect to perturbations of the domain D.
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The inverse problem

Assume we have a single measurement of the potential u on some open
arc Σ ⊂ ∂Ω, Σ is it possible to uniquely determine D?

Theorem (B., Cerutti, Pierotti, 2021)
Let f D1, D2 ∈ D satisfy the previous a-priori assumptions and let u1
and u2 be solutions to the above problem respectively with D = D1 and
D = D2. Moreover let u1

∣∣
Σ = u2

∣∣
Σ. Then D1 ≡ D2.
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Proof of uniqueness

Let us argue by contradiction. Assume D1 6= D2 and let w = u1 − u2. Then

w
∣∣
Σ = 0 and ∂A0w

∂n

∣∣∣∣∣
Σ

= 0

Moreover, w is a solution to

− div (A0(x)∇w) + q(x)w = 0 in Ω \ (D1 ∪D2)

where q(x) = u2
1 + u1u2 + u2

2. From uniqueness for the Cauchy problem and
the weak unique continuation property

w ≡ 0 in G

where G is the connected component of Ω \
(
D1 ∪D2

)
that contains Σ.
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Proof of uniqueness cont.

Let G̃ = Ω \G and observe that:

G̃ ⊇ D1 ∪D2, ∂G̃ =
(
∂D1 ∪ ∂D2

)
∩ ∂G.

Let D̃ be a connected component of G̃ \D2.

We may assume that D̃ contains a subset of D1 with nonempty
interior, (if not just exchange the roles of D1 and D2). Then we have

∂D̃ ⊆ ∂
(
G̃ \D2

)
⊆ ∂G̃ ∪ ∂D2 . (4)

Let us now define
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Proof of uniqueness cont.

We have ∂A0u2
∂n = 0 on ∂D̃ and −div (A0(x)∇u2) + u3

2 = 0 in D̃

⇓
u2 ≡ 0 on D̃ (uniqueness in the Neu-
mann problem) and, by unique continu-
ation, u2 ≡ 0 in G \ supp f. Moreover if v
solves the Schrödinger equation

−div (A0(x)∇v) + u2
2v = 0 in K ⊃ suppf

⇒
´
K f v = 0. If v is such that v

∣∣
∂K

=
α < 0: then maximum principle implies
that v < 0 in K and from

ˆ
K
f v = 0 with

f ≥ 0 we conclude that f ≡ 0 in K which
contradicts the initial hypotheses.
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Uniqueness

Remark
Uniqueness from one measurement extends also to the case where
D = ∪Ni=1Di where Di, i = 1, . . . N are separated simply connected
compact Lipschitz sets.
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Conditional stability

Under smoothness constraints on the unknown cavities we expect to
derive the same weak rate of stability as for the linear conductivity
equation

Alessandrini, B., Rosset, Vessella (2000)

dH(∂D1, ∂D2) ≤ C
∣∣∣log

(
‖u1 − u2‖L2(Σ)

)∣∣∣−η , η ∈ (0, 1)

dH(C,D) = max {maxx∈C dist(x,D),maxx∈D dist(x,C)}

For special geometries of D (e.g. circles, ellipses, polygons) Lipschitz
stability should hold.
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Reconstruction

B.-Cerutti-Pierotti-Ratti, 2022

Tikhonov regularization of the functional via a perimeter penalization term:

Regularization

min
D∈D

J(D) : J(D) = 1
2

ˆ
Σ

(u(D)− umeas)2dσ + αPer(D)

where

Continuity properties of solutions with respect to perturbations of D in the
Hausdorff metric

⇓

A minimum exists and is stable with respect to perturbations in the data.
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Reconstruction algorithm

Bourdin and Chambolle, 2003 topological optimization

First step
We fill the cavity with a ficticious material of small conductivity

min
v∈X0,1

Jδ(v) : Jδ(v) = 1
2

ˆ
Σ

(uδ(v)− umeas)2dσ + αTV(v)

X0,1 = {v ∈ BV (Ω) : v(x) ≡ χΩ\D a.e. in Ω , D ∈ D}

u = uδ(v) is the variational solution to
−div(aδ(v)∇u) + vu3 = f in Ω
∂u

∂n = 0, on ∂Ω,

where aδ(v) = δ + (1− δ)v, δ << 1.
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Reconstruction algorithm

Second step
Introduce the Modica-Mortola type functional phase field
approximation of the total variation

Proposed by several authors in the context of inverse problems:

Rondi (2011) EIT detection of cracks and cavities
Deckelnick-Elliott-Styles (2016) EIT: detection of conducitvity inclusions
B.-Ratti-Verani, (2019) stationary monodomain model detection of
conductivity inclusions
Lam-Yousept (2020) nonlinear Maxwell equations
Aspri-B.-Cavaterra-Rocca-Verani (2022) linear elasticity
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Reconstruction algorithm

Phase field relaxation

min
v∈K

Jδ,ε(v)

Jδ,ε(v) = 1
2
´

Σ(uδ(v)− umeas)2dσ + α
´

Ω
(
γε|∇v|2 + γ

ε v(1− v)
)

where K = {v ∈ H1(Ω) : 0 ≤ v ≤ 1, v = 1 a.e in Ωd0}.

Approximate solutions to the original minimization problem for J with
minimizers for Jδ,ε with δ, ε small enough via Γ convergence arguments
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Rigorous justification

We can prove Γ-convergence restricting the minimization of Jδ,ε to a
weakly closed, non-convex subset Kη of K

Kη = {v ∈ K : {v ≥ η} = ΩD a. e. for some D ∈ D, for η ∈ (0, 1)}

Γ convergence B., Cerutti, Pierotti, Ratti, 2022
1 Jδ,ε

Γ−→ Jδ as ε→ 0 for any δ > 0 ⇒ minima of Jδ,ε vδ,ε converge in
L1(Ω) to a minimum vδ of Jδ

2 Jδ
Γ−→ J as δ → 0 ⇒ minima vδ converge in L1(Ω) to a minimum

v = χΩ\D of J for some D ∈ D
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Numerical results at a glimpse

Numerical evidence shows that it is possible to perform such a
minimization on the whole convex set K and still have convergence to a
conductivity satisfying the desired additional regularity.
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Final remarks

Fill the gap between the theoretical results and the numerical
implementation

Extension of the analysis of the inverse problem to time dependent
monodomain model (work in progress in collaboration with Aspri,
Francini, Pierotti, Vessella)
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Final remarks

Extend the analysis of the inverse problem to the monodomain model
possibly in dimension 3

ut − div(A0∇u) + f(u,w) = 0 in Ω× (0, T )

wt + g(u,w) = 0 in Ω\D × (0, T )

(A0∇u) · n = 0 on ∂Ω ∪ ∂D × (0, T )
u(·, 0) = u0 w(·, 0) = w0 in Ω\D

where

f(u,w) = Au(u− a)(u− 1) + uw g(u,w) = ε(Au(u− 1− a) + w)
w concentration of ionic species
u transmembrane potential
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Thank you for your attention!
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Numerical results

Extension of the algorithm allowing for the minimization of J :
1 generate synthetic data

I create a domain Ω with a cavity D;
I select Nf source functions {fi}

Nf

i=1;
I solve the forward problem to get {ui|Σ}

Nf

i=1;
I add some random noise (noise level 2%);

2 select suitable values of α, δ, ε
3 minimize Jδ,ε

I choose an initial guess v(0) ∈ H1(Ω; [0, 1]) (e.g. v(0) = 0 );
I update it by means of the gradient of Jδ,ε (requires the solution of

the forward problem and an adjoint one for each iteration)
4 once a minimizer of Jδ,ε is reached, reduce the value of ε and δ

The numerical approximation of the forward and adjoint problems is
performed by means of a Finite Element solver.
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