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An inverse problem for the acoustic wave equation
upt ;x,xsq acoustic potential at x P Rd , d P t2,3u, at time t ě 0

1
v2

p
B2

t u ´ ∆xu “ δpx ´ xsqδptq

vp “ vppxq speed of sound, xs excitation (source) point.

Seismic imaging of
backscattered (reflected) fields

upt ;xr,xsq, t P r0,Tmaxs,
pxr,xsq P R ˆ S where R{S

sets of receiver/source points,
and Tmax observation period.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Simplifying ansatz

Consider the ansatz

1
v2

p pxq
“

1 ` npxq

v2pxq
,

with vp the actual sound speed (high frequency content n) and
v “ vpxq smooth and known background velocity, vp „ v .

Goal: determine n

Travel time: τpx1,xq “time it takes to travel from x1 to x P Rd
`

Relation between velocity and travel time:

|∇xτ | “ v´1 τpxs,xsq “ 0.

In general, you know v and need to find τ
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Determining n using the Ansatz

To determine n, we use a reduction from the solution to the wave
equation to an expression for n (e.g. SYMES 1998):

Fnpt ;xr,xsq “

ż

npxq

v2pxq
Apx,xsqApx,xrqδ

`

t ´ τpxs,xq ´ τpx,xrq
˘

dx

“
1

2π

ż

npxq

v2pxq
Apx,xsqApx,xrqeiωpt´τpxs,xq´τpx,xrqq dω dx

where the function A is computed by divpA2∇xτq “ 0.

Note: F is a Radon transform that, for each t , integrates n over
reflection isochrones (surfaces of constant travel time t
from xs to x to xr): t “ τpxs,xq ` τpx,xrq.
Under certain conditions F is an Fourier integral operator.
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We now talk about some of our recent results!
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Assumptions
We specialize to R2. We assume

§ the background velocity v is known,

§ n is square integrable and compactly supported in R2
`, that is,

x2 ą 0 (the positive direction of the x2-axis points downwards),

§ Common offset data acquisition geometry: Let α ě 0 be the
common offset. Then, sources and receivers on the surface are
parameterized by s P R and

xspsq “ ps ´ α,0qJ, xrpsq “ ps ` α,0qJ

§ We will first consider

§ speed that is affine in depth: vpxq “ b ` ax2 with a,b
positive.
There is an analytic formula for the travel time!

Some geophysicists approximate known background velocity in
layered media by an affine speed.
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The 2D situation for affine velocity vpx1, x2q “ b ` ax2

for a and b positive and offset α ě 0.
Travel time: τppr ,0qpx1, x2qq “ 1

a acosh
´

1 ` a2

2b
px1´rq2`x2

2
b`ax2

¯

See Lesson 41 in [Slotnick, Lessons in Seismic Computing, 1959].

Domains: X “ tx P R2 : x2 ą xminu and Y “ Sˆ stmin,8r

where S is an open subset of R and

xmin :“ b
a

ˆ

b

1 ` a2α2

b2 ´ 1
˙

, tmin :“ 2
a asinh

´

aα
b

¯

,

§ xmin “ tmin “ 0 when α “ 0.
§ ps, tq P Y parameterizes the isochrone

Ips, tq “
␣

x
ˇ

ˇt “ τpxspsq,xq ` τpx,xrpsqq
(

.

§ The “isochrone” Ips, tminq is the trivial isochrone–the
geodesic between the source and receiver.

§ For points with x2 ă xmin the operator F is not
well-behaved. . .
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Isochrones L0,t for t P t8.4,10,12.5u for wave speed
vpxq “ 0.5 ` 0.6 x2. Source and receiver positions are indicated by
black dots. The offset is α “ 5.
Here, tmin « 8.31, and xmin « 4.24 which is indicated by the dashed
horizontal line.
Warning: Points with x2 ă xmin can intersect the “top” of small
isochrones, causing added artifacts in the normal operator (mirror points).
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Fα as a FIO with affine wave speed and α ě 0

φαps,xq “ τpps ´ α,0q,xq ` τpx, ps ` α,0qq,

then t ´ φαps,xq “ 0 parameterizes the isochrone Ips, tq.

Fαnps, tq “

ż

X
Θps,xqnpxqδpt ´ φαps,xqqdx

“

ż

R

ż

X

1
2π

Θps,xqnpxqei ωpt´φαps,xqqdx dω,

§ Symbol: Θps,xq has order zero,

§ Phase function: ϕαps, t ,x, ωq “ ωpt ´ φαps,xqq is a
nondegenerate phase function.

§ Canonical relation:
C “

␣

ps, t ,´ωBsφα, ω;x, ωBxφαq
ˇ

ˇt “ φαps,xq, ω ‰ 0
(
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The reconstruction operator: K F :
αψFα

§ K is a properly supported pseudodifferential operator
(ΨDO) on E1pX q,

§ F :
α is a weighted backprojection (adjoint)

§ ψ is a cutoff so Fα and F :
α can be composed.

Important condition: F satisfies the Bolker Condition if the natu-
ral projection ΠL : C Ñ T ˚pY q is an embedding.

Why we care: When Fα satisfies the Bolker condition, KF :
αψFα

is a ΨDO, so it has many properties of differential operators,
e.g., WFpDF :

αψFα f q Ă WFpf q.
Moral: When Bolker holds, the reconstruction operator images
(maybe only some) singularities of f but does not add artifacts.

Theorem ([KQR 2023])
For affine wave speed in R2

`, vpx1, x2q “ b ` ax2 for a and b
positive, F0, the zero-offset operator, satisfies the Bolker
condition. So the reconstruction operator doesn’t add artifacts.
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For affine velocity and α “ 0, the travel time is complicated. So,
the proof of Bolker–that ΠL is an embedding–involves subtle
calculations and miraculous cancellations

The calculations for α ą 0 are more complicated because
cancellations for α “ 0 don’t occur.

However, numerical experiments show that the key to the proof
(a derivative is positive) seems to be true.

Conjecture: For some? positive offsets, α ą 0, and affine wave
speed, we conjecture that Fα satisfies the Bolker assumption.
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The answer from [KQR 2023]:
Close enough phase functions give similar operators: Let Fj ,
j “ 0,1 be FIO from D1pX q to E1pS1q with nondegenerate phase
functions
Φj “ ωpt ´ τjpxspsq,xq ´ τjpx,xrpsqqq “ ωpt ´ φjps,xqq.
Assume F0 satisfies Bolker.
Let ΩŤX (i.e., ClpΩq is a compact subset of X ) and SŤS1.
If τ1 is sufficiently close to τ0 in C3 norm, then F1 : E1pΩq Ñ

D1pSq satisfies Bolker. (close τj ùñ close Φj ùñ Bolker holds for F2.)

Corollary (Small offsets satisfy Bolker)
Assume the zero-offset operator F0 satisfies the Bolker
assumption for a given open set X Ă R2

` and open S1 Ă R.
Let Ω Ť X and S Ť S1.
Then there is an α0 ą 0 such that for all α P r0, α0s the operator
Fα : E1pΩq Ñ D1pS ˆ R`q satisfies Bolker.

ñ Affine wave speed and small offsets satisfy Bolker! The con-
jecture is true!

Proof: If α is close to zero, then phase function ϕα is close to ϕ0.
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Using the symbol to get a reconstruction operator
For affine velocity, we develop a reconstruction operator (like [GKQR
2018])

Λpf q “ ∆F :

0ψF0f

where ψ is a cutoff so F :

0 and F0 can be composed and F :

0 is a
backprojection with weight of F :

0 adjusted to provide a more uniform
symbol in depth and so a reconstruction with intensity less dependent
on depth.
Here is a reconstruction where the data are generated using the wave
equation, not Radon data. Unperturbed sound speed is
vpx2q “ 1.0 ` 0.5x2.1 PySIT - inconsistent data

−1.0 −0.5 0.0 0.5 1.0

p1

0.25

0.50

0.75

1.00

p 2

−0.0050

−0.0025

0.0000
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Figure 1: Reconstruction.

α = 0.5

Data generation parameters

PySIT (data-)Mesh:
domain: [-2.5, 2.5] x [0.0, 1.5]
n = (1001, 301)
dx = (0.005, 0.005)

cdata = 1.0 + 0.5x2

t − range = [0, 4], resulting T = [5.951495444930788e − 05, 3.9997859639340128], n =
8198, dx = 0.00048795003647425506,
S =[-2.0, 2.0], n = 801, dx = 0.005

1



Summary
Under the Bolker condition, the reconstruction operator KF :ψF
preserves some singularities of n and dos not add artifacts.

§ in [KQR 2023], for affine wave speed and zero offset pα “ 0q, we
show that the seismic operator satisfies Bolker.

§ We show that if the travel times are sufficiently close in C3 norm
and one operator satisfies Bolker, then the other does.

§ We use this to show, in general, that if the zero-offset operator
satisfies Bolker then the operator for small offset does, too, so
Bolker holds with small offsets and affine velocities.

§ In [KQR 2023], we prove that the Bolker condition holds if the
velocity is close in C5 norm to a velocity for which Bolker holds,
at least when restricted to fixed compact subsets of points and
sources. (Closeness of velocities in C5 norms implies closeness
of travel times in C3 norm under certain assumptions.)

§ This will appear in the issue of Pure and Applied Mathematics
Quarterly honoring my advisor, Victor Guillemin.

Thank you for your attention!
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