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A motivation for the study

Supervised learning paradigm:
a) We observe input-output relationship x → y , x ∈ X, y ∈ Y,

governed by a probabilistic law with probability measure
p(x , y);

b) a learning algorithm predicts y for previously unseen x as a
value fθ(x) of some model function fθ : X→ Y parametrized
by a parameter (vector) θ;

c) the expected error (risk) of the prediction y = fθ(x) is defined
as

Ep(fθ) =

∫
X×Y

e(fθ(x), y)dp(x , y),

where e(fθ(x), y) is some error measure, such as, for example,
e(f (x), y) = ‖f (x)− y‖2Y;
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A motivation for the study(continuation)

Supervised learning paradigm:
d) We are provided with a training set of n previously observed

input-output pairs z = {(xi , yi )}n
i=1, which are assumed to be

i.d.d drawn from p(x , y);
e) the empirical risk minimization principle states that the

learning algorithm should choose θ that minimizes the
empirical risk

Ez,p(fθ) =
1
n

n∑
i=1

e(fθ(xi ), yi ),

or its regularized/penalized version.
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Domain adaptation problem

Can we use training set z = {(xi , yi )}ni=1 drawn from (the
source measure) p(x , y) for predicting input-output
relationship x → y governed by another (target) probability
measure q(x , y)?
The covariate shift assumption (H. Shimodaira, 2000): both
source and target measures share the same conditional
measure, say ρ(y |x), while their marginal measures, ρS(x) and
ρT (x), are different,i.e.

p(x , y) = ρ(y |x)ρS(x), q(x , y) = ρ(y |x)ρT (x).
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Domain adaptation problem (continuation)

Example: x contains the prescribed health-related measurements
observed in two different areas (ρS(x) 6= ρT (x)) in relation to
patients at risk, y , of the same pathology.

Key assumption (J. Huang et. al., 2006): Existence of the
Radon-Nikodym derivative β : X→ R+, β(x) = dρT (x)

dρS(x) such
that

dρT (x) = β(x)dρS(x).
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Sample Reweighting
Covariate shift assumption + Key assumption allow for the
following relation:

Eq(fθ) =

∫
X×Y

e(fθ(x), y)dq(x , y) =

∫
X×Y

e(fθ(x), y)β(x)dp(x , y).

Knowing β(xi ), i = 1, 2, . . . , n, we can approach the domain
adaptation problem by performing the empirical risk
minimization with training data z = {(xi , yi )}ni=1 drawn from
the source measure p(x , y) :

Ez,q(fθ) =
1
n

n∑
i=1

e(fθ(xi ), yi )β(xi )→ min .
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Sample Reweighting (continuation)

This allows for unsupervised domain adaptation, because no
examples of input-output pairs drawn from the target measure
q(x , y) are required.
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Radon-Nikodym (R-N) differentiation in RKHS
Since we are interested in knowing the point values of
β = dρT

dρS
at xi ∈ X, it is natural to assume that β belongs to a

space of functions H, where pointwise evaluation is
well-defined as a continuous linear functional. Then H = HK
is Reproducing Kernel Hilbert space (RKHS) generated by a
symmetric and positive definite kernel K : X× X→ R+.
Recall that RKHS HK is the completion of the space of the
linear combinations of kernel sections Kx (·) = K (·, x), x ∈ X,
with respect to the inner product 〈·, ·〉K for which
〈Kx ,Kt〉K := K (x , t). Moreover, for any f ∈ HK and x ∈ X
we have

f (x) = 〈Kx , f 〉K .
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Basic equation for R-N differentiation in RKHS
By the definition of β = dρT

dρS
it follows that for any f ∈ HK∫

X
f (t)dρT (t) =

∫
X
f (t)β(t)dρS(t),

and, in particular, for f (·) = Kt(·) = K (·, t) we have∫
X
K (·, t)dρT (t) =

∫
X
K (·, t)β(t)dρS(t).

If we consider the canonical embedding operators
JT : HK ↪→ L2,ρT , JS : HK ↪→ L2,ρS , then it can be shown that

J∗T f (·) =

∫
X
K (·, t)f (t)dρT (x), J∗S f (·) =

∫
X
K (·, t)f (t)dρS(x)
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Basic equation (continuation)
Assume that the constant function 1(·) ≡ 1 belongs to HK .
Then β = dρT

dρS
∈ HK should solve the first kind Fredholm

integral equation with compact and self-adjoint integral
operator

J∗SJSβ = J∗T JT 1,
which is known to be an ill-posed problem and can be treated
only with regularization technique.
According to P. Mathe and B. Hofmann (2008) the
smoothness properties of β = dρT

dρS
can always be described in

terms of general source conditions. Namely, for any ε > 0
there is a continuous strictly increasing function
ϕ : [0, c]→ R+, c > ‖J∗SJS‖, such that ϕ(0) = 0 and

β = ϕ(J∗SJS)ϑ, ϑ ∈ HK , ‖ϑ‖HK
< (1 + ε) ‖β‖HK

.
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Basic equation (continuation)

Example: If HK is a Sobolev space W s
2 ↪→ C(X ), and X is a closed

smooth manifold, then β = ϕ(J∗SJS)ϑ ∈W s,ϕ
2 (X), where W s,ϕ

2 (X)
is the so-called refined Sobolev scale (A. Mikhailets, A.
Murach,2012), which is much finer than the standard Sobolev
scale.
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Monte - Carlo quadrature method

Note that the equation J∗SJSβ = J∗T JT 1 is inaccesible, because
we do not know marginal measures ρT , ρS . In practice, we are
provided with samples {xi}ni=1, {x ′j }mj=1 of unlabeled examples
of inputs without knowing the corresponding outputs.
The samples {xi}ni=1, {x ′j }mj=1 are supposed to be i.i.d drawn
corresponding from ρS and ρT , and we consider sampling
operators Sn,S : HK → Rn, Sm,T : HK → Rm, associated to
them, i.e.,

Sn,S f = (f (x1), f (x2), . . . , f (xn)),

Sm,T f = (f (x ′1), f (x ′2), . . . , f (x ′m)).
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Monte - Carlo quadrature method (continuation)
By using Monte-Carlo quadrature formulas we can
approximate left and right sides of the basic equation as
follows:

J∗SJSβ(·) =

∫
X
K (·, t)β(t)dρS(t)

≈ 1
n

n∑
i=1

K (·, xi )β(xi ) = S∗n,SSn,Sβ(·),

J∗T JT 1 =

∫
X
K (·, t)dρT (t) =

1
m

m∑
j=1

K (·, x ′j ) = S∗m,TSm,T 1,

and this gives us a discretized version of R-N differentiation
problem:

S∗n,SSn,Sβ = S∗m,TSm,T 1
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Application of the regularization theory

Arguments based on concentration of measures allow for the
estimation of the amount of discretization noise. Namely, with
probability at least 1− δ we have∥∥J∗SJS − S∗n,SSn,S

∥∥
HK→HK

≤ cn−
1
2 log

1
2 (
1
δ

),∥∥J∗T JT 1− S∗n,TSn,T 1
∥∥
HK→HK

≤ cm−
1
2 log

1
2 (
1
δ

),

where here and below c denotes a generic positive coefficient
that does not depend on the quantities of interest. The above
bounds open the way for straightforward use of the arguments
developed in the regularization theory.
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Application of the regularization theory (cont.)

Recall that the procedure , in which approxiamte solutions fλ
of equation Tf = u, T = T ∗ ≥ 0, are constructrd as
fλ = gλ(T )u is called the regularization indexed by a family of
functions {gλ(t)} if ∃γ0, γ−1 > 0:

sup
0≤t≤‖T‖

|1− gλ(t)t| ≤ γ0, sup
0≤t≤‖T‖

|gλ(t)| ≤ γ−1
λ
.

Qualification of the regularization indexed by {gλ} is the
maximal p for which ∃γp > 0:

sup
0≤t≤‖T‖

tp|1− gλ(t)t| ≤ γpλ
p.
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Application of the regularization theory (cont.)

We say that the qualification p covers the index function
ϕ : [0, ‖T‖]→ R+, ϕ(0) = 0, if the function t → tp/ϕ(t) is
non-decreasing on (0, ||T ||].

Example: The so-called Lavrentiev regularization is indexed by
{gλ(t) = (λ+ t)−1} and has qualification p = 1; k-times iterated
Lavrentiev regularization is indexed by {gλ(t) = (1−(λ/(λ+t)))k

t }
and has qualification p = k.
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Theorem 1
Let β(x) = dρT (x)

dρS(x) = ϕ(J∗SJS)ϑ ∈ HK . Consider the approximant

βλm,n = gλ(S∗n,SSn,S)S∗m,TSm,T 1,

where {gλ} has the qualification p that covers ϕ(t). Consider also
θϕ(t) = ϕ(t)t and λm,n = θ−1ϕ

(
m− 1

2 + n− 1
2

)
. Then for

sufficiently large m and n with probability at least 1− δ it holds∥∥∥β − βλm,n
m,n

∥∥∥
HK
≤ cϕ(λm,n) log

(
1
δ

)
.

If, in addition, the qualification p covers ϕ(t)
√
t, then∥∥∥β − βλm,n

m,n

∥∥∥
L2,ρS

≤ cϕ(λm,n)
√
λm,n log

(
1
δ

)
.
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Example and comparisions

T. Kanamori et al. (2012) have proposed the so-called
kernelized unconstrained least squares importance fitting
(KuLSIF) for approximating β(x) = dρT (x)

dρS(x) ∈ HK from
samples {xi}ni=1, {x ′j }mj=1 i.i.d drawn from ρS and ρT . In our
terms, KuLSIF is nothing but Lavrentiev regularization
indexed by {gλ(t) = (λ+ t)−1}.
In spite of the fact there always is some ϕ such that
β = ϕ(J∗SJS)ϑ, T. Kanamori et all. (2012) did not take into
account any smoothness of β ∈ HK . Instead, the bound∥∥β − βλm,n∥∥L2,ρS

was established in terms of the order γ of the
so-called bracketing entropy of HK . In such terms the best
proven bound was order O

(
(m ∧ n)−

1
2+γ
)
, 0 < γ < 2.
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Observe that, for example, for ϕ(t) = tq, q > 1
γ −

1
2 , the

above order is worse than the one given by Theorem 1, but
the idea to take into account an entropy of underlying HK
goes beyond the standard regularization theory, and will be
discussed below.
KuLSIF has also been analyzed by I. Schuster et al. (2020). In
our terms, the corresponding result can be written as follows:∥∥∥β − βλm,n∥∥∥HK

≤ c
(
ϕ(λ) +

n−a

λ2
+

m−b

λ

)
log

1
δ
,

where a, b < 1
2 , while a straightforward application of the

regularization theory can give a better bound∥∥∥β − βλm,n∥∥∥HK
≤ c

(
ϕ(λ) +

m− 1
2 + n− 1

2

λ

)
log

1
δ
.
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(Regularized) Christoffel functions

Theorem 1 is currently a state of the art in theoretical
approximation results for R-N numerical differentiation. It is
valid for any HK and ρT , ρS such that dρT

dρS
∈ HK , but it does

not account for a specific interplay between RKHS and the
considered measures.
It is know that, in case of HKl the finite dimensional RKHS of
polynomials of degree at most l , the classical Christoffel
function

CKl ,ρS (x) = min

{∫
X
f 2(t)dρS(t) : f ∈ HKl , f (x) = 1

}
is a proper term for describing the above interplay.
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R-N meet Christoffel, at least conceptually

Otton Marcin Nikodym
(1887 - 1974)

Erwin Bruno Christoffel
(1829 - 1900) Johann Radon (1887 -

1956)
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R-N meet Christoffel, at least conceptually

If x belongs to the interior of the common support of ρT , ρS
then (A. Kroó, D.S. Lubinsky, 2012)

lim
l→∞

CKl ,ρT (x)

CKl ,ρS (x)
=

dρT
dρS

(x).
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(Regularized) Christoffel functions

The regularized Christoffel function (E. Puwels et al., 2018)

CλK ,ρS
(x) = inf

{∫
X
f 2(t)dρS(t) + λ||f ||2K : f (x) = 1

}
is a direct extension of the classical Christoffel function to the
case of infinite dimentional RKHS.
Asymptotic behaviour of CK ,ρS (x) as λ→ 0 has been
analysed (E. Panwels et al., 2018) for translation invariant
kernels K (x , t) = K (x − t). Here we describe such behavior in
terms of general source conditions on kernel sections
Kt(·) = K (·, t) ∈ HK .
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Christoffel functions and source conditions

As we know (P. Mathe, B. Hofmann, 2008)
∀t ∈ X,∃ψt : ψt(0) = 0, ψ↗,Kt = ψt(J∗SJS)ϑt , ϑt ∈ HK . We
follow E. De Vito et al., 2014, and S. Lu et al. 2018, and
consider a majorant of all ψt .
Assumption 1: ∃ψ : ψ(0) = 0, ψ↗, ∀t ∈ X

K (·, t) = ψ(J∗SJS)ϑt ,

||ϑt ||K ≤ (1 + ε)||Kt ||K ≤ (1 + ε)κ, κ = max{K (t, t), t ∈ X}.
Moreover, ψ2(t) is covered by the qualification p = 1.
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Christoffel functions and source conditions
From (E. Pauwels et al. 2018) we know that

CλK ,ρS
(x) =

(〈
Kx , (λI + J∗SJS)−1Kx

〉
K
)−1

.

On the other hand, the functions
Nx (λ) =

〈
Kx , (λI + J∗SJS)−1Kx

〉
K

and N∞(λ) = sup{Nx (λ), x ∈ X} play an important role in
the analysis of regularized learning in RKHS (A. Rudi et al.
2015), (S. Lu et al., 2018). The above functions can be called
reciprocal of the regularized Christoffel functions, and
Assumption 1 allows us to estimate them as follows:

Nx (λ) ≤ N∞(λ) ≤ cψ
2(λ)

λ
.
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More tight bounds for R-N numerical differentiation

Theorem 2
If, under the assumptions of Theorem 1, the qualification of the
regularization indexed {gλ} covers the function ϕ(t)t then with
probability at least 1− δ it holds

∥∥∥β − βλm,n∥∥∥HK
≤ c

(
ϕ(λ) +

√
N∞(λ)

λ(m + n)

)
log2

1
δ
,

where λ is supposed to be such that N∞(λ)
λ(m+n) ≤ 1.
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More tight bounds for R-N numerical differentiation

Corollary 2.1
Let Assumption 1 and the assumptions of Theorem 2 be satisfied.
Consider θϕ,ψ(t) = ϕ(t)t/ψ(t) and λ̄m,n = θ−1ϕ,ψ(m− 1

2 + n− 1
2 ).

Then with probability at least 1− δ it holds∥∥∥β − βλm,n∥∥∥HK
≤ cϕ(λ̄m,n) log2

1
δ
.

Note that the error bound given by Corollary 2.1 is of higher order
of smallness than the one given by Theorem 1.
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Pointwise approximation of R-N derivatives
Recall that performing the empirical risk minimization in the
context of the domain adaptation, we need to know not the
whole R- N derivative β = dρT

dρS
, but only its values at the

inputs x1, x2, . . . , xn.
In view of Amssuption 1∣∣β(xi )− βλm,n(xi )

∣∣ =

∣∣∣∣ 〈Kxi , β − βλm,n
〉

K

∣∣∣∣
=

∣∣∣∣ 〈ϑxi , ψ(J∗SJS)(β − βλm,n)
〉 ∣∣∣∣

≤ 2κ
∥∥∥ψ(J∗SJS)(β − βλm,n)

∥∥∥
HK

,

i.e., we need to estimate the error of R-N numerical
differentiation in a weighted norm associated with ψ(J∗SJS).
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Pointwise approximation of R-N derivatives

Theorem 3
If, under the assumptions of Corollary 2.1, the qualification of the
regularization indexed by {gλ} covers the function ϕ(t)t 3

2 then for
any xi ∈ X with probability at least 1− δ it holds

∣∣β(xi )− βλm,n(xi )
∣∣ ≤ cψ(λ)

(
ϕ(λ) +

ψ(λ)

λ
√
m + n

)
log2

1
δ
,

and for λ = λ̄m,n = θ−1ϕ,ψ(m− 1
2 + n− 1

2 )

∣∣β(xi )− βλm,n(xi )
∣∣ ≤ cψ(λ̄m,n)ϕ(λ̄m,n) log2

1
δ
,

i.e., β(xi ) can be estimated much more accurately than β in HK .
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Numerical illustrations
Theorem 3 hints that the same value of the regularization
parameter λ can be used for approximating all β(xi ),
i = 1, 2, . . . , n. Therefore, in practice one can use the
so-called quasi-optimality criterion to choose
λ̄ ∈ {λk = λ0qk , k = 1, 2, . . . , l}, q > 1 such that for λ̄ = λk0∥∥∥βλk0m,n − β

λk0−1m,n

∥∥∥
Rn

= min

{∥∥∥βλk
m,n − β

λk−1
m,n

∥∥∥
Rn
, k = 1, 2, . . . , l

}
,

where βλm,n = (βλm,n(x1), βλm,n(x2), . . . , βλm,n(xn)) ∈ Rn.
Quasi-optimality criterion can also be used to choose λ for
approximating β in HK , i.e. λ̄ = λk1 :∥∥∥βλk1m,n − β

λk1−1m,n

∥∥∥
Rn

= min

{∥∥∥βλk
m,n − β

λk−1
m,n

∥∥∥
HK

, k = 1, 2, . . . , l
}
.
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Numerical illustrations (continuation)

Numerical simulation with the above criteria support the
theoretical conclusion coming from Theorem 2 and 3.
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Numerical illustrations (continuation)
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Numerical illustrations (continuation)
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R-N in Regularized Empirical risk minimization
Source distribution: N(2, 0.5), Noise: N(0, 0.25),
Target distribution: N(5, 5)

Random seed MSE (βλm,n) MSE (β = 1)

1 0.0146 0.0241
64 0.0052 0.0072

99882 0.0591 0.1631
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R-N in Regularized Empirical risk minimization
Source distribution: N(2, 0.5), Noise: N(0, 0.25),
Target distribution: N(4, 5)

Random seed MSE (βλm,n) MSE (β = 1)

1 0.0288 0.0375
64 0.0059 0.0067

99882 0.1004 0.1402
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R-N in Regularized Empirical risk minimization
Source distribution: N(2, 0.5), Noise: N(0, 0.25),
Target distribution: N(3, 5)

Random seed MSE (βλm,n) MSE (β = 1)

1 0.0378 0.0291
64 0.0069 0.0071

99882 0.0828 0.0855

www.ricam.oeaw.ac.at Sergei Pereverzyev, Regularized Radon-Nikodym differentiation and some of its applications


