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Motivation: history

Bayes’ theorem

Proposed by Thomas Bayes and summarized by Richard Price (1763)
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Motivation: history

Tikhonov–Phillips regularization

Independently by Andrey Tikhonov (1963) and David L. Phillips (1962)
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Motivation: history

Kalman filter

By Rudolph Kalman (1960)
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What we know and what we want to know

Deterministic Statistical
Steady equations Regularization ⇐⇒ Bayesian Approach

Dynamic system ?? ⇐⇒ Filter based methods
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What we know and what we want to know

Deterministic Statistical
Steady equations Regularization ⇐⇒ Bayesian Approach

Dynamic system ?? ⇐⇒ Filter based methods

Filter based methods:

• Kalman Filter, 3DVAR (Online);

• 4DVAR (Offline);

• Kalman-Bucy Filter (Online, continuous dynamic).

• Ensemble Kalman Filter, Particle Filter (Online);

Task: deriving optimal error estimates and asymptotic behavior.
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Linear Inverse Problems

We consider the linear inverse problem

y = Au† +η ,

• A is an injective linear bounded operator acting from a
Hilbert space X to Y .

• The exact solution u† ∈ X .
• Noise η ∼N (0,γ2I).
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Artificial Dynamic

Dynamic System

un = un−1

yn = Aun +ηn,

Inverse problems
• Steady setting: reconstruct the unknown solution. Method:

regularization schemes.
• Artificial dynamic: identify the stationary state and quantify

the uncertainty. Method: filter based methods.

M. A. Iglesias, K. J. Law, and A. M. Stuart, Ensemble Kalman methods for inverse problems, Inverse Problems

29 (2013), no. 4, 045001.
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Kalman Filter

Prediction step:

N (mn−1,Cn−1) → N (m̂n,Ĉn)

π(un−1|y1, . . . ,yn−1) π(un|y1, . . . ,yn−1)

Analysis step:

N (m̂n,Ĉn) → N (mn,Cn)

π(un|y1, . . . ,yn−1) π(un|y1, . . . ,yn−1,yn)

K. J. Law, A.M. Stuart, and K.C. Zygalakis, Data Assimilation: A Mathematical Introduction, Springer, 2015.
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Kalman Filter
Dynamic System

un = Dun−1

yn = Hun +ηn,

Prediction:

m̂n = Dmn−1

Ĉn = DCn−1D∗.

Analysis:

mn = m̂n +Kn(yn−Hm̂n)

Cn = (I−KnH)Ĉn,

with Kalman gain

Kn = ĈnHT
(

HĈnHT + γ
2I
)−1

.
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Kalman Filter for Artificial Dynamic

Kalman filter

Let D = I and H = A. Take N (m0,C0) with C0 =
γ2

α
Σ0 as the

initial guess

Kn = Cn−1A∗
(
ACn−1A∗+ γ

2I
)−1

mn = mn−1 +Kn(yn−Amn−1)

Cn = (I−KnA)Cn−1.
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3DVAR for Artificial Dynamic

3DVAR

Let D = I and H = A. Take N (m0,C0) with C0 =
γ2

α
Σ0 as the

initial guess and fix the Kalman gain

Kn ≡ K :=C0A∗
(
AC0A∗+ γ

2I
)−1

ζn = ζn−1 +K (yn−Aζn−1)

Cn ≡ (I−K A)C0.
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Iterative Regularization Methods
Iterative Tikhonov Regularization

un = argmin
1
2
‖y−Au‖2 +

α

2
‖u−un−1‖2,

or equivalently

un = un−1 +(A∗A+αI)−1A∗(y−Aun−1).

• Weighted operator in regularization:

(A∗A+αI)−1A∗;

• Kalman gain in filter based methods:

Kn =Cn−1A∗
(
ACn−1A∗+ γ

2I
)−1

.

[Tikhonov & Arsenin 1977], [Hofmann 1986], [Louis 1989], Tikhonov, Goncharsky, Stepanov & Yagola 1995],

[Engl, Hanke & Neubauer 1996], [Nair 2009], [Kabanikhin 2012], [Lu & Pereverzev 2013] ...
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Statistical Inverse Problems
Spectral methods of the form

uδ
γ = qγ (A∗A)A∗yδ

Variational ones of the form

uδ
γ ∈ argminu∈X

[
‖Au‖2

Y −2
〈

Au,yδ

〉
Y×Y ∗

+ γR(u)
]

L. Cavalier, Ch.1 Inverse Problems in Statistics, P. Alquier et al. (eds.), Inverse Problems and High-Dimensional

Estimation, Lecture Notes in Statistics 203, Springer-Verlag Berlin Heidelberg 2011.
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Data Model in Artificial Dynamics
Data model 1: updating observation

un = un−1

yn = Aun +ηn.

Here each ηn is i.i.d Gaussian noise drawn from N (0,γ2I).

Decreased uncertainty
Auxiliary element (the law of large number)

ȳ =
1
n

n

∑
j=1

y j = Au† +
1
n

n

∑
j=1

η j.

with η̄ = 1
n ∑

n
j=1 η j whose distribution is N (0, γ2

n I).

B. T. Knapik; A. W. Van Der Vaart and J. H. Van Zanten, Bayesian inverse problems with Gaussian priors, The

Annals of Statistics 39 (2011), 2626–2657.
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Data Model in Artificial Dynamics

Data model 2: fixed observation
un = un−1

yn = Aun +η .

Here η is i.i.d Gaussian noise drawn from N (0,γ2I).

Nonlinear problems extension:
• Deterministic: Levenberg–Marquardt Methods;
• Statistical: Extended Kalman Filter Method;

Ensemble Kalman Filter Method.

M. A. Iglesias, K. J. Law, and A. M. Stuart, Ensemble Kalman methods for inverse problems, Inverse Problems

29 (2013), no. 4, 045001.
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General Filter Properties

General formulae:

Updated mean: mn = (I−KnA)mn−1 +Knyn;

True solution: u† = (I−KnA)u† +KnAu†.
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General Filter Properties
Bias–Variance Decomposition:
Total error en := mn−u†:

en =
n

∏
j=1

(I−K jA)e0 +
n−1

∑
j=1

(
n−1

∏
i=n− j

(I−Ki+1A)

)
Kn− jηn− j +Knηn

:= J1 + J2

with an initial guess m0 and

e0 = m0−u†;

J1 =
n

∏
j=1

(I−K jA)e0 (Bias);

J2 =
n−1

∑
j=1

(
n−1

∏
i=n− j

(I−Ki+1A)

)
Kn− jηn− j +Knηn (Variance).
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Mean Squared Error
Mean squared error:

E‖mn−u†‖2 = ‖J1‖2 +E‖J2‖2.

Key formula:
Kalman filter:

n

∏
j=1

(I−K jA) =CnC−1
0 = (C−1

0 +nA∗A/γ
2)−1C−1

0

=C
1
2
0 γ

2(γ2I +nC
1
2
0 A∗AC

1
2
0 )
−1C−

1
2

0 .

3DVAR:

(I−K A)n =C
1
2
0 γ

2(γ2I +C
1
2
0 A∗AC

1
2
0 )
−nC−

1
2

0 .
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Main Assumptions
Assumption 1

1. the initial variance C0 =
γ2

α
Σ0 and R(Σ

1/2
0 )⊂D(A), where α

is a positive constant and Σ0 is positive self-adjoint, and
Σ
−1
0 is a densely defined unbounded self-adjoint strictly

positive operator;
2. the forward operator A satisfies

C−1‖Σ
a
2
0 x‖ ≤ ‖Ax‖ ≤C‖Σ

a
2
0 x‖

on X for some constants a > 0 and 1≤C < ∞;

3. the initial mean satisfies m0−u† ∈D(Σ
− s

2
0 ) (or

ζ0−u† ∈D(Σ
− s

2
0 )) with 0≤ s≤ a+2;

4. the operator Σ0 in item 1. is trace-class on X .

H. W. Engl; M. Hanke and A. Neubauer, Regularization of inverse problems. Kluwer Academic Publishers

Group, Dordrecht, 1996.
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Main Assumptions
Assumption 2

1. Let the initial variance C0 =
γ2

α
Σ0. The operators Σ0 and A∗A

have the same eigenfunctions {ei} with their eigenvalues
{λi} and {κ2

i } satisfying

λi = i−1−2ε , C−1i−p ≤ κi ≤Ci−p

for some ε > 0, p > 0 and C ≥ 1.
2. By choosing the initial mean m0 = 0, the true solution u†

with its coordinates {u†,i} in the basis {ei} obeys
∑

∞
i=1(u

†,i)2i2β < ∞.

Assumptions 1 and 2 are identical if a = 2p
1+2ε

and s = 2β

1+2ε
.

B. T. Knapik; A. W. Van Der Vaart and J. H. Van Zanten, Bayesian inverse problems with Gaussian priors, The

Annals of Statistics 39 (2011), 2626–2657.
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Asymptotic Analysis

Setup revisit:
Two data models: Updating or fixed observation;
Two assumptions: General operators or SVD systems;

Initial values revisit:
Initial mean: m0 = 0;

Initial variance: C0 =
γ2

α
Σ0 with noise variance γ2I and an

operator Σ0. The parameter α is a tuning
parameter.
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Kalman Filter: Data Model 1

Kalman filter (Assumption 1)
Let Assumption 1 hold. Then the Kalman filter method yields a
bias-variance decomposition of the mean squared error

E‖mn−u†‖2 ≤C
(

α

n

) s
a+1

+
γ2

α
tr(Σ0)

for the Data Model 1. Setting α = N
s

s+a+1 and stopping the
iteration when n = N then gives

E‖mN−u†‖2 ≤
(
C+ γ

2tr(Σ0)
)

N−
s

s+a+1 .

Asymptotical boundness of Kalman filter (for any fixed α and γ).
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3DVAR: Data Model 1

3DVAR (Assumption 1)
Let Assumption 1 hold. Then 3DVAR filter yields a
bias-variance decomposition of the mean squared error

E‖ζn−u†‖2 ≤C
(

α

n

) s
a+1

+C
γ2 lnn

α
tr(Σ0)

for the Data Model 1. Setting α = N
s

s+a+1 and stopping the
iteration when n = N then gives

E‖ζN−u†‖2 ≤C
(
1+ γ

2tr(Σ0)
)

N−
s

s+a+1 lnN.

Blow up of 3DVAR (for any fixed α and γ).
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Kalman Filter: Data Model 1
Kalman filter (Assumption 2)
Let Assumption 2 hold. Then the Kalman filter method yields a
bias-variance decomposition of the mean squared error

E‖mn−u†‖2 ≤C
(

α

n

) 2β

1+2ε+2p
+ γ

2n−
2ε

1+2ε+2p α
− 1+2p

1+2ε+2p

for the Data Model 1. Setting α = N
2(β−ε)

1+2β+2p and stopping the
iteration when n = N then gives following minimax convergence
rate:

E‖mN−u†‖2 ≤CN−
2β

1+2β+2p .

Unconditional convergence of Kalman filter (for any fixed α and
γ).
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Kalman Filter: Data Model 2

Kalman Filter: Assumption 1
Let Assumption 1 hold. Then the Kalman filter method yields a
bias-variance decomposition of the mean squared error

E‖mn−u†‖2 ≤C
(

α

n

) s
a+1

+
nγ2

α
tr(Σ0)

for Data Model 2. Fix α = 1 and assume that the noise variance
γ2 = N−

a+s+1
a+1 . If the iteration is stopped at n = N then following

convergence rate is valid:

E‖mN−u†‖2 ≤ (C+ tr(Σ0))N−
s

a+1 .

Blow up of Kalman filter (for any fixed α and γ).
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Linear Inverse Problems

We consider the linear inverse problem

y = Au† +η ,

• A is an injective linear bounded operator acting from a
Hilbert space X to Y .

• The exact solution u† ∈ X .
• Noise η ∼N (0,ε2I).
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Towards a continuous analog
Artificial dynamical system (Data model 1)

un = un−1

yn = Aun +ηn

with ηn ∼N (0,τ−1Σ).

The continuous analog
Denote z1, ...,zn be equidistant (approximate) samples of a
random process z such that yn =

( zn−zn−1
τ

)
with a time step τ > 0,

let τ → 0 and

du = 0, u(0) = u†;

dz = Audt +
√

ΣdW, z(0) = 0.
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Consistency check
Original steady problem

yδ = Au† +δη

with a noise level δ and we assume δ → 0.

Consistency check

yδ :=
1
T

z(T ) = Au† +
1
T

√
Σ(W (T )−W (0)) ,

√
Σ(W (T )−W (0))∼NY (0,T Σ) .

Hence, the ending point of the observable process z carries the
same information as the data observed in the original inverse
problem with δ = 1/

√
T.
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Kalman-Bucy filter:
Non-stationary Asymptotical Regularization Method

The Kalman-Bucy filter:

dm =CA∗Σ−1(dz−Amdt), m(0) = m0;

dC =−CA∗Σ−1ACdt, C(0) =C0.

Solve the Riccati equation to obtain

C(t) = (C−1
0 + tA∗Σ−1A)−1, t > 0.

Thus the Kalman-Bucy filter is

dm = (C−1
0 + tA∗Σ−1A)−1A∗Σ−1(dz−Amdt), m(0) = m0.

3DVAR:
Stationary Asymptotical Regularization Method

dζ= C A∗Σ−1(dz−Aζ dt), ζ (0) = m0,

dC = 0, C (0) =C0.
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Non-stationary (and stationary) ARMs

Non-stationary ARM (Kalman-Bucy filter)

(u−m)(t) = e−
∫ t

0(C
−1
0 +sA∗Σ−1A)−1A∗Σ−1Ads(u−m)(0)

−
∫ t

0
e−

∫ t
s (C

−1
0 +τA∗Σ−1A)−1A∗Σ−1Adτ(C−1

0 + sA∗Σ−1A)−1A∗Σ−1/2dW (s).

Stationary ARM (3DVAR)

(u−ζ )(t) = e−C0A∗Σ−1At(u−ζ )(0)−
∫ t

0
e−

∫ t
s C0A∗Σ−1AdτC0A∗Σ−1/2dW (s).

Niu, Lu and Cheng [IPI 2019]
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Main ingredients

Effective dimension

D(γ) = DB(γ) := tr
(
(γI +B∗B)−1B∗B

)
,γ > 0.

Stochastic integration (Infinite-dimensional Itô-isometry)

The stochastic integral Φ→
∫ t

0 Φ(s)dW (s) with respect to a
Y -valued Q-Wiener process W (s) satisfies

E
∥∥∥∥∫ t

0
Φ(s)dW (s)

∥∥∥∥2

X
= E

∫ t

0
‖Φ(s)‖2

L2(YQ,X)ds < ∞

for t ∈ [0,T ].

L. Gawarecki and V. Mandrekar, Stochastic Differential Equations in Infinite Dimensions with Applications to

Stochastic Partial Differential Equations. Springer-Verlag Berlin Heidelberg 2011.
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Convergence rate of Non-stationary ARM
Let appropriate Assumptions hold, then the non-stationary
ARM yields MSE estimates
• If the function λ 7→ φ(λ )/λ p+1 is non-increasing, then

E‖m(t)−u†‖2 ≤ φ
2
((

α

t

) 1
p+1
)
+α

− 1
p+1 t−

p
p+1 D

(
α

t

)
for all 0≤ t ≤ T .

• If there is a constant c < ∞ with φ(λ )≤ cλ p+1 as λ → 0,
then

E‖m(t)−u†‖2 ≤ c
(

α

t

)2
+α

− 1
p+1 t−

p
p+1 D

(
α

t

)
for all 0≤ t ≤ T .
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Convergence rate of Stationary ARM
Let appropriate Assumptions hold, then the stationary ARM
yields the MSE estimate

E‖ζ (t)−u†‖2 ≤ cφ
2
((

α

t

) 1
p+1
)
+

1
2

α
−1tr(Ω)

for all 0≤ t ≤ T with a constant c = max
{
(ν0/(p+1))ν0/(p+1),1

}
.
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Answers to what we want to know!
Deterministic Statistical

Steady equations Tikhonov ⇐⇒ Bayesian approach

Discrete Dynamic Tikhonov ⇐⇒ Kalman filter
Iterative Tikhonov ⇐⇒ 3DVAR

Tikhonov ⇐⇒ 4DVAR (offline)

Continuous Dynamic Tikhonov ⇐⇒ Kalman-Bucy filter
Showalter ⇐⇒ 3DVAR
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When inverse problems meet

• Randomness (Statistical inverse problems)

• Dynamic systems (Online inversion algorithms)

[Kügler 2008], [Boiger & Kaltenbacher 2016], [Parzer & Scherzer 2022] ...
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Thank you for your attention and have a good time in Linz!

Iglesias, Lin, Lu and Stuart [CMS 2017]; Ding, Lu and Cheng [J. Complexity 2018];

Niu, Lu and Cheng [IPI 2019]; Lu, Niu and Werner [JUQ 2021]; Wang, Han and Lu [Q J R Meteorol Soc 2021].

42 / 42 Data assimilation from a viewpoint of regularization theory Shuai Lu (Fudan University)


	Motivation and Introduction
	Filter Based Methods
	Data Models

	Discrete dynamic systems
	Main assumptions and general filter properties
	Asymptotic behavior

	Continuous dynamic systems
	From discrete setting to continuous one
	Asymptotic behavior

	Conclusion

