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Motivation: PDE based tomographic imaging

Some tomographic imaging techniques lead to coefficient
identification in PDEs

electrical impedance tomography EIT:
Identify conductivity σ = σ(x) in

−∇(σ∇φ) = 0 in Ω

from boundary observations of voltage/current (φ, ∂νφ) pairs.
full waveform inversion FWI / ultrasound tomography:
Identify wave speed c = c(x) in an ibvp for

ptt − c24p = 0 in Ω

from additional boundary observations of the pressure p.
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Motivation: PDE based tomographic imaging

Some tomographic imaging techniques lead to coefficient
identification in PDEs from boundary observations.

 nonlinear ill-posed operator equation

all-at-once formulation

A(q, u) = 0 (model equation)
Cu = y (observation equation)

}
⇔: F(q, u) = (0, y)T

reduced formulation, with parameter-to-state operator
S : D(F)→ V defined by the first equation in

A(q,S(q)) = 0 and C (S(q)) = y ⇔: F(q) = y .

A : Q × V →W ∗. . . model operator, C . . . observation op.
Q. . . parameter space, V . . . state space, Y . . . data space.

More generally, consider

F (x) = y

with x = (q, u), F (x) = F(q, u) or x = q, F (x) = F(q)

3



Motivation: PDE based tomographic imaging

Some tomographic imaging techniques lead to coefficient
identification in PDEs from boundary observations.

 nonlinear ill-posed operator equation
all-at-once formulation

A(q, u) = 0 (model equation)
Cu = y (observation equation)

}
⇔: F(q, u) = (0, y)T

reduced formulation, with parameter-to-state operator
S : D(F)→ V defined by the first equation in

A(q,S(q)) = 0 and C (S(q)) = y ⇔: F(q) = y .

A : Q × V →W ∗. . . model operator, C . . . observation op.
Q. . . parameter space, V . . . state space, Y . . . data space.

More generally, consider

F (x) = y

with x = (q, u), F (x) = F(q, u) or x = q, F (x) = F(q)

3



Motivation: PDE based tomographic imaging

Some tomographic imaging techniques lead to coefficient
identification in PDEs from boundary observations.

 nonlinear ill-posed operator equation
all-at-once formulation

A(q, u) = 0 (model equation)
Cu = y (observation equation)

}
⇔: F(q, u) = (0, y)T

reduced formulation, with parameter-to-state operator
S : D(F)→ V defined by the first equation in

A(q,S(q)) = 0 and C (S(q)) = y ⇔: F(q) = y .

A : Q × V →W ∗. . . model operator, C . . . observation op.
Q. . . parameter space, V . . . state space, Y . . . data space.

More generally, consider

F (x) = y

with x = (q, u), F (x) = F(q, u) or x = q, F (x) = F(q)

3



Motivation: PDE based tomographic imaging

Some tomographic imaging techniques lead to coefficient
identification in PDEs from boundary observations.

 nonlinear ill-posed operator equation

F (x) = y

regularize!

convergence of iterative regularization:
 restrictions on nonlinearity of F

convergence of variational regularization: need local convexity
of Tikhonov functional  restrictions on nonlinearity of F
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The tangential cone condition and relatives

tangential cone condition [Scherzer, 1995]

∀x , x̃ ∈ U : ‖F (x)−F (x̃)−F ′(x)(x−x̃)‖Y ≤ ctc‖F (x)−F (x̃)‖Y

(in a neighborhood U of the exact solution) for the
convergence of Landweber iteration [Hanke & Neubauer &
Scherzer, 1995] and Newton type methods [Hanke, 1997],
[BK & Previatti, 2018]

weak nonlinearity condition [Chavent & Kunisch, 1996] for
local convexity of the Tikhonov functional

Newton-Mysovskii condition

∀x , x̃ ∈ U : ‖(F ′(x)− F ′(x̃))F ′(x)†‖X ≤ CNM‖x − x̃‖X ,

[Deuflhardt & Engl & Scherzer, 1998] †. . . generalized inverse

some relaxed versions of convexity, see e.g., [Kindermann,
2017]
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The tangential cone condition and relatives

tangential cone condition [Scherzer, 1995]

∀x , x̃ ∈ U : ‖F (x)−F (x̃)−F ′(x)(x−x̃)‖Y ≤ ctc‖F (x)−F (x̃)‖Y

sufficient for this (and often used for its verification) is

∀x , x̃ ∈ U : rng(F ′(x)?) = rng(F ′(x̃)?).

where ?. . . adjoint

Let’s skip the ?:

∀x , x̃ ∈ U : rng(F ′(x)) = rng(F ′(x̃)).

that is, range invariance of the linearized forward operator
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The range invariance condition and relatives

range invariance of the linearized forward operator

∀x , x̃ ∈ U : rng(F ′(x)) = rng(F ′(x̃)).

affine covariant Lipschitz condition

∀x , x̃ ∈ U : ‖F ′(x)†(F ′(x)− F ′(x̃))‖X ≤ CacL‖x − x̃‖X ,

(compare to Newton-Mysovskii) allows to prove convergence
of Newton and quasi Newton methods, cf., e.g., [Burger & BK
2006, Deuflhardt & Engl & Scherzer 1998, BK 1997, 1998].

a relaxed “difference instead of differential” version is

∃x0 ∈ U , K ∈ L(X ,Y )∀x ∈ U ∃r(x) ∈ X : F (x)−F (x0) = Kr(x)

[BK 2022]

7



The range invariance condition and relatives

range invariance of the linearized forward operator

∀x , x̃ ∈ U : rng(F ′(x)) = rng(F ′(x̃)).

affine covariant Lipschitz condition

∀x , x̃ ∈ U : ‖F ′(x)†(F ′(x)− F ′(x̃))‖X ≤ CacL‖x − x̃‖X ,

(compare to Newton-Mysovskii) allows to prove convergence
of Newton and quasi Newton methods, cf., e.g., [Burger & BK
2006, Deuflhardt & Engl & Scherzer 1998, BK 1997, 1998].

a relaxed “difference instead of differential” version is

∃x0 ∈ U , K ∈ L(X ,Y )∀x ∈ U ∃r(x) ∈ X : F (x)−F (x0) = Kr(x)

[BK 2022]

7



The range invariance condition and relatives

range invariance of the linearized forward operator

∀x , x̃ ∈ U : rng(F ′(x)) = rng(F ′(x̃)).

affine covariant Lipschitz condition

∀x , x̃ ∈ U : ‖F ′(x)†(F ′(x)− F ′(x̃))‖X ≤ CacL‖x − x̃‖X ,

(compare to Newton-Mysovskii) allows to prove convergence
of Newton and quasi Newton methods, cf., e.g., [Burger & BK
2006, Deuflhardt & Engl & Scherzer 1998, BK 1997, 1998].

a relaxed “difference instead of differential” version is

∃x0 ∈ U , K ∈ L(X ,Y ) ∀x ∈ U ∃r(x) ∈ X : F (x)−F (x0) = Kr(x)

[BK 2022]

7



Why should F ′() invariance
be easier to verify than F ′()? invariance?

Reduced setting: F(q) = CS(q) with (nonlinear)
parameter-to-state operator S and linear observation operator C :

rng(F′(x)) = rng(F′(x̃)) ⇐= rng(S ′(x)) = rng(S ′(x̃))

but

rng(F′(x)?) = rng(F′(x̃)?) 6⇐= rng(S ′(x)?) = rng(S ′(x̃)?)

Similarly for all-at-once formulation
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An example: FWI/ ultrasound tomography in all-at-once
form

F(q, u) =

(
q(x)utt(x , t)−4u(x , t)
Cu

)
=

(
0
y

)
PDE will actually be considered in a variational form with inital and boundary

conditions

C ∈ L(V ,Y ). . . boundary observations
c . . . wave speed / sound speed / (velocity)
q = 1

c2 . . . squared slowness
u. . . pressure
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An example: FWI/ ultrasound tomography in all-at-once
form

F(q, u) =

(
qutt −4u
Cu

)
=

(
0
y

)

K [dq, du] = F′(q0, u0)[dq, du] =

(
dq u0,tt + q0dutt −4du

Cdu

)
F(q, u)−F(q0, u0) =

(
(q − q0) utt + q0(u − u0)tt −4(u − u0)
C (u − u0)

)
Thus, F(q, u)− F(q0, u0) = Kr(q, u) holds
(for arbitrary C ∈ L(V ,Y )) with

r(q, u) =

(
dq

du

)
=

(
(q − q0)

(
1 + (u−u0)tt

u0,tt

)
u − u0

)
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An example: FWI/ ultrasound tomography in all-at-once
form

F(q, u) =

(
qutt −4u
Cu

)
=

(
0
y

)
The difference form range invariance condition
F(q, u)− F(q0, u0) = Kr(q, u) holds formally with

r(q, u) =

(
dq

du

)
=

(
(q − q0)

(
1 + (u−u0)tt

u0,tt

)
u − u0

)

What could possibly be wrong with this formula?

Division by u0,tt?
No. We can choose u0 6= S(q0)
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(
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)
u − u0

)

What could possibly be wrong with this formula?

Lack of regularity of u0, u?
No. All-at-once allows to choose parameter and state space freely
“independent of PDE theory”.

13



An example: FWI/ ultrasound tomography in all-at-once
form

F(q, u) =

(
qutt −4u
Cu

)
=

(
0
y

)
The difference form range invariance condition
F(q, u)− F(q0, u0) = Kr(q, u) holds formally with

r(q, u) =

(
dq

du

)
=

(
(q − q0)

(
1 + (u−u0)tt

u0,tt

)
u − u0

)

What could possibly be wrong with this formula?

Lack of regularity of u0, u?

No. All-at-once allows to choose parameter and state space freely
“independent of PDE theory”.

13



An example: FWI/ ultrasound tomography in all-at-once
form

F(q, u) =

(
qutt −4u
Cu

)
=

(
0
y

)
The difference form range invariance condition
F(q, u)− F(q0, u0) = Kr(q, u) holds formally with

r(q, u) =

(
dq

du

)
=

(
(q − q0)

(
1 + (u−u0)tt

u0,tt

)
u − u0

)

What could possibly be wrong with this formula?

Lack of regularity of u0, u?
No. All-at-once allows to choose parameter and state space freely
“independent of PDE theory”.

13



An example: FWI/ ultrasound tomography in all-at-once
form

F(q, u) =

(
qutt −4u
Cu

)
=

(
0
y

)
The difference form range invariance condition
F(q, u)− F(q0, u0) = Kr(q, u) holds formally with

r(q, u) =

(
dq

du

)
=

(
(q − q0)

(
1 + (u−u0)tt

u0,tt

)
u − u0

)

What could possibly be wrong with this formula?

dq depends on x and t (via u, u0)
but q is supposed to be a function of x only!
Yes. To cope with this, we extend q to be a function of (x , t).
But this destroys uniqueness!
Yes. To cope with this, we penalize time dependence by a term
‖P(q, u)‖2 := ‖qt‖2 in the methods below.
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Structure exploiting regularization methods

back to x = (q, u) or x = q. . .

F (x) = y (possibly extended x to enable range invariance)

Px = 0 (penalization to enforce uniqueness)
(IP)

Assume

∃x0 ∈ U , K ∈ L(X ,Y )∀x ∈ U ∃r(x) ∈ X : F (x)−F (x0) = Kr(x),

Then (IP) is equivalent to
(see also Rem 2.2 [Deuflhardt & Engl & Scherzer, 1998])

Kr̂ = y − F (x0) linear ill-posed

r(x) = r̂ nonlinear well-posed

P(x) := ‖P(x)‖ = 0

15
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Structure exploiting regularization methods
(IP) is equivalent to

Kr̂ = y − F (x0) linear ill-posed

r(x) = r̂ nonlinear well-posed

P(x) := ‖P(x)‖ = 0

Variational Regularization

(r̂ δα,β, x
δ
α,β) ∈ argmin(r̂ ,x)∈X×UJ

δ
α,β(r̂ , x)

where Jδα,β(r̂ , x) := ‖Kr̂ + F (x0)− y δ‖pY + αR(r̂)

+ β‖r(x)− r̂‖bX + P(x)

under some continuity/regularity conditions

r(xn)
T−→ r̂ ⇒ ∃(xnk )k∈N ⊆ U, x ∈ U : (xnk

T−→ x and r(x) = r̂)
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P(x) := ‖P(x)‖ = 0
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(r̂ δn+1, x
δ
n+1) ∈ argmin(r̂ ,x)∈X×UJ

δ
n(r̂ , x)

where Jδn(r̂ , x) := ‖Kr̂ + F (x0)− y δ‖pY + αnR(r̂)

+ βn‖r(xδn) + r ′(xδn)(x − xδn)− r̂‖bX + P(x)
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r ′(x0)−1 ∈ L(X ,X ) and

∃Lr > 0 ∀x ∈ U : ‖r ′(x†)− r ′(x)‖L(X ,X ) ≤ Lr‖x† − x‖X < 1,
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Idea of proof for frozen Newton in Hilbert space

xδn+1 − x† =(K ?K + P?P + αnI )
−1(

K ?(y δ − y) + K ?K
(
(r(x†)− r(xδn))− (x† − xδn)

)
+ αn(x0 − x†)

)

Under condition

∃c ∈ (0, 1)∀x ∈ U : ‖(r(x†)− r(x))− (x† − x)‖X ≤ c‖x† − x‖X

and using spectral calculus for A := K ?K + P?P we obtain

‖xδn+1 − x†‖X ≤
δ
√
αn

+ c‖xδn − x†‖X + an

with an = αn‖(K ?K + P?P + αnI )
−1(x0 − x†)‖X → 0 as n→∞

provided x0 − x† ∈ (nsp(K ) ∩ nsp(P))⊥ ⊆ nsp(A)⊥.

 verify this in applications by (existing) linearized uniqueness proofs.
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some further examples
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Combined diffusion and absorption identification

Identify a(x) and c(x) (that is, q = (a, c)) in

−∇ · (a∇u) + cu = 0 in Ω (1)

from the N-t-D maps Λλ ∈ L(H−1/2(∂Ω),H1/2(∂Ω)) for all λ ≥ 0;
that is, (tr∂Ωuλ,n)λ≥0,n∈N where uλ,n solves
−∇ · (a∇u) + (c − λ)u = 0 with ∂νu

n = ϕn on ∂Ω
for a basis of boundary currents ϕn ∈ H−1/2(∂Ω).

steady-state diffuse optical tomography
[Arridge & Schotland 2009; Gibson & Hebden & Arridge 2005,
Harrach 2012]
uniqueness: [CanutoKavian:2004]

Convergence of frozen Newton
with a = a(x), c = c(x)→ c(x , λ, n).
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Reconstruction of a boundary coefficient

Identify the Robin coefficient q = q(x) in the elliptic boundary
value problem

−∆u = ` in Ω

∂νu + q · Φ(u) = h on ΓR ⊆ ∂Ω

∂νu = h on ΓN ⊆ ∂Ω \ ΓR

u = 0 on ΓD := ∂Ω \ (ΓR ∪ ΓN)

(2)

from boundary observations y = tr∂Ωu.
Note the nonlinearity wrt u.

Convergence of frozen Newton
without any extension/penalization of q being needed.
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Nonlinearity coefficient imaging

Identify the squared slowness s = s(x) and the nonlinearity
coefficient η = η(x) in the fractionally damped Westervelt equation(

su − ηu2
)
tt
−4u + D̃u = r̃ in Ω× (0,T )

∂νu + γu = 0 on ∂Ω× (0,T ), u(0) = 0, ut(0) = 0 in Ω.

from two boundary observations

hi (t) = ui (x0, t) , t ∈ (0,T ) , for r = ri , i = 1, 2. (3)

see [BK & Rundell IPI 2021, Math.Comp. 2021]
uniqueness of η = η(x) from N-t-D map: [Acosta & Uhlmann &
Zhai 2022]

Convergence of frozen Newton
with η = η(x), s = s(x)→ (s1(x , t), s2(x , t))
[BK & Rundell, 2022]
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Thank you for your attention!
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