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H : Real Hilbert space
A mapping T : H — H is called a nonexpansive operator if
(Va,y e H) | T(x) =T )|l < |lz —yl|.

If (3 € (0,1), Yo,y € H) |T(z) - T(y)| < kllz—yl|, T is called a contraction operator

and guaranteed to have a unique fixed point in H (Banach-Picard) !

If a nonexpansive operator has a nonempty fixed point set
Fix(T) :={ze H|T(z) =z} # 0,

Fix(T) becomes a closed convex subset of H !

, Any case can happen for general Nonexpansive operators
Case 1: 7T has no fixed point in H.

Case 2: T has a unique fixed point in .
Case 3: T has two distinct fixed points in #,

N which implies f(Fix(7")) > N ! -




Fact (Intersection of fixed point sets of nonexpansive operators

Let T;(i = 1,2) be «; -averaged nonexpansive operators, i.e.,
Ty = (1 - ay)ld+ a1 Ry (3R;: Nonexpansive, Jo; € (0,1))
Ty =(1-ag)ld+ agRy (Ry: Nonexpansive, Jag € (0,1))

Fix(T)) N Fix(Ty) = Fix(Ty o ) = Fix (1 - w)Ty +wBy) (Ve (0,1)

NOTE: Any nonexpansive operator can be modified as a;-averaged nonexpansive operator
without changing its fixed point set via convex combination with Id | g

=

}, and Fix(Ty) NFix(Ty) £ 2

A computable nonexpansive operator can serve as
a mathematically precise language to express closed convex sets !

[Ogura-Yamada 2002]
[Combettes-Yamada 2015]

Let a,a0 € (0,1) and let T; : H — H (i = 1,2) be «o;-averaged.
d ( Ty o Ty is ate2—20100 ayeraged.
s

roposition (Composition of averaged operators)

1—()410&2

(Vw € (0,1)) (1 —w)T1 +wTsis ((1 — w)ay + was)-averaged.
\




(A) How can we compute a valuable fixed point in Fix(T) :={: € H |T(z) =2} ?
Fact (Krasnosel’skii(’55)-Mann(’53))

Let T : H — H be nonexpansive with Fix(T) # @.

Then for any x; € # and «a € (0,1), the sequence (z,)°°, generated by
Tpi1 = (1 —a)x, +aT(z,)

converges weakly to a certain point in Fix(T).

Note : If T can be expressed as T = (1 - §)Id + /R with some nonexpansive operator and [ € (0,1),
T"Y(zg) = (1 - B)zy + BR(2,) = 32 € Fix(R) = Fix(T)

(i) K-M iteration is a remarkable extensuin of Picard iteration!
(1)) POCS [Bregman 65] can be seen as an application of K-M iteration !

)>>> ((((

Remark : In general, the weak limit of K-M iteration does not enjoy
any best approximation property among all fixed points in Fix(T) !



POCS (an instance of K-M iteration) does not converge to
the nearest fixed point from the initial point !

" =R’

c, 1= (Pyo Pg,) (xzg) € Fix(T)

Fix(T) = C, N Cy . " = Poiney (20) = Prix(r (%) € Fix(T)
1

T := Pc, o P, o @@
i %

PCl (QE())

F. Deutsch,
Best Approximation in Inner
Product Spaces, Springer,2001.




(B) How can we design a computable nonexpansive operator
whose fixed point set Fix(T) has great application value ?

Convex Optimization Problem
defined on a Real Hilbert Space X

Minimize ¢ : X — (—00, 00]
where p € I'o(X),

1.€.,
Proper dom(yp) :={z € X | p(x) < o0} # &

Lower (Va € R) levey(p) ={z € X | p(z) < a}
Semi-
continuous is Closed in X

Convex (Vz,y € dom(yp), VA € (0,1))
Bowl-shaped (Ax + (1 — A)y) < Ap(z) + (1 — XN)o(y)

function




Convex optimization often found in signal processing and inverse problems

(Xa <'7 '>X7 H ' HX) ; (]C7 <'7 '>/C7 H ' H/C) : Real Hilbert Spaces
f e FO(X), g < Fo(IC), A: X — K: Bdd linear

(P) minimize f(x)+go A(x)J

€T E
convex — convex

has been playing central roles in various esimation problems
because seemingly a much more general model

felo(X), g; €To(K;), A;: X%K Bdd linear
(Q) m1n1m1ze f(x) + Z gi(A;x)

2—1
can also be handled as an instance of (P) by
K=K < - < K, g—@gzandAa:::(Alx ..... Apnrax)

New Hilbert space  New convex function  New linear operator
Product Space Separable sum



Building block to design computable nonexpansive operator

Let f € I'y(X), i.e., (Proper, lower-semicontinuous,) convex function on X.

Proximity operator [Moreau 1962]

- The proximity operator . (Innovative Generalization of Projection!)

1
Proxy : X - X 2z~ argerr)éin (f(y) + §||CIZ — 3/H2> :
Y

is 1-averaged nonexpansive, and satisfies

2
Fix(Proxy) :={x € X | Proxs(x) = x} = Argmin f

Good News

Closed form expressions of prox, are available for

many f € I'o(X), called Proximable (or Prox-friendly) functions.
See, e.qg.,
G. CHIERCHIA, E. CHOUZENOUX, P.L.COMBETTES, J-C.PESQUET

http://proximity-operator.net/




Example (Indicator function i¢)
For a nonempty closed convex set C'(C X),

the proximity operator of the indicator function :

Lc(x)::{() itx e C

o0 otherwise

is given by projection onto C), i.e.,

1 1
Prox,, : X = Xz~ argmin | 1o(y) + =y — z|* | = argmin =y — z||* =: Po ().
yex 2 yeC 2

Example (¢;-norm: A largest convex minorant of || - ||o)

T
Il iR 5 Ry ixi= (21, .., @) = ) [
1=1

[PYOXVH’Hl (X)L = Sgﬂ(ilfi) nax {‘(IZ@‘ — 7, 0} soft-’.[hreshold.ing
|- |1 is Prox-friendly




Proximal Splitting

A key idea to design computable nonexpansive operators

1. In general, even if f € T'g(X) and g € I'4(K) are prox-friendly,
and A : X — K is computable Bdd linear operator,

goA€Ty(X)and f+g0A€Ty(X) are not necessarily prox-friendly |

- =

2. Proximal Splitting is the art of computational techniques
mainly for expressions of the solution set of

minimize f 4+ go A € [y(X)

In terms of the fixed point set of a computable nonexpansive operator
with building blocks Proxs: X — & and Prox, : K — K

See, e.g., H.H. Bauschke and P. L. Combettes. Convex Analysis and
| Monotone Operator Theory in Hilbert Spaces. 2nd ed., Springer, 2017.
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Many tasks in sparsity-aware signal processing
and inverse problems have been formulated as

sparsity-aware regularized least squares models

1
miniergflize Jyoe(x) = §Hy — Az||3 + pVo £(z), >0, (1)

convex convex or nonconvex
where X', ), Z: finite dimensional real Hilbert spaces, y € Y, A € B(X,))

(i.e. A is a bounded linear operator from X to ), £ € B(X, Z) and

U : Z — R, is a certain approximation of | - ||y (# of nonzero entries)

' GME matrix !

design .

[CYY 22]

This talk U

Nonconvex regularization
via Moreau enhancement

Convexly regularized
least squares
| - |1 is used as W

— I

Lasso [Tibshirani "96] , MCP [Zhang "10], GMC [Selesnick *17] Qa, cLIGME model
TV [ROF"92], LiGME [AYY "20] ... . 0

[Daubechies et al 04] ... - - mE mmom

[YYY "22]



U(x) = |(x1,...,20)|0:= Number of nonzero-entries of (z1,...,x,) € R"

wiigze J}cfe) = 5y~ A2l 44002 o)y e

T€X this model is

Largest convex minorant NP-hard

of ||(z1,...,2,)|o on [~1,1]" ‘ Moreau enhancement (nonconvex)
h n

V(x) = (@1, )l = Z ‘%I U(x) =" (|[(z1, . 20) 1)y = Z”%"MC‘
i=1 i=1

— [y pseudo-norm
—o—[;-norm

—a— MNMCP HajHl

S .| Minimax-Concave Penalty This oan causes laree

5 (C.-H. Zhang ’10) , .g P T 5

- bias in estimation by

W 2 — 1

¢ | 1D case Minimize Jy.1,0¢(2)
18 £ =" = 1= £

Il

-2 -4 -3 -2 =1 0 1 2 3 < +




Minimax-Concave (MC) penalty [C.-H. Zhang 2010]
is a simplest 1D example of LIGME function (¥ =|- | and £ =1d)

Moreau envelope of | - | P.J.Huber, Ann. Math. Statist.'64
| 1 s if |z] <~
fylﬂ}‘ ‘= min ‘U’+—x—v‘2 ! 2y ’1 ‘ |—.77
vek | 2y \ |$! — 357, otherwise.

converges pointwise to - |

x| = {1

/’Y|x|

Vel = Ja] < o]

\ /
1 ) —2 -1 0 1 2 3

as v J 0.

C.-H.Zhang, Ann. Statist."10
Minimax-Concave penalty

elve =l =Tz
f 1.2 .
[l i<y
\ %% otherwise.

has been proposed as a nearly unbiased
nonconvex enhancement of the best

. convex sparsity promoting regularizer

(1-norm || - |1



LiIGME is a Unified + Linearly involved extension

[Abe-Yamagishi-1Y (Inverse Problems ‘20)]
For X, Z, Z: Hilbert spaces and U € I'y(Z) |prox-friendly, coercive, dom ¥ = Z],

(B cB(Z,2), £ ¢ B(X,Z)) Upol:X >R (LIGME)

1
where Up():= WMW(U) + g |B(-—v)|°| .
(US
Generalized Moreau envelope of W(-)

Generalized Minimax-Concave (GMC) Penalty
[I. Selesnick [EEE T-SP, 2017

1
M+ 1Bz-v)I|  (GMC)

(BER™) (|- l1)5(z) := 2] - min

vEeR

—Minimax-Concave (MC) Penalty [C.-H. Zhang, Ann. Statist.’10]

, 1
rERe) huosR s 2ol - o+ - of| (M)




LIGME model [J.Abe, M.Yamagishi, Y, Inverse Problems 2020]

migier%ize Jy poe(x) 1= %Ily — Ax|]? 4+ pVUpgo &(x), p> O,\ (2)
- N ~= convex — nonconvex
where X)), Z, Z: Hilbert spaces, y € Y, A€ B(X,)), £ € B(X,Z) and

1
V() :=¥() — min xp<v)+§y\3(-—v>u2 | Nonconvex

with U € Ty(Z) [prox-friendly, coercive, dom ¥ = 2] and B € B(Z, Z).

(B is a tuning parameter for Linearly involved Generalized Moreau Enhancement of )

Good News 1
With proper choice of B € B(Z, Z), the desired overall convexity can be achieved !

Overall Convexity Condition for (2)

A*A - p& B*BL = 0 = Jy 00 € ['y(X) = Existence of minimizer of (2)
s guaranteed under mild condition

In particular, if ¥ € T'y(Z) satisfies the condition as a norm of vector space Z,
A*"A— uf*B*BL = 0 & Jy 00 € Io(X) [Abe, Yamagishi, IY (Inverse Problems 2020)]



Good News 2

1
miniergize Ju pop(x) := iHy — Az|]* + p¥po &(z), u>0, (2)

. 1 2
where ) i=W() — min {\I!(v) + 5 |B(-—v)]|7| .

Q1. Can we establish any iterative algorithm of guaranteed
convergence to globally optimal solution of (2)

=

Although ¥y is nonsmooth and nonconvex, under mild conditions,

we can express the set of all globally optimal solutions

in terms of the fixed-point set of computable nonexpansive

operator in a certain Hilbert space and therefore can solve (2).

J. Abe, M. Yamagishi, I. Yamada,
“Linearly involved generalized Moreau enhanced models and their proximal splitting
algorithm under overall convexity condition,” Inverse Problems, (36pp), 2020.



Theorem 1 Assume dim(X) < oo, dim(Z) < oo,
U e To(X) satisfies Vo (-Id) =V & A*A— pL*B*BL > O (= Jy,op € [o(X)).
Define Tiicvp: X X Z2X Z =X X Zx Z: (x,v,w)— (£,(,n) by

1 1
£ 1= {Id — —(A™A — MQ*B*BS)} v YerBrBy— Eorw g — A*y
o o o

2
¢ := Proxuyg { “F BLE — —B BLx + (Id — HB*B) fu}
T T

n := Proxy- (286 — £z + w) ,
where (0,7,k) € Ry xRy, x (1,00) is chosen to satisfy

- old - % *QA — M£*£ >~ () U (u) = sgg((z,u} — U(z2))
i T2 (g + E) “‘|B*B“2 Proxy + Proxg+ = Id

argmin Jy o¢ = Qx (Fix(Trioume))

where Qy : X X Z X Z = X : (z,0,w) — T
and Fix(Tyome) = {(z,v,w) | Tuigme(®, v, w) = (z,v,w)}




old —ul*B*B —ug* |
= | —uB*BL TId O >~ (O and
— 1L @, uld

TLiGMEtfH(Z:XXZXZ)%HiS 7 _1
the Hilbert space (H, (-, )p.| - [|»), i.e.,
(Vz1,22 € H)

-averaged nonexpansive in

k-1

Tuicup(zt) - Tucae(za)lp < a1 - Zsz——H(Id Tucae) (z1) - (14~ Tycae) (22

For any initial point (zq, vy, wy) € X x Z x Z,
the sequence (z,,v,, 1, )neny C X X Z X Z generated by

[Krasnoselskii-Mann]
(Tnt1, Vnt1s Wnt1) = TLicME(Tn, Un, Wy)

converges to a point (z*,v*, w*) € Fix (TLicmeg) and

lim x, = 2™ € argmin Jy g
n— oo
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Some variations of Proximal Splitting Algorithm

(e.g., Forward backward splitting /
Primal-dual splitting / Douglas-Rachford splitting / ADMM ...)

can be seen as applications of
[Krasnosel’skii(’55)-Mann(’53)]

Unt1 = (1 — o) up + anT(un) — 30 € Fix(T)

to
Beautiful Expressions as @
Sy = argmin f(z) + g o A(x) = Z(Fix(T)), & »
where Proximal splitting Operators |
| DPETAtols

[':H—H: computable nonexpansive operators on A
=:H — X :a bounded linear oprtaor



Most proximal splitting algorithms rely on K-M algorithm and
can achieve convergence to only one anonymous solution, i.e.,

some 1" € §, 1= arg Hél}(lf([l]) +goA(x) =Z (Fix(T))

mmm) other solutions in S, \ {z*} remain unavailable

and can utilize only a little information on S, !

This situation is wasting almost all valuable vectors in S, !

Q2. Can we choose a further best solution with new ¥ € I'y(X) by

Hierarchical Convex Optimization ?

Minimize W(z*)  [nd stage optimization

he set of all solutions o

. *
Subj ECt o T € Sp <: 1st stage optimization
N N

A central target in Bilevel Optimization (e.g., [Dempe, Zemkoho 2020]) !




A. N. Tikhonov, “Solution of incorrectly formulated problems and
the regularization method,” Soviet Math. Dokl., 4, 1963.

A Landmark Theorem of Tikhonov Regularization
Suppose that argmin p NdomV¥ # &

V: coercive and strictly convex.

5 AW Let|z. € argmin () +e¥(z)||for every ¢ > 0.
Andrey TEX

Tikhonov
(1906-1993)
Moscow State

University ‘/EE —\ :E** E arg min \I](Z*) \
T*€arg min ¢

U(z.)—» min V(2"

T*€arg min ¢

b (as e ] 0)

) R
@
suggests computational difficulty in
the Hierarchical Convex Optimization !




— Fortunately, T
we can plug many Proximal Splitting Operators into

Hybrid Steepest Descent Method for 0 @\

Hierarchical Convex Optimization ! @
(P1)

@

[Ono-Yamada '14], [Yamagishi-Yamada '17], [Yamada-Yamagishi'19]

To minimize ¥(z*) subject to z* € §,,
we have found many practical ways: Q)
[Yamada-Ogura-Shirakawa '02],[Yamada-Yukawa-Yamagishi '11],

by exploiting specially nice expressions
S, 1= arg mi)rg f(x)+goAlx) =Z (Fix(T)),
T

where = : H — A is a bounded linear operator,
and by translating (P1) into

ﬂ

(P2)
Minimize © := Vo Z over Fix(T) C H E]




A Key for Hierarchical Convex Optimization

Hybrid Steepest Descent Method

[Yamada et al '96, Deutsch-Yamada'98, Yamada'01, Ogura-Yamada'O3, ...]

Upt1 =T (Up) — A1 VO (T (uy,))

can minimize ©(:=VYoZ) over
Fix(T) :={uveH | T(u) =u}

where
O:H—-R Smooth Convex Function
VO :H = H, Lipschitz Continuous
T:H—H, Nonexpansive operator

lim X\,, = 0O,
(An).—; C[0,00) : slowly decreasing, s.t., { %ﬁn .

1.This is extension of [Halpern'67/ Reich'74 / Lions'77/ Wittmann'92/...]
2.This scheme achieves a very best vector among all fixed points !




For details of Hierarchical Convex Optimization by

Reginas.Bursch HSDM+Proximal Splitting Operators

D. Russell Luke Editors

Splitting Algorithms,

Modern Operator
Theory, and |. Yamada, M. Yamagishi, Hierarchical Convex Optimization by

Applications the Hybrid Steepest Descent Method with Proximal Splitting
Operators - Enhancements of SVM and Lasso,

In : H. H. Bauschke, R. Burachik and D. R. Luke eds.,
Splitting Algorithms, Modern Operator Theory, and Applications,
pp.413-489, Springer, 2019.

For an application to multiclass SVM, see

Y. Nakayama, M. Yamagishi, |. Yamada,
“A hierarchical convex optimization for multiclass SVM
achieving maximum pairwise margins with least empirical hinge-loss,”

arXiv2004.08180, 2020.




Conclusion

Related info is found in the following papers.
1.Linearly involved Generalized Moreau Enhanced (LIGME) models

for sparsity-rank-aware signal processing

J. Abe, M. Yamagishi, I. Yamada, “Linearly involved generalized Moreau enhanced models and
their proximal splitting algorithm under overall convexity condition,” Inverse Problems, (36pp), 2020.

Y. Zhang, |. Yamada, “A unified class of DC-type convexity preserving regularizers for improved
sparse regularization,” EUSIPCO 2022.

W.Yata, M.Yamagishi, l.Yamada, “A constrained LIGME Model and Its Proximal Splitting
Algorithm under overall convexity condition," J. Applied and Numerical Optimization,” 2022.
2. Hierarchical convex optimization by

hybrid steepest descent method with proximal splitting operators

|. Yamada, “The hybrid steepest descent method for the variational inequality problem over the
intersection of fixed point sets of nonexpansive mappings,” In: D. Butnariu et al. eds., Inherently
Parallel Alg. in Feasibility and Optimization and Their Applications, pp. 473—-504. Elsevier, 2001.

|. Yamada, M. Yamagishi, “Hierarchical Convex Optimization by the Hybrid Steepest Descent

Method with Proximal Splitting Operators - Enhancements of SVM & Lasso,” In: H.H.Bauschke,
et al eds., Splitting Algorithms, Modern Operator Theory, and Applications, pp.413-489, Springer, 2019.

3. A comprehensive tutorial on fixed point strategies in data science

P. L.Combettes, J.C.Pesquet, Fixed point strategies in data science, IEEE Trans Signal Process,
vol.69, pp.3878-3905, 2021.




