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Photoacoustic tomography (PAT)

Tissue is illuminated with a short
pulse of light
As light propagates within the tissue,
it is absorbed by chromophores
The absorbed energy causes
pressure rise
This pressure increase propagates
through the tissue as an acoustic
wave and can be measured on the
boundary of the tissue using
ultrasound sensors
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Image reconstruction

Reconstruct the initial
pressure (or absorbed optical
energy density) from the
photoacoustic signal
measured on the boundary of
the tissue

⇒

⇒
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Photoacoustic tomography combines
benefits of optical and acoustic
methods
Contrast through optical absorption

Tissue chromophores: oxygenated
and deoxygenated haemoglobin,
water, lipids, melanin
Contrast agents

Resolution by ultrasound
Low scattering in soft biological
tissue

Applications in imaging of tissue
vasculature, tumours, small animal
imaging, etc.

J. Tick et al, Three dimensional

photoacoustic tomography in Bayesian

framework, J Acoust Soc Am

144:2061-2071, 2018

UEF // University of Eastern Finland Inverse Problems on Large Scales, 28.11.–2.12.2022 4



Quantitative photoacoustic tomography (QPAT)

Aims is to estimate the concentrations of light absorbing
molecules
Two inverse problems:

Acoustic inverse problem: estimation of initial pressure from
photoacoustic measurements
Optical inverse problem: estimation of optical parameters from the
initial pressure

Modelling of light propagation, photoacoustic efficiency and
ultrasound propagation are needed
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In this work, the optical inverse problem of QPAT is approached in
the framework of Bayesian inverse problems
We aim at accurate estimates and reliable error limits of these
estimates
We study how errors and uncertainties in modelling affect to the
solution of the inverse problem
Modelling of these errors utilising Bayesian approximation error
modelling is investigated
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Optical forward problem of QPAT
Modelling light transport

Radiative transfer equation (RTE)
ŝ · ∇ϕ(r , ŝ) + (µs + µa)ϕ(r , ŝ) = µs

∫
Sn−1

Θ(ŝ · ŝ′)ϕ(r , ŝ′)dŝ′, r ∈ Ω

ϕ(r , ŝ) =
{

ϕ0(r , ŝ), r ∈ ϵj , ŝ · n̂ < 0
0, r ∈ ∂Ω\ϵj , ŝ · n̂ < 0

where ϕ(r , ŝ) is radiance, µa is absorption, µs is scattering, Θ(ŝ · ŝ′)
is scattering phase function and ϕ0(r , ŝ) is light source in position r
and direction ŝ
Monte Carlo method for light transport

Based on random sampling of photon paths as they propagate in
scattering medium

Monte Carlo and RTE simulate light propagation accurately in
scattering medium
They are computationally challenging
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Diffusion approximation (DA)

−∇ · κ(r)∇Φ(r) + µa(r)Φ(r) = 0 r ∈ Ω

Φ(r) +
1

2γn
κ(r)A

∂Φ(r)
∂n̂

=

{ Is
γn
, r ∈ ϵi

0, r ∈ ∂Ω \ ϵi

where Φ(r) =
∫

Sn−1 ϕ(r , ŝ)dŝ is photon fluence and
κ = (d(µa + µs(1 − g)))−1 is diffusion coefficient
The DA is a special case of the first order approximation of the
spherical harmonics extension of the RTE
The approximation is valid in a highly scattering medium relatively
far from the light source
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Absorbed optical energy density

H(r) = µa(r)Φ(r)

Initial acoustic pressure

p0(r) = p(r , t = 0) = G(r)H(r) =
βc2

Cp
H(r)

where G(r) is the Grüneisen parameter describing photoacoustic
efficiency
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Bayesian approach to the optical inverse problem

Optical inverse problem: estimate distribution of optical
parameters from absorbed optical energy density (or initial
pressure)
In this work, estimation of absorption and scattering is studied
Bayesian approach to the inverse problem is taken
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A discrete observation model for QPAT in the presence of additive
noise model is

y = A(x) + e

where y ∈ Rmis the data, x ∈ Rn are the unknown optical
parameters, A ∈ Rm×n is the discretised forward model that is
assumed to be exact within measurement precision, e ∈ Rm

denotes the noise
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Let us consider all parameters as random variables
The solution of the inverse problem given by the Bayes’ formula
(posterior probability distribution)

π(x |y) ∝ π(y |x)π(x)

where π(y |x) is the likelihood and π(x) is the prior
If we assume that the noise e and and the unknown x are
mutually independent, observation model leads to likelihood

π(y |x) = πe(y − A(x))

where πe is the probability distribution of the noise e
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The unknown x and noise are modelled as Gaussian random
variables

x ∼ N (ηx , Γx), e ∼ N (ηe, Γe)

where ηx ∈ Rn and ηe ∈ Rm are the means and Γx ∈ Rn×n and
Γe ∈ Rm×m are the covariance matrices
In this case, the posterior distribution becomes

π(x |y) ∝ exp

{
−1

2
∥Le(y − A(x)− ηe)∥2 − 1

2
∥Lx(x − ηx)∥2

}
where Γ−1

e = LT
e Le and Γ−1

x = LT
x Lx
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The practical solution for the inverse problem is obtained by
calculating point estimates from the posterior distribution
We consider here the maximum a posteriori (MAP) estimate

xMAP = arg min
x

{
1
2
∥Le(y − A(x)− ηe)∥2 +

1
2
∥Lx(x − ηx)∥2

}
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To evaluate the credibility of the MAP estimate, we approximate
the forward model using the first order Taylor series

A(x) ≈ A(x̂) + J(x̂)(x − x̂),

and form a local Gaussian approximation

(x |y) ∝ N (η̂, Γ̂)

where η̂ = x̂ is the MAP estimate and

Γ̂ = (J(x̂)TΓ−1
e J(x̂) + Γ−1

x )−1

where J(x̂) is the Jacobian

Credible intervals [x̂ − 3σx̂ , x̂ + 3σx̂ ] where σx̂j
=

√
Γ̂(j , j)
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In this work, we use Gaussian Ornstein-Uhlenbeck
prior distribution

Ornstein-Uhlenbeck covariance

Γx,ij = σ2 exp

{
−
∥ri − rj∥

ζ

}
The mean was chosen as the midpoint between
expected minimum and maximum absorption and
scattering parameter values
The standard deviation was chosen such that the
expected maximum is within one standard deviation
from the mean (68 % lie within an interval between
maximum and minimum values)
The characteristic length scale ζ (controls spatial
correlation) was chosen based on expected size of
target structures
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Inverse problem in the presence of modelling errors
If an approximate (i.e. reduced or inexact) forward model Ã is
utilised, the discrepancy between the exact and reduced models
can be described as

ε = A(x)− Ã(x)

and observation model can be written utilising Bayesian
approximation error modelling1 in the form

y = A(x) + Ã(x)− Ã(x) + e

= Ã(x) + ε+ e

= Ã(x) + n

Thus, if Ã = A, forward model is exact and ε = 0
1J. Kaipio and E. Somersalo: Statistical and Computational Inverse Problems, Springer,

2005
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Let us assume that x and e are mutually independent and
Gaussian distributed

x ∼ N (ηx , Γx), e ∼ N (ηe, Γe)

Approximate the modelling error ε and the total error n = ε+ e as
Gaussian

ε ∼ N (ηε, Γε), n ∼ N (ηn, Γn)

Let us ignore the mutual dependence of x and modelling error ε
(so called enhanced error model)
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Following a similar derivation as in the case of the exact forward
model, the posterior distribution can be derived

π(x |y) ∝ exp

{
−1

2
∥Ln(y − Ã(x)− ηn)∥2 − 1

2
∥Lx(x − ηx)∥2

}
where ηn and ηx are the means and Ln and Lx are the Cholesky
decompositions of the inverse covariance matrices of the noise
and prior LT

nLn = Γ−1
n and LT

x Lx = Γ−1
x , and ηn = ηε + ηe and

Γn = Γε + Γe
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MAP estimate

xMAP = arg min
x

{
1
2
∥Ln(y − Ã(x)− ηn)∥2 +

1
2
∥Lx(x − ηx)∥2

}

Credible intervals [x̂ − 3σx̂ , x̂ + 3σx̂ ] where σx̂j
=

√
Γ̂(j , j) where

(x |y) ∝ N (η̂, Γ̂) where η̂ = x̂ is the MAP estimate and
Γ̂ = (J(x̂)TΓ−1

n J(x̂) + Γ−1
x )−1 where J(x̂) is the Jacobian
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The modelling error ε can be, for example, approximated by
sampling

Drawing samples from the training distribution of x
Calculating samples of the modelling error using exact and
approximate forward models

εℓ = A(x)ℓ − Ã(x)ℓ

Estimating the mean and covariance of the modelling error as

ηε =
1
L

L∑
ℓ=1

εℓ

Γε =
1

L − 1

L∑
ℓ=1

(εℓ − ηε)(ε
ℓ − ηε)

T
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Simulations

In this work, we study modelling of errors due to using the DA as a
light transport model in the inverse problem of QPAT when the
exact model is Monte Carlo
Modelling of errors

1. Inverse problem using a reduced forward model Ã(x) with a
Gaussian approximation for the modelling errors ε ∼ N (ηε, Γε)

2. Inverse problem using a reduced forward model Ã(x) and ignoring
the modelling errors (ε = 0)

We investigate
Different ranges of scattering parameters (i.e. validity of the DA)
Different noise levels

UEF // University of Eastern Finland Inverse Problems on Large Scales, 28.11.–2.12.2022 22



Data simulation

Illumination

Monte Carlo solver

Mapping to
data space

Add random
noise (0.1–5 %)

Repeat for
all illuminations Simulated data

Inverse
problem
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Inverse problem
Computed MAP estimate using the DA as the forward model (reduced
forward model Ã(x)) with two approaches

Gaussian approximation for the modelling errors ε ∼ N (ηε, Γε)
(MAP-EEM)
Ignoring the modelling errors (ε = 0) (MAP-CEM)
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MAP ± 3 sd on a cross section Marginal densities
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Relative errors of the estimates at different scattering value regimes (5% noise)
Modelling errors neglected (dark blue)
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Relative errors of the estimates at different scattering value regimes (1% noise)
Modelling errors neglected (dark blue)
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Relative errors of the estimates at different scattering value regimes (0.1% noise)
Modelling errors neglected (dark blue)
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Relative errors of the estimates at different scattering value regimes (5% noise)
Modelling errors neglected (dark blue)
Modelling errors taken into account (light blue)
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Relative errors of the estimates at different scattering value regimes (1% noise)
Modelling errors neglected (dark blue)
Modelling errors taken into account (light blue)
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Relative errors of the estimates at different scattering value regimes (0.1% noise)
Modelling errors neglected (dark blue)
Modelling errors taken into account (light blue)
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Logarithm of the total error (noise and modelling error) covariance corresponding to first
100 data points with different noise levels

5% noise 1% noise 0.1% noise
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Summary

Optical inverse problem of QPAT was approached in a Bayesian
framework
MAP estimates were computed and their reliability was evaluated
More research is required to study the safety of the reliability
estimates
The results show that modelling errors can result into inexact
(quantitative) estimates, although qualitatively the reconstructions
may look ’quite nice’
The Bayesian approximation error modelling can be utilised in
modelling of errors (to some extent)
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Inverse problem utilising optical Monte Carlo

We are interested in using an optical Monte Carlo model – a
stochastic forward model – in the inverse problem of QPAT
We utilise a perturbation Monte Carlo approach to form Jacobians
for the forward model
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Monte Carlo simulation of light transport

The probability for photon absorption in a small
length ds in a propagation direction is µads, and the
probability for photon scattering is µsds
Scattering length follows an exponential probability
distribution function f (l) = µs(l) exp

[
−
∫ l

0 µs(s)ds
]

Scattering angle follows a probability distribution
(Henyey-Greenstein phase function)
Photon packet method: weight of a photon packet
along trajectory is reduced due to absorption
w(S) = exp

[
−
∫

S µa(s)ds
]

In this work, a Monte Carlo software ValoMC is
used (https://inverselight.github.io/ValoMC/)

A.A. Leino, A. Pulkkinen, T. Tarvainen,

ValoMC: a Monte Carlo software and

MATLAB toolbox for simulating light

transport in biological tissue, OSA

Continuum 2:957–972, 2019
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Perturbation Monte Carlo
The effect of a small change in the optical parameters
(perturbation) to the simulation results is evaluated efficiently by
re-using the trajectories from an unperturbed simulation
Considering the ratio between probability density functions
between scattering lengths in perturbed and unperturbed regions,
the weight of a photon packet in a perturbed simulation can be
derived

w̃ = w
(
µ̃s

µs

)k

exp [−(µ̃s − µs)Ltot]

where w̃ is the perturbed weight, w is the unperturbed weight, µ̃s
is the perturbed scattering coefficient, Ltot is the total distance
travelled by the photon packet inside the perturbed region, and k
the number of scattering events in the perturbed region
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Inverse problem
Inverse problem is approached in a Bayesian framework
MAP estimates solved using the Gauss-Newton method
Perturbation Monte Carlo is utilised in computing Jacobians for
scattering
Simulations

5 × 5 mm square computation domain
µa in scale [0.0001 , 0.05]mm−1 and µs in scale [0.01 , 5]mm−1

Henyey-Greenstein scattering anisotropy parameter g = 0.9
Four illuminations with light coming from each of the sides in turn
Two noise levels at 0.1% and 1%
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Relative errors of the estimates
Eµa = 0.3% and Eµs = 11%
Eµa = 2.2% and Eµs = 20%
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Relative errors of the estimates
Eµa = 0.2% and Eµs = 6.1%
Eµa = 1.9% and Eµs = 11%
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Summary

Monte Carlo method for light transport can be utilised in the
inverse problem of QPAT
More research is required for example to study the number of
photon packets required for forward solution and Jacobian, and
evaluating the reliability of the estimates
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