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Photoacoustic tomography (PAT)
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I.I

Photoacoustic tomography (PAT)

Tissue is illuminated with a short
pulse of light

As light propagates within the tissue,
it is absorbed by chromophores

The absorbed energy causes
pressure rise

This pressure increase propagates
through the tissue as an acoustic
wave and can be measured on the
boundary of the tissue using
ultrasound sensors
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Image reconstruction

= Reconstruct the initial
pressure (or absorbed optical
energy density) from the
photoacoustic signal
measured on the boundary of
the tissue
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= Photoacoustic tomography combines
benefits of optical and acoustic
methods

== Contrast through optical absorption

Tissue chromophores: oxygenated

and deoxygenated haemoglobin,

water, lipids, melanin

Contrast agents

J. Tick et al, Three dimensional

= Resolution by ultrasound photoacoustic tomography in Bayesian
Low scattering in soft biological framework, J Acoust Soc Am
tissue 144:2061-2071, 2018

= Applications in imaging of tissue
vasculature, tumours, small animal
imaging, etc.
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Quantitative photoacoustic tomography (QPAT)

="

Aims is to estimate the concentrations of light absorbing
molecules
Two inverse problems:
Acoustic inverse problem: estimation of initial pressure from
photoacoustic measurements
Optical inverse problem: estimation of optical parameters from the
initial pressure

= Modelling of light propagation, photoacoustic efficiency and
ultrasound propagation are needed

I.I
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= In this work, the optical inverse problem of QPAT is approached in
the framework of Bayesian inverse problems

= We aim at accurate estimates and reliable error limits of these
estimates

* We study how errors and uncertainties in modelling affect to the
solution of the inverse problem

= Modelling of these errors utilising Bayesian approximation error
modelling is investigated
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Optical forward problem of QPAT

= Modelling light transport
Radiative transfer equation (RTE)
8- Volr.3)+ (ns + na)olr.9) = s | O(-8)o(r.8)E. re

a | bo(r,8), ree, $-h<O0
<z>(r,s){ 0, reoQ\e, $-h<O0

where ¢(r, 8) is radiance, p, is absorption, p is scattering, ©(5 - &)
is scattering phase function and ¢o(r, 8) is light source in position r
and direction s

Monte Carlo method for light transport

= Based on random sampling of photon paths as they propagate in
scattering medium

Monte Carlo and RTE simulate light propagation accurately in
scattering medium

They are computationally challenging
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Diffusion approximation (DA)

— V- k(r)VO(r) + pa(r)®(r) =0 reQ

1 o(r) L reg
_— A — = In’
() + 5, HNA, { 0, red\e

where ®(r) = [5,_, ¢(r,8)d8 is photon fluence and

k= (d(pa+ us(1 —g)))~" is diffusion coefficient

The DA is a special case of the first order approximation of the
spherical harmonics extension of the RTE

The approximation is valid in a highly scattering medium relatively
far from the light source
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= Absorbed optical energy density
H(r) = pa(r)®(r)
= Initial acoustic pressure

2
Po(r) = p(r.t = 0) = G(N)H(r) = ﬁcip ()

where G(r) is the Griineisen parameter describing photoacoustic
efficiency
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Bayesian approach to the optical inverse problem

= Optical inverse problem: estimate distribution of optical
parameters from absorbed optical energy density (or initial
pressure)

In this work, estimation of absorption and scattering is studied
Bayesian approach to the inverse problem is taken

I.I

I.I
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= A discrete observation model for QPAT in the presence of additive
noise model is

y=Ax)+e
where y € R™is the data, x € R” are the unknown optical
parameters, A € R™*" is the discretised forward model that is

assumed to be exact within measurement precision, e € R™
denotes the noise
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= Let us consider all parameters as random variables

= The solution of the inverse problem given by the Bayes’ formula
(posterior probability distribution)

m(x]y) o< m(y [x)m(x)

where 7(y|x) is the likelihood and =(x) is the prior

= If we assume that the noise e and and the unknown x are
mutually independent, observation model leads to likelihood

m(y|x) = me(y — A(X))

where 7, is the probability distribution of the noise e
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= The unknown x and noise are modelled as Gaussian random
variables

X~ NxTx), €~N(ne,le)

where n, € R" and ne € R™ are the means and 'y € R and
e € R™M gre the covariance matrices

= In this case, the posterior distribution becomes
1 2 1 2
m(x]y) ocexp g =5 [Le(y — A(X) = ne) " = 51 Lx(x = nx)l]

where ;' = LlLeand Iy = L] L,
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= The practical solution for the inverse problem is obtained by
calculating point estimates from the posterior distribution

= We consider here the maximum a posteriori (MAP) estimate

.1 1
s = g min { 3Loly ~ A() = )| + FlLx I}
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= To evaluate the credibility of the MAP estimate, we approximate
the forward model using the first order Taylor series

A(x) = A(X) + J(X)(x = %),
and form a local Gaussian approximation
(x1y) oc N (7, )
where 7 = X is the MAP estimate and
[ = &) T IE)+T )
where J(X) is the Jacobian

= Credible intervals [X — 3o, X + 305] where o5 = /[ (/. /)
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= In this work, we use Gaussian Ornstein-Uhlenbeck
prior distribution

Ornstein-Uhlenbeck covariance

r—
oy = oo {-1011)

The mean was chosen as the midpoint between
expected minimum and maximum absorption and
scattering parameter values

The standard deviation was chosen such that the
expected maximum is within one standard deviation
from the mean (68 % lie within an interval between
maximum and minimum values)

The characteristic length scale ¢ (controls spatial . :
correlation) was chosen based on expected size of e %
target structures gt
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Inverse problem in the presence of modelling errors

 If an approximate (i.e. reduced or inexact) forward model A is
utilised, the discrepancy between the exact and reduced models
can be described as
e = A(x) — A(x)

and observation model can be written utilising Bayesian
approximation error modelling’ in the form
y=AX)+Ax)-AX) +e
=A(X)+e+e
=A(X)+n

I.I

Thus, if A= A, forward model is exactand e = 0
'J. Kaipio and E. Somersalo: Statistical and Computational Inverse Problems, Springer,

2005
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"

Let us assume that x and e are mutually independent and
Gaussian distributed

X~ Nx,Tx), e~N(nele)

I.I

Approximate the modelling error £ and the total error n=c¢ + e as
Gaussian
e~ Ne,Te), n~N(n )

Let us ignore the mutual dependence of x and modelling error ¢
(so called enhanced error model)

="
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= Following a similar derivation as in the case of the exact forward
model, the posterior distribution can be derived

w(ely) x 0 { Loty = )~ nn)? = Lxtx — )12}

where 7, and 7y are the means and L, and Ly are the Cholesky
decompositions of the inverse covariance matrices of the noise
and prior LTL, =T;"and LTL, =Tx", and 1, = 5. + ne and

rn = rs + re
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= MAP estimate

(1 . 1
svane = arg min { G1Loly = A0) — 1)+ L~ ) 2}

= Credible intervals [ — 3oy, X + 303] where o = 4/ [(j,j) where
(x]y) o< N(, ') where /) = X is the MAP estimate and
[= (JX)'T; (%) + ")~ where J(X) is the Jacobian
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= The modelling error ¢ can be, for example, approximated by
sampling
Drawing samples from the training distribution of x
Calculating samples of the modelling error using exact and
approximate forward models

Estimating the mean and covariance of the modelling error as

E‘qh

L
1
= 125 _776 5 _T]E)T
=1

,\
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Simulations

In this work, we study modelling of errors due to using the DA as a
light transport model in the inverse problem of QPAT when the
exact model is Monte Carlo

Modelling of errors

1. Inverse problem using a reduced forward model A(x) with a
Gaussian approximation for the modelling errors e ~ N/ (1., T.)

2. Inverse problem using a reduced forward model A(x) and ignoring
the modelling errors (¢ = 0)

We investigate

Different ranges of scattering parameters (i.e. validity of the DA)
Different noise levels
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Data simulation

4 mm
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Data simulation
Illumination

4 mm
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Data simulation
Illumination

4 mm

6 mm

|

3Va|oMC

Visible and near infrared light
transport on mesh based geometry

Monte Carlo solver
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Data simulation
Illumination

4 mm

6 mm

|

v‘ ValoMC Mapping to
transport on mesh based geometry } d ata s pace

Monte Carlo solver
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Data simulation
Illumination

4 mm

6 Add random
e noise (0.1-5 %)

'. ValoMC Mapping to
transport on mesh based geometry } data Space
Monte Carlo solver
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Data simulation

1 1
| llumination Repeat for
: alllluminations :/r Simulated data |
I g :
I = I
: = I
! 6 Add random |
! min noise (0.1-5 %) | |
: J T :
1 1
1 1
1 1
1 1
1 N 1
| & YaloMC ,[Mapping to] |
: transport on mesh based geometry data Space :
. | Monte Carlo solver :
1 1
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Data simulation

1 1

| llumination Repeat for

: alllluminations :/r Simulated data |
I = |

: = :

: = :

! 6 Add random | Inverse

. mm . ,

! noise (0.1-5 %) | problem

: J T :

1 1

1 1

1 1

1 1

1 N 1

| £3ValoMC | [Mappingto|

: transport on mesh based geometry data Space :

i | Monte Carlo solver :

1 1
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Inverse problem
Computed MAP estimate using the DA as the forward model (reduced
forward model A(x)) with two approaches

= Gaussian approximation for the modelling errors ¢ ~ N (n.,T.)
(MAP-EEM)

= Ignoring the modelling errors (¢ = 0) (MAP-CEM)
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True

MAP-EEM  MAP-CEM

True

MAP-EEM  MAP-CEM

b

[ _— [ _—e— ) [ _— ) [ _— )
004 02 04 004 02 04 004 02 04 004 02 04 004 02 04

s

'’ aes C‘tﬂ siw/e
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UEF // University of Eastern Finland Inverse Problems on Large Scales, 28.11.-2.12.2022 25




-
.3

MAP + 3 sd on a cross section

MAP-CEM

04 D
0.3
0.2

Ha

0.1

MAP-EEM

e,

o
N
N}
-
kS

UEF // University of Eastern Finland

0 22 44 6.7

Marginal densities

60
5 %
T 20
0 0
016 0.17 0.18 0.19 02 028 029 03 031 032
Ha Ha

Inverse Problems on Large Scales, 28.11.-2.12.2022

26




Relative errors of the estimates at different scattering value regimes (5% noise)
Modelling errors neglected (dark blue)
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Relative errors of the estimates at different scattering value regimes (1% noise)
Modelling errors neglected (dark blue)
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Relative errors of the estimates at different scattering value regimes (0.1% noise)
Modelling errors neglected (dark blue)
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Relative errors of the estimates at different scattering value regimes (5% noise)
Modelling errors neglected (dark blue)
Modelling errors taken into account (light blue)
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Relative errors of the estimates at different scattering value regimes (1% noise)
Modelling errors neglected (dark blue)
Modelling errors taken into account (light blue)
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Relative errors of the estimates at different scattering value regimes (0.1% noise)
Modelling errors neglected (dark blue)
Modelling errors taken into account (light blue)
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Logarithm of the total error (noise and modelling error) covariance corresponding to first
100 data points with different noise levels

5% noise 1% noise 0.1% noise

50

100 3
100
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Summary

Optical inverse problem of QPAT was approached in a Bayesian
framework

= MAP estimates were computed and their reliability was evaluated

= More research is required to study the safety of the reliability
estimates

The results show that modelling errors can result into inexact
(quantitative) estimates, although qualitatively the reconstructions
may look 'quite nice’

== The Bayesian approximation error modelling can be utilised in
modelling of errors (to some extent)

I.I
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Inverse problem utilising optical Monte Carlo

= We are interested in using an optical Monte Carlo model — a
stochastic forward model — in the inverse problem of QPAT

= We utilise a perturbation Monte Carlo approach to form Jacobians
for the forward model
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Monte Carlo simulation of light transport

"

The probability for photon absorption in a small
length ds in a propagation direction is u,ds, and the
probability for photon scattering is usds

= Scattering length follows an exponential probability
distribution function £(/) = yus(/) exp [— I Ms(s)ds}

= Scattering angle follows a probability distribution 4% ValoMC
(Henyey-Greenstein phase function) W

= Photon packet method: weight of a photon packet = A Leino. A Pulkiinen, T. Tarvainen,
along trajectory is reduced due to absorption ValoMC: a Monte Carlo software and
W(S) = exp [_ fS ua(S)dS] MATLAB toolbox for simulating light

= In this work, a Monte Carlo software ValoMC is renspertin oAl tesue, 04
used (nttps://inverselight.github.io/ValoMC/) Continuum 2:957-972, 2019
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Create a photon packet (a)

log
Facur

( Compute the distance d
’lw the boundary of the current element (b)

Scatter the photon
calculate a new
propagation direction (c)

1
Propagate the photon by As = min(d, s}
i.e. either to the boundary of the element
or to the end of the leap (c.d)

djust the remaining length
5 ¢ shzar

doesn't
survive

p]mum lnh |)(U|MH.>\1N1
It

Update packet phase and weight
8<s-—As

no!

ves, photon is
at a boundary

no, interface
of two volune

Deposit weight to the current element
wexp(—id

L u=10,1]

reflects

Fresnel

or
reflection (F)
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Perturbation Monte Carlo

= The effect of a small change in the optical parameters
(perturbation) to the simulation results is evaluated efficiently by
re-using the trajectories from an unperturbed simulation

= Considering the ratio between probability density functions
between scattering lengths in perturbed and unperturbed regions,
the weight of a photon packet in a perturbed simulation can be
derived .
w=w (Ns) exp [_(/15 - Us)Ltot]
Hs
where w is the perturbed weight, w is the unperturbed weight, ji,
is the perturbed scattering coefficient, L is the total distance
travelled by the photon packet inside the perturbed region, and k
the number of scattering events in the perturbed region
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Inverse problem
= Inverse problem is approached in a Bayesian framework
MAP estimates solved using the Gauss-Newton method

Perturbation Monte Carlo is utilised in computing Jacobians for
scattering
Simulations

5 x 5mm square computation domain

i, in scale [0.0001, 0.05] mm~" and ., in scale [0.01, 5] mm~'
Henyey-Greenstein scattering anisotropy parameter g = 0.9
Four illuminations with light coming from each of the sides in turn
Two noise levels at 0.1 % and 1%

R
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Absorption coeffcient [1/mm] Scattering cocficient [1/mm)

True parameters

Relative errors of the estimates §
E, =03%and E, =11% kS
E,. =22%and E, = 20% =
.é .

001 002 003 004 005
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Scattering coefficient [1/mm]

True parameters

Relative errors of the estimates §
E, =02%andE, =6.1% b
E, =19%and E, =11% =
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Summary

= Monte Carlo method for light transport can be utilised in the
inverse problem of QPAT

= More research is required for example to study the number of
photon packets required for forward solution and Jacobian, and
evaluating the reliability of the estimates
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Thank you for your attention!
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