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Introduction

In this talk, the inverse problem of deautoconvolution means
the reconstruction of a quadratically integrable real or complex
function x with compact support in the unit n-cube,

supp(x) ⊆ [0, 1]n ⊂ Rn (n ∈ N),

from noisy data yδ of its autoconvolution y = x ∗ x , or rewritten
the solution of the quadratic-type nonlinear operator equation

F (x) = y (∗)

for the Volterra integral operator of autoconvolution

[F (x)](s) := [x ∗ x ](s) =

∫
Rn

x(s − t) x(t)dt (s, t ∈ Rn) .

Here, F : D(F ) ⊆ X → Y maps between the Hilbert spaces

X := L2([0,1]n) and Y :=

{
L2([0,2]n) (full data case)
L2([0,1]n) (limited data case)

.
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In the full data case we observe the autoconvolution function

y(s) =

∫
[max(s−1,0),min(s,1)]n

x(s − t) x(t) dt for all s ∈ [0,2]n ,

whereas in the limited data case data are available only for

y(s) =

∫
[0,s]n

x(s − t) x(t) dt for all s ∈ [0,1]n .

In the latter case, non-negativity constraints D(F ) = D+ with

D+ := {x ∈ X = L2([0,1]n) : x ≥ 0 a.e. on [0,1]n}

play a prominent role. We always assume the data model

‖y − yδ‖Y ≤ δ , (δ > 0 noise lelvel) .

Note: With x , also −x always solves (∗) whenever D(F ) = X .
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The simplest application of deautoconvolution in n dimensions
is the recovery of the square integrable density function x of
an n-dimensional random vector X = (X1,X2, ...,Xn)T with
support in [0,1]n from data of the density function y = x ∗ x of
Y := X̃ + X̂, where X, X̃ and X̂ are assumed to be of i.i.d. type.

If the one-dimensional components Xi (i = 1,2, ...,n) are
completely uncorrelated, then the density is factored as

x(t1, t2, ..., tn) = x1(t1) x2(t2) ... xn(tn) .

For analytical and numerical results of 2D-deautoconvolution
for factored solutions see:

B Y. DENG, B. HOFMANN AND F. WERNER: Deautoconvolution in the 2D case.
Paper submitted to ETNA, Oct. 2022, arXiv:2210.14093v1.
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Concept of local ill-posedness for operator equations (∗):

Definition
The nonlinear operator equation (∗) with forward operator
F : D(F ) ⊆ X → Y mapping between the spaces X and Y
with domain D(F ) is called locally ill-posed at a solution point
x† ∈ D(F ) if there exist, for all closed balls Br (x†) with radius
r > 0 and center x†, sequences {xk} ⊂ Br (x†) ∩D(F ) such that

‖F (xk )−F (x†)‖Y → 0 , but ‖xk − x†‖X 6→ 0 , as k →∞ .

Otherwise, the operator equation is locally well-posed at x†.

B B.H. AND O. SCHERZER: Factors influencing the ill-posedness of nonlinear
problems. Inverse Problems 10 (1994), pp. 1277–1297.
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Local ill-posedness everywhere for deautconvolution:

Theorem
The operator equation (∗) of deautoconvolution with forward
operator F : D(F ) ⊆ X → Y is locally ill-posed everywhere
on D(F ) for both cases, namely the
full data case: X = L2([0,1]n), Y = L2([0,2]n) and D(F ) = X ,
as well as the
limited data case: X = L2([0,1]n), Y = L2([0,1]n),D(F ) = D+.

The complete proofs for real spaces L2([0,1]n) L2([0,2]n) and
arbitrary dimensions n ∈ N will be published soon in
B B.H., F. WERNER AND Y. DENG: On uniqueness and ill-posedness for the

deautoconvolution problem in the multidimensional case. In preparation, Fall 2022.

Proof for the full data case (n = 1, complex-valued functions):
see the next but one section.
Illustration for the full data case (n = 2, real-valued functions):
see the next slide.
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xk (t1,t2):=x†(t1,t2)+
√

2
8 sin(k2t21 ), x†(t1,t2)=

2π
3(2+π) (t1+1)(cos((t2−

1
2 )π)+1), yk−y=xk∗xk−x†∗x†
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Deautoconv. for spectra and nanostructures (n = 1)

Deautoconvolution of real functions over [0,1] is required for
the verification of

Appearance potential spectra (APS) in spectroscopy:
B J. BAUMEISTER: Deconvolution of appearance potential spectra. In: Direct and

inverse boundary value problems, Oberwolfach, 1989, Vol. 37 of Methoden Verfahren
Math. Phys., Peter Lang, Frankfurt am Main, 1991, pp. 1–13.

and Solid surfaces structures and Nanostructures:
B Z. DAI: Local regularization methods for inverse Volterra equations applicable to

the structure of solid surfaces. J. Integral Equations Appl. 25 (2013), pp. 223–252.

Analytical basics and regularization for this case:
B R. GORENFLO AND B.H.: On autoconvolution and regularization.

Inverse Problems 10 (1994), pp. 353–373.
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A glimpse of the limited data case F : L2(0,1)→ L2(0,1):
The operator

[F (x)](s) :=

∫ s

0
x(s − t)x(t)dt (0 ≤ s ≤ 1)

is not compact, but has a compact Fréchet derivative F ′(x)

[F ′(x) h](s) = 2
∫ s

0
x(s − t)h(t)dt (0 ≤ s ≤ 1)

satisfying the nonlinearity condition

‖F (x)− F (x†)− F ′(x†)(x − x†)‖L2(0,1) ≤ ‖x − x†‖2L2(0,1) .

No condition of tangential cone type

‖F (x)−F (x†)−F ′(x†)(x−x†)‖L2(0,1) ≤ σ(‖F (x)−F (x†)‖L2(0,1))

with index function σ could be shown.
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The theory by ENGL/KUNISCH/NEUBAUER 1989 yields for

T δ
α(x) := ‖F (x)− yδ‖2L2(0,1) + α ‖x − x̄‖2L2(0,1)

the convergence rate

‖xδα − x†‖L2(0,1) = O(
√
δ) as δ → 0

under the benchmark source condition

x†(t) = x̄(t) +

1∫
t

x†(s − t)v(s)ds (0 ≤ t ≤ 1, v ∈ L2(0,1)) ($)

and the smallness condition

‖v‖L2(0,1) < 1 . ($$)
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Proposition
In the case, x = 0 there is no x† 6= 0 which satisfies ($) – ($$).
Apart from the trivial case x = x†, the conditions ($) – ($$) can
only hold if x† 6= 0 and if the reference element x ∈ L2(0,1) is
chosen such that

‖x† − x‖L2(0,1)

‖x†‖L2(0,1)
< 1,

where x† − x is a cont. function on [0,1] with x(1) = x†(1).
A proper choice of x and the value x†(1) must be known.

For more details see:
B S. BÜRGER AND B.H.: About a deficit in low order convergence rates on the

example of autoconvolution. Applicable Analysis 94 (2015), pp. 231–243.
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Deautoconvolution in short-term laser optics (n = 1)

SPIDER = Spectral Phase Interferometry for Direct Electric
Field Reconstruction
Special version Self-Diffraction (SD) SPIDER was developed
by Max Born Institute for Nonlinear Optics, Berlin
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The physical model leads to an autoconvolution problem∫ min(s,1)

max(s−1,0)
k(s, t)x(s − t)x(t)dt = y(s) (0 ≤ s ≤ 2) (∗)

with the corresponding nonlinear forward operator

F : X = L2
C(0,1)→ Y = L2

C(0,2).

The complex-valued function x(t) = A(t) e iϕ(t) (0 ≤ t ≤ 1)
characterizing a short-term (femtosecond) laser pulse) is to be
determined from complex-valued measurement data of y ,
where the complex-valued continuous kernel k is available.

B D. GERTH, B.H., S. BIRKHOLZ, S. KOKE AND G. STEINMEYER: Regularization of
an autoconvolution problem in ultrashort laser pulse characterization. Inverse
Probl. Sci. Eng. 22 (2014), pp. 245–266.

B S. W. ANZENGRUBER, S. BÜRGER, B.H. AND G. STEINMEYER: Variational
regularization of complex deautoconvolution and phase retrieval in ultrashort laser
pulse characterization. Inverse Problems 32 (2016), 035002 (27pp).
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Figure: Measurement setup in self-diffraction spectral interferometry.

B J. FLEMMING: Variational Source Conditions, Quadratic Inverse Problems, Sparsity
Promoting Regularization. New Results in Modern Theory of Inverse Problems and an
Application in Laser Optics. Frontiers in Mathematics. Birkhäuser, Cham, 2018.

B. Hofmann The treatment of deautoconvolution as inverse problem, including the multidimensional case 21



The focus of SD-SPIDER is on phase retrieval, where
the first derivative (group delay) of the phase ϕ is of interest.

Tikhonov regul. solutions xδα minimizing discretized versions of

T δ
α(x) := ‖F (x)− yδ‖2L2

C(0,2)
+ αR(x)

can be helpful, where the penalty R(x), for example,
approximates the L2-norm square of the 2nd derivative of x .

Adapted a posteriori choices of α > 0 may use data of the
amplitude function A(t) from independent measurements.
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Typical reconstructed phase for δ = 0.1%, α = 0.11259:
The group delay is reconstructed reasonably well. The phase
has an offset of 2π. Only at the right boundary the curves do
not match while the left boundary is reconstructed in an
acceptable way.
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Let us consider for simplicity the case of a trivial kernel k ≡ 1 as

[F (x)](s) = [x∗x ](s) :=

∫ min(s,1)

max(s−1,0)
x(s−t)x(t)dt = y(s) (0 ≤ s ≤ 2) (∗).

Proposition
This deautoconvolution problem solving (∗) is locally ill-posed
everywhere on L2

C(0,1).

Proof: We consider on X = L2
C(0,1) the sequence xk = x† + hk

for hk (t) = r ei k2t2
with ‖hk‖X = r . We have hk ⇀ 0 in X and for

Y = L2
C(0,2) also ‖F (hk )‖Y → 0 as k →∞. The nl. operator F

is non-compact, but its Fréchet derivative with
F ′(x†) h = 2 x† ∗ h is compact for all x† ∈ L2

C(0,1).
As a consequence, we obtain ‖F ′(x†)hk‖Y → 0 and
‖F (xk )− F (x†)‖Y = ‖F (hk ) + F ′(x†)hk‖Y → 0 as k →∞.
This shows the local ill-posedness everywhere.
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Lemma (Titchmarsh’s convolution theorem)

For functions f ,g ∈ L2
C(R) with compact supports covered by

[0,∞), we have f ∗ g ∈ L2
C(R) with compact support in [0,∞),

where supp(f∗g) ⊆ supp(f) + supp(g). Notably, we conclude from

[f ∗ g](s) =

∞∫
0

f (s − t) g(t) dt = 0 a.e. s ∈ [0, γ] (γ ≥ 0)

that there are numbers γ1, γ2 ≥ 0 with γ1 + γ2 ≥ γ such that

f (t) = 0 a.e. t ∈ [0, γ1] and g(t) = 0 a.e. t ∈ [0, γ2].

B E. C. TITCHMARSH: The zeros of certain integral functions.
Proc. London Math. Soc. (2) 25 (1926), pp. 283–302.
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We derive from of Titchmarsh’s convolution theorem:

Theorem (solution twofoldness)

If for y ∈ Y = L2
C(0,2) the function x† ∈ X = L2

C(0,1) solves∫ min(s,1)

max(s−1,0)
x(s − t)x(t)dt = y(s) (0 ≤ s ≤ 2) , (∗)

then x† and −x† are the only solutions of this operator equation.

Proof: Let, for 0 6= h ∈ L2
C(0,1), the perturbed element x† + h

also solve (∗). Then [(x† + h) ∗ (x† + h)](s) = [x† ∗ x†](s) and

[(2x† + h) ∗ h](s) = 0 a.e. s ∈ [0,2] .

The lemma applies with f := 2x† + h, g := h and γ := 2.
For h 6= 0 we have γ2 < 1. This requires γ1 ≥ 1 with
[2x† + h](t) = 0 a.e. for t ∈ [0,1] and yields with h = −2x† the
element x† + h = −x† as the only second solution.
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The twofoldness theorem applies to n dimensions, see in detail:
B B.H., F. WERNER AND Y. DENG: On uniqueness and ill-posedness for the

deautoconvolution problem in the multidimensional case. In preparation, Fall 2022.

Lemma (Lions’ extension of Titchmarsh’s theorem)

Let the functions f ,g ∈ L2(Rn) with n ∈ N have compact
supports supp(f) and supp(g). Then we have f ∗ g ∈ L2(Rn) for
the convolution and that the inclusion

supp(f ∗ g) ⊆ supp(f) + supp(g) ,

but for the convex hulls of the supports even the equation
conv supp(f ∗ g) = conv supp(f) + conv supp(g)

hold true. In the special case that supp(f ∗ g) = ∅, i.e., the
function f ∗ g vanishes a.e. on Rn, then we have that one of the
sets supp(f) or supp(g) is the empty set, which means that at
least one of the underlying functions f or g vanishes a.e. on Rn.

B J. L. LIONS: Supports de produits de composition I (in French).
Comptes Rendus Acad. Sci. Paris 232 (1951), pp. 1530–1532.
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Variational regularization of deautoconvolution (n = 2)

For X=L2([0,1]2) and variational regularized solutions xδα of

T δ
α(x) := ‖F (x)− yδ‖2Y + αR(x)

there have been performed case studies for
full data case Y=L2([0,2]2) and limited data case Y=L2([0,1]2)

with penalty functionals

R1(x) := ‖x − x̄‖2X (classical norm square penalty),

R2(x) :=

∫
t∈[0,1]2

‖∇x‖22dt (gradient norm square penalty),

R3(x) :=

∫
t∈[0,1]2

‖∇x‖1dt (total variation penalty).

We present here only one example, more material in:
B Y. DENG, B. HOFMANN AND F. WERNER: Deautoconvolution in the 2D case.

Paper submitted to ETNA, Oct. 2022, arXiv:2210.14093v1.
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The example refers to the non-smooth, non-factored and
non-negative solution

x†(t1, t2) =

{
sin(1.5π(t1 + t2)) + 1 (0 ≤ t1 ≤ 0.5, 0 ≤ t2 ≤ 1)
1 (0.5 < t1 ≤ 1, 0 ≤ t2 ≤ 1)
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Estimated Hölder exponents κ for Hölder convergence rates

‖xδαopt
− x†‖X ∼ δκ as δ → 0

full data case limited data case
Y = L2([0, 2]2) Y = L2([0, 1]2)

Penalty R1(x) R2(x) R3(x) R1(x) R2(x) R3(x)
Hölder exponent κ 0.6059 0.6320 0.5083 0.3753 0.4522 0.3787
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Regularized solutions with optimal regularization parameters for different penalties in

limited data case with noise level δ ∼ 0.8% :
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