Statistical inverse learning and regularization by projection

\author{

Tapio Helin

 tapio.helin@lut.fi
 School of Engineering Science
 LUT University}

November 29, 2022

Setting the stage

Consider a linear inverse problem

$$
g=A f
$$

where $A: \mathcal{H} \rightarrow H_{k}$ is a one-to-one linear operator without continuous inverse.

Assumptions:

- H_{k} is a reproducing kernel Hilbert space (RKHS) induced by the kernel $k: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ such that $H_{k} \subset L^{2}(\mathcal{D}, \nu)$,
- ν is a (design) probability measure on $\mathcal{D} \subset \mathbb{R}^{d}$ and
- \mathcal{H} be a separable real Hilbert space.

TH, LS approximations in linear statistical inverse learning problems, arXiv:2211.12121

Setting the stage

Consider a linear inverse problem

$$
g=A f
$$

where $A: \mathcal{H} \rightarrow H_{k} \subset L^{2}(\mathcal{D}, \nu)$ is a one-to-one linear operator without continuous inverse.

Statistical inverse learning problem:

- $\left(x_{n}\right)_{i=1}^{N} \subset \mathcal{D}$ be i.i.d. in ν and
- noisy observations $\mathbf{y}^{\delta}=\left(y_{n}^{\delta}\right)_{n=1}^{N} \in \mathbb{R}^{N}$ such that

$$
y_{n}=g^{\dagger}\left(x_{n}\right)+\delta \epsilon_{n}, \quad n=1, \ldots, N
$$

where $g^{\dagger}=A f^{\dagger}$ and $\epsilon_{n} \sim \mathcal{N}(0,1)$

Find $f^{\dagger} \in \mathcal{H}$!

Some background

- Regularization by projection has an extensive literature
- Mathé-Pereverzev (2001): optimal discretization in Hilbert scales for the statistical inverse problem
- Blanchard-Mücke (2018): minimax optimal rates for spectral regularization methods
- Since 2018, extensions to non-linear and Hilbert scales (Mathé, Rastogi and others) and convex penalties (Burger, TH et al)

What to expect (as meta-theorems)

Suppose f_{α} is some probabilistic estimator of f^{\dagger}. Assume ν has suitable properties and f^{\dagger} satisfies a source condition.

Theorem (Probabilistic bound)

$$
\text { Let } 0<\eta<1 \text { satisfy } \log (1 / \eta) \leq \sqrt{N} \alpha^{r} \text {. Then }
$$

$$
\left\|f_{\alpha}-f^{\dagger}\right\|_{\mathcal{H}} \lesssim \alpha^{s}+\log \left(\frac{1}{\eta}\right) \cdot \frac{\delta}{\alpha^{t} \sqrt{N}}
$$

with probability greater than $1-\eta$.

Notice that the condition on η is equivalent to $\eta \geq \exp \left(-\sqrt{N} \alpha^{r}\right)$.

What to expect (as meta-theorems)

Recall that $\mathbb{E} X=\int_{0}^{\infty} \mathbb{P}(X>z) d z$ for positive X.
Interpolation: If

$$
\begin{aligned}
\mathbb{P}(X>a-b \log \eta) & \leq \eta \quad \text { for } \eta>\eta_{0} \quad \text { and } \\
\mathbb{P}\left(X>a^{\prime}-b^{\prime} \log \eta\right) & \leq \eta \quad \text { for } \eta \in[0,1]
\end{aligned}
$$

then

$$
\mathbb{E} X^{p} \lesssim a^{p}+b^{p}+\eta_{0}\left[\left(a^{\prime}\right)^{p}+\left(-b^{\prime} \log \eta_{0}\right)^{p}\right]
$$

Theorem (Bound in expectation)

$$
\mathbb{E}\left\|f^{\dagger}-f_{\alpha}\right\|_{\mathcal{H}}^{p} \lesssim m^{-p s}+\frac{\delta^{p} m^{p \gamma}}{N^{\frac{p}{2}}}+\text { l.o.t.. }
$$

Least-squares estimators

Assumption

Let $V_{m}, m \geq 1$, be finite-dimensional subspaces of \mathcal{H} such that

- $\operatorname{dim} V_{m}=m$,
- $V_{m} \subset V_{m+1}$ and
- $\overline{\cup_{m=1}^{\infty} V_{m}}=\mathcal{H}$.

Define the ML estimator on V_{m} :

$$
f_{m, N}=\underset{f \in V_{m}}{\arg \min }\left\|S_{X} A f-\mathbf{y}^{\delta}\right\|_{N}^{2}
$$

where $\|\cdot\|_{N}$ induced by $\langle\mathbf{x}, \mathbf{z}\rangle_{N}=\frac{1}{N} \sum_{n=1}^{N} x_{n} z_{n}$ with $\mathbf{x}, \mathbf{z} \in \mathbb{R}^{N}$.

Normal operator

Consider the normal sampling operator

$$
B_{X}=A^{*} S_{X}^{*} S_{X} A=A^{*}\left(\frac{1}{N} \sum_{n=1}^{N} K_{x_{n}} \otimes K_{x_{n}}\right) A: \mathcal{H} \rightarrow \mathcal{H}
$$

What is the limit as $N \uparrow \infty$? We denote

$$
A_{\nu}=\iota A: \mathcal{H} \rightarrow L^{2}(\mathcal{D}, \nu)
$$

where $\iota: H_{k} \rightarrow L^{2}(\mathcal{D}, \nu)$ is the canonical injection map, and introduce

$$
B_{\nu}:=A_{\nu}^{*} A_{\nu}=A^{*}\left(\int_{\mathcal{D}} K_{x} \otimes K_{x} \nu(d x)\right) A: \mathcal{H} \rightarrow \mathcal{H}
$$

Fundamental concentration result

Set $L_{x}:=A^{*} K_{x} \in \mathcal{H}$ for $x \in \mathcal{D}$. Recall

$$
B_{\nu}=\int_{\mathcal{D}} L_{x} \otimes L_{x} \nu(d x) \quad \text { and } \quad B_{X}=\frac{1}{N} \sum_{n=1}^{N} L_{x_{n}} \otimes L_{x_{n}}
$$

Corollary (Blanchard-Mücke, Prop. 5.5)
Suppose $B_{\nu}: \mathcal{H} \rightarrow \mathcal{H}$ is a Hilbert-Schmidt operator and $\left\|B_{\nu}\right\| \leq 1$. For any sample size $N>0$ and $0<\eta<1$ it holds that

$$
\left\|B_{\nu}-B_{X}\right\|_{\mathrm{HS}} \leq 6 \log \left(\frac{2}{\eta}\right) \frac{1}{\sqrt{N}}
$$

with probability greater than $1-\eta$.

Source condition and smoothness

Source condition: we assume f^{\dagger} in
$\Theta(s)=\left\{f \in \mathcal{H} \mid\left\|\left(I-P_{m}\right) f\right\|_{\mathcal{H}} \leq R_{0}(m+1)^{-s}\right.$ for all $\left.m \geq 0\right\} \subset \mathcal{H}$, where $s, R_{0}>0$ and P_{m} is an orthogonal projection to $V_{m} \subset \mathcal{H}$, $m \geq 1$ (use convention $P_{0}=0$).

Smoothness: Let $\mathcal{P}(\mathcal{D})$ denote all probability measures on domain $\mathcal{D} \subset \mathbb{R}^{d}$ and introduce

$$
\begin{aligned}
\mathcal{P}^{>}(t) & =\left\{\nu \in \mathcal{P}(\mathcal{D}) \mid \lambda_{\min }\left(P_{m} B_{\nu} P_{m}\right) \geq C m^{-t} \quad \forall m \in \mathbb{N}\right\} \\
\mathcal{P}^{\times} & =\left\{\nu \in \mathcal{P}(\mathcal{D}) \mid\left\|\left(P_{m} B_{\nu} P_{m}\right)^{\dagger} B_{\nu}\left(I-P_{m}\right)\right\| \leq C \quad \forall m \in \mathbb{N}\right\},
\end{aligned}
$$

where $\lambda_{\min }\left(P_{m} B_{\nu} P_{m}\right)=$ smallest eigenvalue.

Probabilistic concentration

Theorem

Suppose $\nu \in \mathcal{P}^{>}(t) \cap \mathcal{P}^{\times}$and $f^{\dagger} \in \Theta(s)$ for some constants $s, t>0$. Let $0<\eta<1$ satisfy

$$
\log \left(\frac{8}{\eta}\right) \leq \frac{1}{12} \sqrt{N} \lambda_{\min }\left(P_{m} B_{\nu} P_{m}\right)
$$

Then

$$
\left\|f_{m, N}-f^{\dagger}\right\|_{\mathcal{H}} \lesssim m^{-s}+\log \left(\frac{8}{\eta}\right) \cdot \delta\left(\frac{m^{t}}{N}+\frac{m^{\frac{t+1}{2}}}{\sqrt{N}}\right)
$$

with probability greater than $1-\eta$.

Proof schematics

- Decompose error:

$$
\begin{aligned}
f_{m, N}-f^{\dagger} & =\left(P_{m} B_{X} P_{m}\right)^{\dagger}\left(S_{X} A\right)^{*} \mathbf{y}^{\delta}-f^{\dagger} \\
& =\left(\left(P_{m} B_{X} P_{m}\right)^{\dagger} B_{X}-I\right) f^{\dagger}+\delta\left(P_{m} B_{X} P_{m}\right)^{\dagger}\left(S_{X} A\right)^{*} \epsilon \\
& =: I_{1}+I_{2}
\end{aligned}
$$

where I_{1} is bias/approximation error and I_{2} is variance.

- Find probabilistic bounds for I_{1} and I_{2} and combine

Brief insights: Bound on bias

Lemma (Modified concentration)

Let $0<\eta<1$ satisfy $\log \left(\frac{2}{\eta}\right) \leq \frac{1}{12} \sqrt{N} \lambda_{m}$. With probability greater than $1-\eta$, it holds that $\left\|B_{X}-B_{\nu}\right\|_{\mathrm{HS}} \leq \frac{1}{2} \lambda_{m}$.

Proposition

Suppose $\nu \in \mathcal{P}^{\times}$and $f^{\dagger} \in \Theta(s)$. Let $0<\eta<1$ satisfy $\log \left(\frac{8}{\eta}\right) \leq \frac{1}{12} \sqrt{N} \lambda_{m}$. Then $\left\|I_{1}\right\|_{\mathcal{H}} \lesssim m^{-s}$ with probability greater than $1-\eta / 4$.

Follows from

$$
I_{1}=\left(\left(P_{m} B_{X} P_{m}\right)^{\dagger} B_{X}-I\right) f^{\dagger}=[\underbrace{\left(P_{m} B_{X} P_{m}\right)^{\dagger} B_{X}}_{\text {lemma +assump. }}+I]\left(I-P_{m}\right) f^{\dagger}
$$

Brief insights: Bound on variance

Proposition

Suppose $\nu \in \mathcal{P}^{<}\left(t, D_{1}\right) \cap \mathcal{P}^{\times}\left(D_{2}\right)$ and let $0<\eta<1$ satisfy $\log \left(\frac{8}{\eta}\right) \leq \frac{1}{12} \sqrt{N} \lambda_{m}$. Then

$$
\left\|I_{2}\right\|_{\mathcal{H}} \lesssim \delta \log \left(\frac{8}{\eta}\right)\left(\frac{m^{t}}{N}+\frac{m^{\frac{t+1}{2}}}{\sqrt{N}}\right)
$$

with probability greater than $1-\frac{3}{4} \eta$.
Idea: decompose I_{2} into three terms
$I_{2}=\delta \underbrace{\left(P_{m} B_{X} P_{m}\right)^{-\frac{1}{2}}}_{=: K_{1}} \cdot \underbrace{\left(P_{m} B_{X} P_{m}\right)^{-\frac{1}{2}}\left(P_{m} B_{\nu} P_{m}\right)^{\frac{1}{2}}}_{=: K_{2}} \cdot \underbrace{\left(P_{m} B_{\nu} P_{m}\right)^{-\frac{1}{2}} A^{*} S_{X}^{*} \epsilon}_{=: K_{3}}$.

Probabilistic concentration: revisited

Theorem

Suppose $\nu \in \mathcal{P}^{>}(t) \cap \mathcal{P}^{\times}$and $f^{\dagger} \in \Theta(s)$ for some constants $s, t>0$. Let $0<\eta<1$ satisfy $\log \left(\frac{8}{\eta}\right) \leq \frac{1}{12} \sqrt{N} \lambda_{\min }\left(P_{m} B_{\nu} P_{m}\right)$.
Then

$$
\left\|f_{m, N}-f^{\dagger}\right\|_{\mathcal{H}} \lesssim m^{-s}+\log \left(\frac{8}{\eta}\right) \cdot \delta\left(\frac{m^{t}}{N}+\frac{m^{\frac{t+1}{2}}}{\sqrt{N}}\right)
$$

with probability greater than $1-\eta$.

Proof. If we have independent events E_{1} and E_{2} such that $\mathbb{P}\left(E_{1}\right) \geq 1-\frac{\eta}{4}$ and $\mathbb{P}\left(E_{2}\right) \geq 1-\frac{3 \eta}{4}$, respectively, then

$$
\mathbb{P}\left(E_{1} \cap E_{2}\right)=\left(1-\frac{\eta}{4}\right)\left(1-\frac{3 \eta}{4}\right)=1-\eta+\frac{3 \eta^{2}}{16} \geq 1-\eta
$$

How to derive expectations?

We define our nonlinear estimator according to

$$
g_{m, N}^{R}=T_{R}\left(f_{m, N}\right), \quad T_{R}(f)= \begin{cases}f & \text { if }\|f\| \leq R \\ 0, & \text { otherwise }\end{cases}
$$

where R is set below and will depend on m and δ.
Idea:

$$
\begin{aligned}
& \mathbb{E}\left\|f^{\dagger}-g_{m, N}^{R}\right\|_{\mathcal{H}}^{p} \\
& \lesssim \int_{\Omega_{+} \cap \Omega_{R}}\left\|f^{\dagger}-f_{m, N}\right\|_{\mathcal{H}}^{p} \mathbb{P}(\mathrm{~d} \omega)+R^{p}\left(\mathbb{P}\left(\Omega_{+} \cap \Omega_{R}^{c}\right)+\mathbb{P}\left(\Omega_{-}\right)\right)
\end{aligned}
$$

where

- $\Omega_{R}=\left\{\left\|f_{m, N}\right\|_{\mathcal{H}} \leq R\right\}$,
- $\Omega_{+}:=\left\{\omega \in \Omega:\left\|B_{X}-B_{\nu}\right\|_{\mathrm{HS}} \leq \frac{1}{2} \lambda_{m}\right\}$
- $\Omega_{-}=\Omega_{+}^{c}$.

Concentration in expectation

Theorem

Suppose $\nu \in \mathcal{P}^{>}(t) \cap \mathcal{P}^{\times}$and $f^{\dagger} \in \Theta(s)$ for $2 s-t+1>0$. For the parameter choice

$$
m=\left(\frac{\delta}{\sqrt{N}}\right)^{-\frac{2}{2 s+t+1}}
$$

and $R=R(m, \delta) \propto \delta / \lambda_{\min }\left(P_{m} B_{\nu} P_{m}\right)$, it holds that

$$
\left(\mathbb{E}_{\boldsymbol{\nu}_{N}}\left\|g_{m, N}^{R}-f^{\dagger}\right\|_{\mathcal{H}}^{p}\right)^{\frac{1}{p}} \lesssim\left(\frac{\delta}{\sqrt{N}}\right)^{\frac{2 s}{2 s+t+1}}=: a_{N, \delta}
$$

where $\boldsymbol{\nu}_{N}=\otimes_{n=1}^{N} \nu$.

Finally: Minimax optimality

Corollary

Let $s, t, R_{0}>0,2 s-t+1>0$, and $\mathcal{P}^{\prime}=\left\{\nu \in \mathcal{P} \mid \nu \in \mathcal{P}^{>}(t) \cap \mathcal{P}^{\times} \cap \mathcal{P}^{<}(t)\right\}$ and $\Theta^{\prime}=\Theta(s)$. Then $g_{m, N}^{R}$ with parameter choice rules on previous slide is strong minimax optimal in L^{p} for all $p>0$ over the class of admissible models specified by Θ^{\prime} and \mathcal{P}^{\prime}.

That is: the rate $a_{N, \delta}$ is also strong minimax lower rate of convergence such that

$$
\inf _{f^{\dagger} \in \Theta(s)} \liminf _{n \rightarrow \infty} \inf _{\hat{f}} \sup _{\nu \in \mathcal{P}^{\prime}} \frac{\left(\mathbb{E}_{\boldsymbol{\nu}_{N}}\left\|\hat{f}-f^{\dagger}\right\|_{\mathcal{H}}^{p}\right)^{\frac{1}{p}}}{a_{N, R_{0}, \delta}}>0
$$

where the infimum is taken over all estimators (measurable mappings) $\hat{f}: \mathcal{D}^{N} \times \mathbb{R}^{N} \rightarrow \mathcal{H}$.

Outlook

- Generalize to nonlinear problems (obviously)
- Consider subspaces induced by the (random) data; what if conditions such as

$$
\lambda_{\min }\left(P_{m} B_{\nu} P_{m}\right) \geq C m^{-t}
$$

are satisfied with given probability (think Krylov spaces, power method approximation to spectrum, data-driven projections etc).

- Sparse dictionaries etc.

TH, LS approximations in linear statistical inverse learning problems, arXiv:2211.12121

