Statistical inverse learning and regularization by projection

Tapio Helin

tapio.helin@lut.fi School of Engineering Science LUT University

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

November 29, 2022

Setting the stage

Consider a linear inverse problem

$$g = Af$$
,

where $A: \mathcal{H} \to H_k$ is a one-to-one linear operator without continuous inverse.

Assumptions:

- ▶ H_k is a reproducing kernel Hilbert space (RKHS) induced by the kernel $k : \mathcal{D} \times \mathcal{D} \to \mathbb{R}$ such that $H_k \subset L^2(\mathcal{D}, \nu)$,
- ν is a (design) probability measure on $\mathcal{D} \subset \mathbb{R}^d$ and
- \mathcal{H} be a separable real Hilbert space.

TH, LS approximations in linear statistical inverse learning problems, arXiv:2211.12121

Setting the stage

Consider a linear inverse problem

$$g = Af$$
,

where $A: \mathcal{H} \to H_k \subset L^2(\mathcal{D}, \nu)$ is a one-to-one linear operator without continuous inverse.

Statistical inverse learning problem:

•
$$(x_n)_{i=1}^N \subset \mathcal{D}$$
 be i.i.d. in ν and
• noisy observations $\mathbf{y}^{\delta} = (y_n^{\delta})_{n=1}^N \in \mathbb{R}^N$ such that

$$y_n = g^{\dagger}(x_n) + \delta \epsilon_n, \quad n = 1, \dots, N,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $g^{\dagger} = A f^{\dagger}$ and $\epsilon_n \sim \mathcal{N}(0,1)$

Find $f^{\dagger} \in \mathcal{H}!$

Some background

- Regularization by projection has an extensive literature
- Mathé–Pereverzev (2001): optimal discretization in Hilbert scales for the statistical inverse problem
- Blanchard–Mücke (2018): minimax optimal rates for spectral regularization methods
- Since 2018, extensions to non-linear and Hilbert scales (Mathé, Rastogi and others) and convex penalties (Burger, TH et al)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What to expect (as meta-theorems)

Suppose f_{α} is some probabilistic estimator of f^{\dagger} . Assume ν has suitable properties and f^{\dagger} satisfies a source condition.

Theorem (Probabilistic bound)

Let $0 < \eta < 1$ satisfy $\log(1/\eta) \le \sqrt{N}\alpha^r$. Then

$$\left\|f_{\alpha} - f^{\dagger}\right\|_{\mathcal{H}} \lesssim \alpha^{s} + \log\left(\frac{1}{\eta}\right) \cdot \frac{\delta}{\alpha^{t}\sqrt{N}}$$

with probability greater than $1 - \eta$.

Notice that the condition on η is equivalent to $\eta \ge \exp(-\sqrt{N\alpha^r})$.

What to expect (as meta-theorems)

Recall that $\mathbb{E}X = \int_0^\infty \mathbb{P}(X > z) dz$ for positive X.

Interpolation: If

$$\mathbb{P}(X > a - b \log \eta) \leq \eta \quad \text{for } \eta > \eta_0 \quad \text{and} \\ \mathbb{P}(X > a' - b' \log \eta) \leq \eta \quad \text{for } \eta \in [0, 1]$$

then

$$\mathbb{E}X^p \lesssim a^p + b^p + \eta_0 \left[(a')^p + (-b'\log\eta_0)^p
ight]$$

Theorem (Bound in expectation)

$$\mathbb{E}\|f^{\dagger}-f_{\alpha}\|_{\mathcal{H}}^{p}\lesssim m^{-ps}+\frac{\delta^{p}m^{p\gamma}}{N^{\frac{p}{2}}}+l.o.t..$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ■ ● ●

Least-squares estimators

Assumption

Let V_m , $m \ge 1$, be finite-dimensional subspaces of $\mathcal H$ such that

Define the ML estimator on
$$V_m$$
:

$$f_{m,N} = \underset{f \in V_m}{\operatorname{arg\,min}} \left\| S_X A f - \mathbf{y}^{\delta} \right\|_N^2,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\|\cdot\|_N$ induced by $\langle \mathbf{x}, \mathbf{z} \rangle_N = \frac{1}{N} \sum_{n=1}^N x_n z_n$ with $\mathbf{x}, \mathbf{z} \in \mathbb{R}^N$.

Normal operator

Consider the normal sampling operator

$$B_X = A^* S_X^* S_X A = A^* \left(\frac{1}{N} \sum_{n=1}^N K_{x_n} \otimes K_{x_n} \right) A : \mathcal{H} \to \mathcal{H}$$

What is the limit as $N \uparrow \infty$? We denote

$$A_{\nu} = \iota A : \mathcal{H} \to L^{2}(\mathcal{D}, \nu),$$

where $\iota: H_k \to L^2(\mathcal{D}, \nu)$ is the canonical injection map, and introduce

$$B_{
u} := A_{
u}^* A_{
u} = A^* \left(\int_{\mathcal{D}} K_x \otimes K_x
u(dx) \right) A : \mathcal{H} \to \mathcal{H}$$

Fundamental concentration result

Set
$$L_x := A^* K_x \in \mathcal{H}$$
 for $x \in \mathcal{D}$. Recall

$$B_{\nu} = \int_{\mathcal{D}} L_x \otimes L_x \nu(dx) \quad \text{and} \quad B_X = \frac{1}{N} \sum_{n=1}^N L_{x_n} \otimes L_{x_n}.$$

Corollary (Blanchard–Mücke, Prop. 5.5)

Suppose $B_{\nu} : \mathcal{H} \to \mathcal{H}$ is a Hilbert–Schmidt operator and $||B_{\nu}|| \leq 1$. For any sample size N > 0 and $0 < \eta < 1$ it holds that

$$\left\| B_{
u} - B_X
ight\|_{\mathrm{HS}} \leq 6 \log \left(rac{2}{\eta}
ight) rac{1}{\sqrt{N}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

with probability greater than $1 - \eta$.

Source condition and smoothness

Source condition: we assume f^{\dagger} in

$$\Theta(s) = \{ f \in \mathcal{H} \mid \|(I - P_m)f\|_{\mathcal{H}} \leq R_0 (m+1)^{-s} \text{ for all } m \geq 0 \} \subset \mathcal{H},$$

where $s, R_0 > 0$ and P_m is an orthogonal projection to $V_m \subset \mathcal{H}$, $m \ge 1$ (use convention $P_0 = 0$).

Smoothness: Let $\mathcal{P}(\mathcal{D})$ denote all probability measures on domain $\mathcal{D} \subset \mathbb{R}^d$ and introduce

$$\begin{aligned} \mathcal{P}^{>}(t) &= \left\{ \nu \in \mathcal{P}(\mathcal{D}) \mid \lambda_{\min}(P_m B_{\nu} P_m) \geq Cm^{-t} \quad \forall m \in \mathbb{N} \right\} \\ \mathcal{P}^{\times} &= \left\{ \nu \in \mathcal{P}(\mathcal{D}) \mid \left\| (P_m B_{\nu} P_m)^{\dagger} B_{\nu} (I - P_m) \right\| \leq C \quad \forall m \in \mathbb{N} \right\}, \end{aligned}$$

where $\lambda_{min}(P_m B_\nu P_m) =$ smallest eigenvalue.

Probabilistic concentration

Theorem

Suppose $\nu \in \mathcal{P}^{>}(t) \cap \mathcal{P}^{\times}$ and $f^{\dagger} \in \Theta(s)$ for some constants s, t > 0. Let $0 < \eta < 1$ satisfy

$$\log\left(\frac{8}{\eta}\right) \leq \frac{1}{12}\sqrt{N}\lambda_{\min}(P_m B_{\nu} P_m).$$

Then

$$\left\|f_{m,N}-f^{\dagger}\right\|_{\mathcal{H}} \lesssim m^{-s} + \log\left(\frac{8}{\eta}\right) \cdot \delta\left(\frac{m^{t}}{N} + \frac{m^{\frac{t+1}{2}}}{\sqrt{N}}\right)$$

with probability greater than $1 - \eta$.

Proof schematics

Decompose error:

$$f_{m,N} - f^{\dagger} = (P_m B_X P_m)^{\dagger} (S_X A)^* \mathbf{y}^{\delta} - f^{\dagger}$$

= $((P_m B_X P_m)^{\dagger} B_X - I) f^{\dagger} + \delta (P_m B_X P_m)^{\dagger} (S_X A)^* \epsilon$
=: $l_1 + l_2$,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where l_1 is bias/approximation error and l_2 is variance.

Find probabilistic bounds for l_1 and l_2 and combine

Brief insights: Bound on bias

Lemma (Modified concentration) Let $0 < \eta < 1$ satisfy $\log \left(\frac{2}{\eta}\right) \leq \frac{1}{12}\sqrt{N\lambda_m}$. With probability greater than $1 - \eta$, it holds that $\|B_X - B_\nu\|_{HS} \leq \frac{1}{2}\lambda_m$.

Proposition

Suppose $\nu \in \mathcal{P}^{\times}$ and $f^{\dagger} \in \Theta(s)$. Let $0 < \eta < 1$ satisfy $\log\left(\frac{8}{\eta}\right) \leq \frac{1}{12}\sqrt{N}\lambda_m$. Then $\|I_1\|_{\mathcal{H}} \lesssim m^{-s}$ with probability greater than $1 - \eta/4$.

Follows from

$$I_1 = \left(\left(P_m B_X P_m \right)^{\dagger} B_X - I \right) f^{\dagger} = \left[\underbrace{\left(P_m B_X P_m \right)^{\dagger} B_X}_{} + I \right] \left(I - P_m \right) f^{\dagger}$$

lemma+assump.

Brief insights: Bound on variance

Proposition

Suppose $\nu \in \mathcal{P}^{<}(t, D_1) \cap \mathcal{P}^{\times}(D_2)$ and let $0 < \eta < 1$ satisfy $\log\left(\frac{8}{\eta}\right) \leq \frac{1}{12}\sqrt{N}\lambda_m$. Then

$$\|I_2\|_{\mathcal{H}} \lesssim \delta \log\left(\frac{8}{\eta}\right) \left(\frac{m^t}{N} + \frac{m^{\frac{t+1}{2}}}{\sqrt{N}}\right),$$

with probability greater than $1 - \frac{3}{4}\eta$.

Idea: decompose I_2 into three terms

$$I_{2} = \delta \underbrace{(P_{m}B_{X}P_{m})^{-\frac{1}{2}}}_{=:K_{1}} \cdot \underbrace{(P_{m}B_{X}P_{m})^{-\frac{1}{2}}(P_{m}B_{\nu}P_{m})^{\frac{1}{2}}}_{=:K_{2}} \cdot \underbrace{(P_{m}B_{\nu}P_{m})^{-\frac{1}{2}}A^{*}S_{X}^{*}\epsilon}_{=:K_{3}}.$$

Probabilistic concentration: revisited

Theorem

Suppose $\nu \in \mathcal{P}^{>}(t) \cap \mathcal{P}^{\times}$ and $f^{\dagger} \in \Theta(s)$ for some constants s, t > 0. Let $0 < \eta < 1$ satisfy $\log\left(\frac{8}{\eta}\right) \leq \frac{1}{12}\sqrt{N}\lambda_{\min}(P_m B_{\nu} P_m)$. Then

$$\left\|f_{m,N}-f^{\dagger}\right\|_{\mathcal{H}} \lesssim m^{-s} + \log\left(\frac{8}{\eta}\right) \cdot \delta\left(\frac{m^{t}}{N} + \frac{m^{\frac{t+1}{2}}}{\sqrt{N}}\right)$$

with probability greater than $1 - \eta$.

Proof. If we have independent events E_1 and E_2 such that $\mathbb{P}(E_1) \ge 1 - \frac{\eta}{4}$ and $\mathbb{P}(E_2) \ge 1 - \frac{3\eta}{4}$, respectively, then

$$\mathbb{P}(E_1 \cap E_2) = \left(1 - \frac{\eta}{4}\right) \left(1 - \frac{3\eta}{4}\right) = 1 - \eta + \frac{3\eta^2}{16} \ge 1 - \eta.$$

How to derive expectations?

We define our nonlinear estimator according to

$$g_{m,N}^R = T_R(f_{m,N}), \qquad T_R(f) = egin{cases} f & ext{if } \|f\| \leq R, \\ 0, & ext{otherwise} \end{cases}$$

where R is set below and will depend on m and δ .

Idea:

$$\mathbb{E} \| f^{\dagger} - g_{m,N}^{R} \|_{\mathcal{H}}^{p}$$

 $\lesssim \int_{\Omega_{+} \cap \Omega_{R}} \| f^{\dagger} - f_{m,N} \|_{\mathcal{H}}^{p} \mathbb{P}(\mathrm{d}\omega) + R^{p}(\mathbb{P}(\Omega_{+} \cap \Omega_{R}^{c}) + \mathbb{P}(\Omega_{-})),$

where

$$\begin{aligned} & \Omega_R = \{ \|f_{m,N}\|_{\mathcal{H}} \le R \}, \\ & \square \Omega_+ := \{ \omega \in \Omega : \|B_X - B_\nu\|_{\mathrm{HS}} \le \frac{1}{2}\lambda_m \} \\ & \square \Omega_- = \Omega_+^c. \end{aligned}$$

Concentration in expectation

Theorem

Suppose $\nu \in \mathcal{P}^{>}(t) \cap \mathcal{P}^{\times}$ and $f^{\dagger} \in \Theta(s)$ for 2s - t + 1 > 0. For the parameter choice

$$m = \left(\frac{\delta}{\sqrt{N}}\right)^{-\frac{2}{2s+t+1}}$$

and $R = R(m, \delta) \propto \delta / \lambda_{min} (P_m B_
u P_m)$, it holds that

$$\left(\mathbb{E}_{\boldsymbol{\nu}_{N}}\left\|\boldsymbol{g}_{m,N}^{R}-\boldsymbol{f}^{\dagger}\right\|_{\mathcal{H}}^{\boldsymbol{p}}\right)^{\frac{1}{\boldsymbol{p}}}\lesssim\left(\frac{\delta}{\sqrt{N}}\right)^{\frac{2s}{2s+t+1}}=:\boldsymbol{a}_{N,\delta}$$

.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where $\boldsymbol{\nu}_N = \otimes_{n=1}^N \nu$.

Finally: Minimax optimality

Corollary

Let
$$s, t, R_0 > 0, 2s - t + 1 > 0$$
, and
 $\mathcal{P}' = \left\{ \nu \in \mathcal{P} \mid \nu \in \mathcal{P}^{>}(t) \cap \mathcal{P}^{\times} \cap \mathcal{P}^{<}(t) \right\}$ and $\Theta' = \Theta(s)$. Then
 $g_{m,N}^{R}$ with parameter choice rules on previous slide is strong
minimax optimal in L^p for all $p > 0$ over the class of admissible
models specified by Θ' and \mathcal{P}' .

That is: the rate $a_{N,\delta}$ is also strong minimax lower rate of convergence such that

$$\inf_{f^{\dagger} \in \Theta(s)} \liminf_{n \to \infty} \inf_{\hat{f}} \sup_{\nu \in \mathcal{P}'} \frac{\left(\mathbb{E}_{\nu_{N}} \left\| \hat{f} - f^{\dagger} \right\|_{\mathcal{H}}^{p} \right)^{\frac{1}{p}}}{a_{N,R_{0},\delta}} > 0,$$

where the infimum is taken over all estimators (measurable mappings) $\hat{f} : \mathcal{D}^N \times \mathbb{R}^N \to \mathcal{H}$.

Outlook

- Generalize to nonlinear problems (obviously)
- Consider subspaces induced by the (random) data; what if conditions such as

$$\lambda_{min}(P_m B_
u P_m) \ge Cm^{-t}$$

are satisfied with given probability (think Krylov spaces, power method approximation to spectrum, data-driven projections etc).

Sparse dictionaries etc.

TH, LS approximations in linear statistical inverse learning problems, arXiv:2211.12121