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Setting the stage

Consider a linear inverse problem

g = Af ,

where A : H → Hk is a one-to-one linear operator without
continuous inverse.

Assumptions:

▶ Hk is a reproducing kernel Hilbert space (RKHS) induced by
the kernel k : D ×D → R such that Hk ⊂ L2(D, ν),

▶ ν is a (design) probability measure on D ⊂ Rd and

▶ H be a separable real Hilbert space.
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Setting the stage

Consider a linear inverse problem

g = Af ,

where A : H → Hk ⊂ L2(D, ν) is a one-to-one linear operator
without continuous inverse.

Statistical inverse learning problem:

▶ (xn)
N
i=1 ⊂ D be i.i.d. in ν and

▶ noisy observations yδ = (y δn )
N
n=1 ∈ RN such that

yn = g †(xn) + δϵn, n = 1, . . . ,N,

where g † = Af † and ϵn ∼ N (0, 1)

Find f † ∈ H!



Some background

▶ Regularization by projection has an extensive literature

▶ Mathé–Pereverzev (2001): optimal discretization in Hilbert
scales for the statistical inverse problem

▶ Blanchard–Mücke (2018): minimax optimal rates for spectral
regularization methods

▶ Since 2018, extensions to non-linear and Hilbert scales
(Mathé, Rastogi and others) and convex penalties (Burger,
TH et al)



What to expect (as meta-theorems)

Suppose fα is some probabilistic estimator of f †. Assume ν has
suitable properties and f † satisfies a source condition.

Theorem (Probabilistic bound)

Let 0 < η < 1 satisfy log (1/η) ≤
√
Nαr . Then∥∥∥fα − f †

∥∥∥
H
≲ αs + log

(
1

η

)
· δ

αt
√
N

with probability greater than 1− η.

Notice that the condition on η is equivalent to η ≥ exp(−
√
Nαr ).



What to expect (as meta-theorems)

Recall that EX =
∫∞
0 P(X > z)dz for positive X .

Interpolation: If

P(X > a− b log η) ≤ η for η > η0 and

P(X > a′ − b′ log η) ≤ η for η ∈ [0, 1]

then
EX p ≲ ap + bp + η0

[
(a′)p + (−b′ log η0)

p
]

Theorem (Bound in expectation)

E∥f † − fα∥pH ≲ m−ps +
δpmpγ

N
p
2

+ l.o.t..



Least-squares estimators

Assumption

Let Vm, m ≥ 1, be finite-dimensional subspaces of H such that

▶ dimVm = m,

▶ Vm ⊂ Vm+1 and

▶ ∪∞
m=1Vm = H.

Define the ML estimator on Vm:

fm,N = argmin
f ∈Vm

∥∥∥SXAf − yδ
∥∥∥2
N
,

where ∥ · ∥N induced by ⟨x, z⟩N = 1
N

∑N
n=1 xnzn with x, z ∈ RN .



Normal operator

Consider the normal sampling operator

BX = A∗S∗
XSXA = A∗

(
1

N

N∑
n=1

Kxn ⊗ Kxn

)
A : H → H

What is the limit as N ↑ ∞? We denote

Aν = ιA : H → L2(D, ν),

where ι : Hk → L2(D, ν) is the canonical injection map, and
introduce

Bν := A∗
νAν = A∗

(∫
D
Kx ⊗ Kxν(dx)

)
A : H → H



Fundamental concentration result

Set Lx := A∗Kx ∈ H for x ∈ D. Recall

Bν =

∫
D
Lx ⊗ Lxν(dx) and BX =

1

N

N∑
n=1

Lxn ⊗ Lxn .

Corollary (Blanchard–Mücke, Prop. 5.5)

Suppose Bν : H → H is a Hilbert–Schmidt operator and ∥Bν∥ ≤ 1.
For any sample size N > 0 and 0 < η < 1 it holds that

∥Bν − BX∥HS ≤ 6 log

(
2

η

)
1√
N

with probability greater than 1− η.



Source condition and smoothness

Source condition: we assume f † in

Θ(s) = {f ∈ H | ∥(I − Pm)f ∥H ≤ R0(m+1)−s for all m ≥ 0} ⊂ H,

where s,R0 > 0 and Pm is an orthogonal projection to Vm ⊂ H,
m ≥ 1 (use convention P0 = 0).

Smoothness: Let P(D) denote all probability measures on domain
D ⊂ Rd and introduce

P>(t) =
{
ν ∈ P(D)

∣∣ λmin(PmBνPm) ≥ Cm−t ∀m ∈ N
}

P× =
{
ν ∈ P(D)

∣∣ ∥∥∥(PmBνPm)
†Bν(I − Pm)

∥∥∥ ≤ C ∀m ∈ N
}
,

where λmin(PmBνPm) = smallest eigenvalue.



Probabilistic concentration

Theorem

Suppose ν ∈ P>(t) ∩ P× and f † ∈ Θ(s) for some constants
s, t > 0. Let 0 < η < 1 satisfy

log

(
8

η

)
≤ 1

12

√
Nλmin(PmBνPm).

Then ∥∥∥fm,N − f †
∥∥∥
H
≲ m−s + log

(
8

η

)
· δ

(
mt

N
+

m
t+1
2

√
N

)

with probability greater than 1− η.



Proof schematics

▶ Decompose error:

fm,N − f † = (PmBXPm)
† (SXA)

∗yδ − f †

=
(
(PmBXPm)

† BX − I
)
f † + δ (PmBXPm)

† (SXA)
∗ϵ

=: I1 + I2,

where I1 is bias/approximation error and I2 is variance.

▶ Find probabilistic bounds for I1 and I2 and combine



Brief insights: Bound on bias

Lemma (Modified concentration)

Let 0 < η < 1 satisfy log
(
2
η

)
≤ 1

12

√
Nλm. With probability

greater than 1− η, it holds that ∥BX − Bν∥HS ≤ 1
2λm.

Proposition

Suppose ν ∈ P× and f † ∈ Θ(s). Let 0 < η < 1 satisfy

log
(
8
η

)
≤ 1

12

√
Nλm. Then ∥I1∥H ≲ m−s with probability greater

than 1− η/4.

Follows from

I1 =
(
(PmBXPm)

† BX − I
)
f † =

[
(PmBXPm)

†BX︸ ︷︷ ︸
lemma+assump.

+I
]
(I − Pm)f

†



Brief insights: Bound on variance

Proposition

Suppose ν ∈ P<(t,D1) ∩ P×(D2) and let 0 < η < 1 satisfy

log
(
8
η

)
≤ 1

12

√
Nλm. Then

∥I2∥H ≲ δ log

(
8

η

)(
mt

N
+

m
t+1
2

√
N

)
,

with probability greater than 1− 3
4η.

Idea: decompose I2 into three terms

I2 = δ (PmBXPm)
− 1

2︸ ︷︷ ︸
=:K1

· (PmBXPm)
− 1

2 (PmBνPm)
1
2︸ ︷︷ ︸

=:K2

· (PmBνPm)
− 1

2A∗S∗
Xϵ︸ ︷︷ ︸

=:K3

.



Probabilistic concentration: revisited

Theorem

Suppose ν ∈ P>(t) ∩ P× and f † ∈ Θ(s) for some constants

s, t > 0. Let 0 < η < 1 satisfy log
(
8
η

)
≤ 1

12

√
Nλmin(PmBνPm).

Then ∥∥∥fm,N − f †
∥∥∥
H
≲ m−s + log

(
8

η

)
· δ

(
mt

N
+

m
t+1
2

√
N

)

with probability greater than 1− η.

Proof. If we have independent events E1 and E2 such that
P(E1) ≥ 1− η

4 and P(E2) ≥ 1− 3η
4 , respectively, then

P(E1 ∩ E2) =
(
1− η

4

)(
1− 3η

4

)
= 1− η +

3η2

16
≥ 1− η.



How to derive expectations?
We define our nonlinear estimator according to

gR
m,N = TR(fm,N), TR(f ) =

{
f if ∥f ∥ ≤ R,

0, otherwise

where R is set below and will depend on m and δ.

Idea:

E∥f † − gR
m,N∥

p
H

≲
∫
Ω+∩ΩR

∥f † − fm,N∥pH P(dω) + Rp(P (Ω+ ∩ Ωc
R) + P(Ω−)),

where

▶ ΩR = {∥fm,N∥H ≤ R},
▶ Ω+ :=

{
ω ∈ Ω : ∥BX − Bν∥HS ≤ 1

2λm

}
▶ Ω− = Ωc

+.



Concentration in expectation

Theorem

Suppose ν ∈ P>(t) ∩ P× and f † ∈ Θ(s) for 2s − t + 1 > 0. For
the parameter choice

m =

(
δ√
N

)− 2
2s+t+1

and R = R(m, δ) ∝ δ/λmin(PmBνPm), it holds that

(
EνN

∥∥∥gR
m,N − f †

∥∥∥p
H

) 1
p
≲

(
δ√
N

) 2s
2s+t+1

=: aN,δ

where νN = ⊗N
n=1ν.

.



Finally: Minimax optimality

Corollary

Let s, t,R0 > 0, 2s − t + 1 > 0, and

P ′ =
{
ν ∈ P

∣∣∣ ν ∈ P>(t) ∩ P× ∩ P<(t)
}
and Θ′ = Θ(s). Then

gR
m,N with parameter choice rules on previous slide is strong

minimax optimal in Lp for all p > 0 over the class of admissible
models specified by Θ′ and P ′.

That is: the rate aN,δ is also strong minimax lower rate of
convergence such that

inf
f †∈Θ(s)

lim inf
n→∞

inf
f̂

sup
ν∈P ′

(
EνN

∥∥∥f̂ − f †
∥∥∥p
H

) 1
p

aN,R0,δ
> 0,

where the infimum is taken over all estimators (measurable
mappings) f̂ : DN × RN → H.



Outlook

▶ Generalize to nonlinear problems (obviously)

▶ Consider subspaces induced by the (random) data; what if
conditions such as

λmin(PmBνPm) ≥ Cm−t

are satisfied with given probability (think Krylov spaces, power
method approximation to spectrum, data-driven projections
etc).

▶ Sparse dictionaries etc.
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