

DATA-DRIVEN MODEL CORRECTIONS AND LEARNED ITERATIVE RECONSTRUCTION

Andreas Hauptmann

University of Oulu

Research Unit of Mathematical Sciences

&

University College London

Department of Computer Science

Special Semester on Tomography Across the Scales

Inverse Problems on Large Scales 30 November 2022

Andreas Hauptmann

University of Oulu

Research Unit of Mathematical Sciences

&

University College London

Department of Computer Science

Special Semester on Tomography Across the Scales Inverse Problems on Large Scales

30 November 2022

UNIVERSITY OF CAMBRIDGE

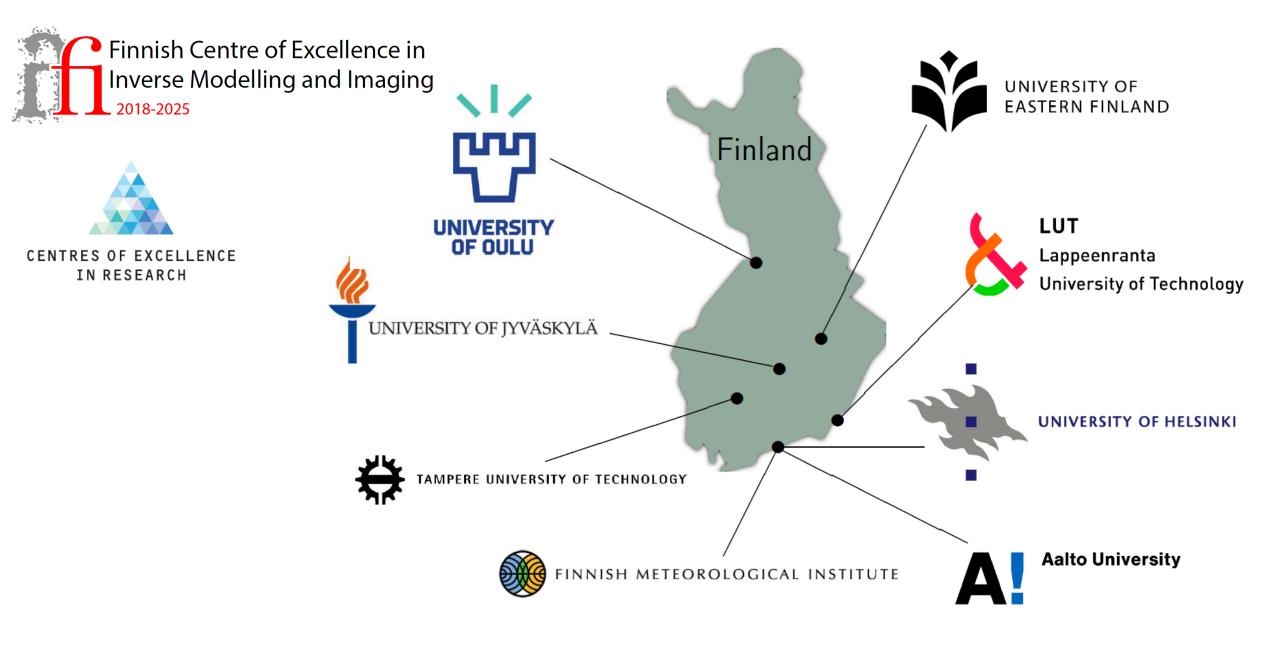
UNIVERSITY OF EASTERN FINLAND

Sebastian Lunz Carola-Bibiane Schönlieb

Tanja Tarvainen

Simon Arridge

Jenni Poimala



X

 UCL

LEARNED ITERATIVE RECONSTRUCTIONS

Classic variational approach: find x from measurement y as a minimiser of

$$\in rgmin_{x'} \left\{ J(x')
ight\} = rgmin_{x'} \left\{ \mathcal{D}(x';y) + \lambda \mathcal{R}(x')
ight\}.$$

$$\mathcal{D}(x; y) = \frac{1}{2} \|\mathcal{A}x - y\|_2^2$$

and
$$\nabla \mathcal{D}(x; y) := \mathcal{A}^*(\mathcal{A}x - y)$$

A simple learned gradient-like scheme would be given by

$$x_{i+1} = \mathcal{G}_{\theta_i}(x_i, \mathcal{A}^*(\mathcal{A} x_i - y)), \ i = 0, \ldots, N-1.$$

Defines a reconstruction operator when stopped after N iterates:

$$\mathcal{A}^{\dagger}_{\theta}(y) := x_{N}$$
 where $\theta = (\theta_{0}, \dots, \theta_{N-1})$

and initialisation $x_0 = \mathcal{A}^{\dagger}(g)$.

[Adler & Öktem, 2018], [Putzky & Welling, 2017]

TRAINING PROCEDURE: END-TO-END

Given supervised training data $(x^{(j)}, y^{(j)}) \in X \times Y$.

Then an optimal parameter is found by

 $\min_{\theta} \frac{1}{m} \sum_{j=1}^{m} \mathsf{L}_{\theta}(x^{(j)}, y^{(j)})$

where the loss function is given as

$$L_{ heta}(x,y) := \left\| \mathcal{A}_{ heta}^{\dagger}(y) - x
ight\|_X^2 \quad ext{for } (x,y) \in X imes Y.$$

Note: Computing the gradient of the loss function w.r.t. θ requires performing back-propagation through all of the unrolled iterates i = 0, ..., N - 1.

PROBLEM WITH END-TO-END TRAINING?

- End-to-end training is not scalable depending on two factors:
 - Memory limitations: Standard CNN creates "copies" of image $\rightarrow O(n^d)$ Gradient check-pointing or invertible networks [Putzky&Welling, 2019], [Etmann, Ke, Schönlieb, 2020]
 - Operator evaluation: Repeated application of forward/adjoint operator
 No direct work-around for "non-trivial" operators

Possible solution: Greedy (sequential) training of each iterate

Separate evaluation of forward operator from the training task.

、」/ [079] して UNIVERSITY OF OULU

TRAINING PROCEDURE: GREEDY APPROACH

Given supervised training data $(x^{(j)}, y^{(j)}) \in X \times Y$.

Then an optimal parameter is found by

 $\min_{\theta} \frac{1}{m} \sum_{j=1}^{m} \mathsf{L}_{\theta}(x^{(j)}, y^{(j)})$

where the loss function is given as

$$\mathsf{L}_{ heta}(x,y) := \left\| \mathcal{A}_{ heta}^{\dagger}(y) - x
ight\|_X^2 \quad ext{for } (x,y) \in X imes Y.$$

Greedy training: Require iterate-wise optimality.

Given only a loss function for the *i*:th unrolled iterate:

$$\mathsf{L}_{\theta_i}(x_i, y) = \left\| \mathcal{G}_{\theta_i}(x_i, \mathcal{A}^*(\mathcal{A}(x_i) - y)) - x \right\|_X^2$$

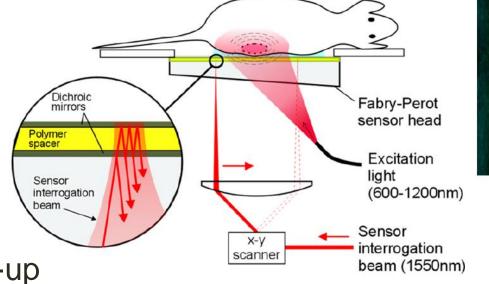
where
$$x_i := G_{\theta_{i-1}}(x_{i-1}, \mathcal{A}^*(\mathcal{A}(x_{i-1}) - y)).$$

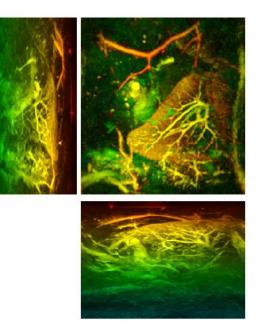
This constitutes an upper bound to end-to-end networks.

Note: Computing the gradient of the loss function w.r.t. θ requires performing back-propagation through all of the unrolled iterates $i = 0, \ldots, N - 1$.

LIMITED-VIEW PHOTOACOUSTIC TOMOGRAPHY

- Fabry Perot polymer film ultrasound sensor is a planar interferometer
 - → Limited-view setting
 - ➔ Sparse-sampling for speed-up

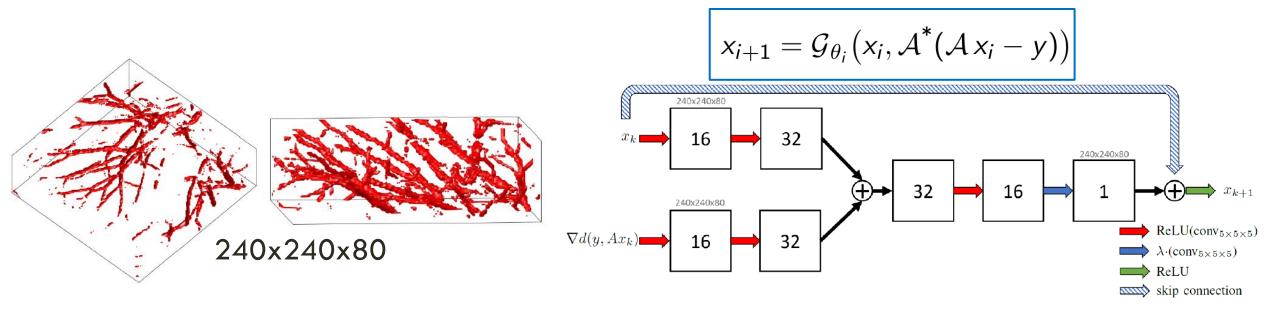




DCL

TRAINING ON VESSEL PHANTOMS

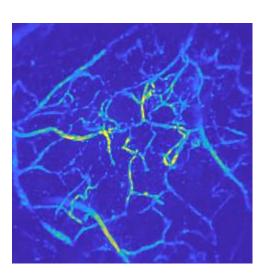
- With the computation of the gradient, total training time for 5 iterations takes 7 days
- \blacktriangleright Compare: End-to-end training would take about \sim 140 days



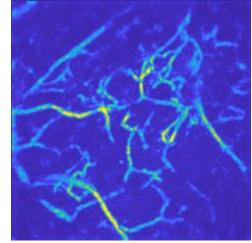
APPLICATION TO HUMAN IN-VIVO MEASUREMENTS

- Reduces reconstruction time by a factor 4 (by reduction of iterations), but reconstruction time still limited by operator evaluation.
- Considerably improves reconstruction quality

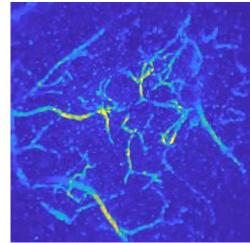
Reference Fully-sampled data



Learned Reconstruction 4x sub-sampled, 5 Iterations, **Time: 2.5 min.**, PSNR: 41.40



Total Variation Reconstruction 4x sub-sampled, 20 Iterations, Time: 10 min., PSNR: 38.05



[Hauptmann et al., IEEE Transactions on Medical Imaging, 2018]

UTILISING REDUCED MODELS

Can we formulate a principled way to achieve scalability and computational speed-up, using model reduction techniques?

Here we understand reduced models in a broad sense:

> To achieve a reduction in computational complexity by coarser discretisations, analytic approximations or computationally more efficient formulations.

When using a reduced/approximate model, we typically suffer a loss of accuracy. This needs to be compensated for.

>In the following we will discuss two different paradigms to compensate for the introduced approximation errors: implicit or explicit

UCL

UTILISING AN APPROXIMATE MODEL

If the measurement points lie on a plane $(x_3 = 0)$, then the measurement $y = p(\mathbf{x}, t)$ there can be related to x by

$$p(x_1, x_2, t) = \frac{1}{c^2} \mathcal{F}_{k_1, k_2} \left\{ \left\{ \mathcal{C}_{\omega} \left\{ B(k_1, k_2, \omega) \tilde{x}(k_1, k_2, \omega) \right\} \right\} \right\},\$$

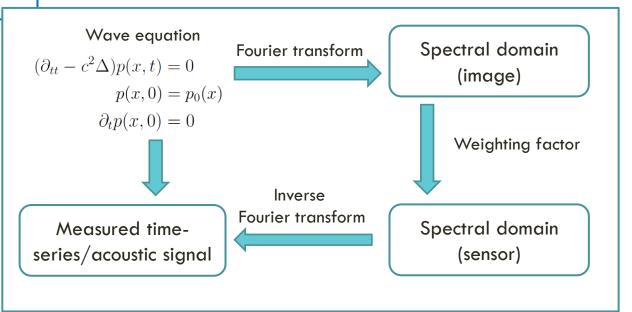
where $\tilde{x}(k_1, k_2, \omega)$ is obtained via the dispersion relation from the 3D Fourier transform of x.

The weighting factor,

$$B(k_1,k_1,\omega) = \omega / \left(\operatorname{sgn}(\omega) \sqrt{(\omega/c)^2 - k_1^2 - k_1^2} \right),$$

contains an integrable singularity.

 \Rightarrow On a discrete rectangular grid aliasing in $p(x_1, x_2, t)$ results.



[Köstli et al., 2001], [Cox and Beard, 2005]

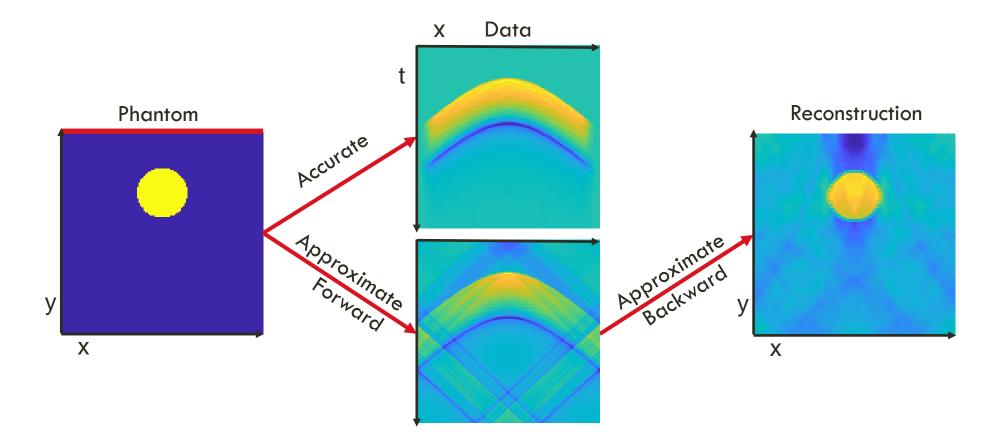
UCL

UTILISING A REDUCED MODEL

•Bottleneck of iterative reconstruction time is the application of the forward model

>Use a fast approximate model in the iterative reconstruction instead (8x faster)

>But approximate model introduces additional artefacts



UCL

UTILISING A REDUCED MODEL: IMPLICIT CORRECTION

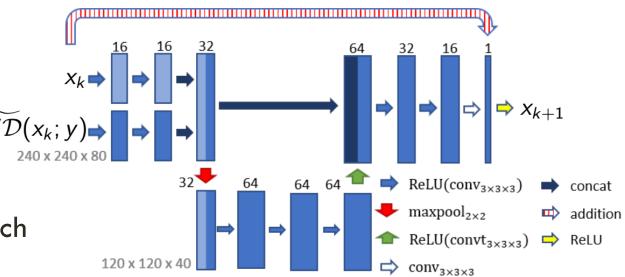
We formulate the updates now using an approximate gradient

$$x_{k+1} = \mathcal{G}_{\theta_k}(\widetilde{\nabla \mathcal{D}}(x_k; y), x_k)$$

with

$$\widetilde{\nabla \mathcal{D}}(x_k; y) := \widetilde{A}^* (\widetilde{A} x_k - y).$$

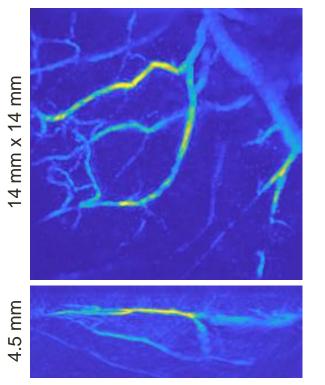
- Trained supervised on reference reconstruction from fully sampled data
- 5 iterates are trained in a greedy approach



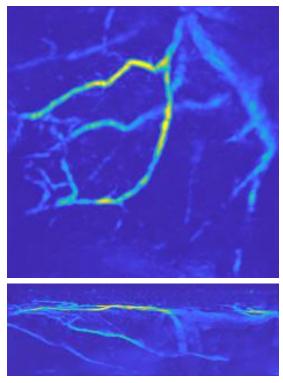
ACCELERATION BY USING AN APPROXIMATE MODEL

• Reduces reconstruction time by another factor of ~ 8 ($\rightarrow 32x$ compared to TV)

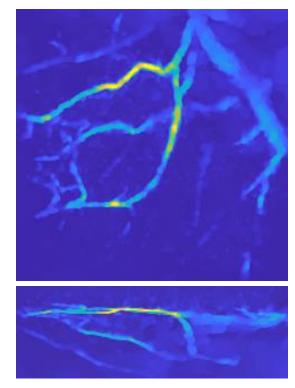
Reference Fully-sampled data



Learned Reconstruction 4x sub-sampled, 5 Iterations, **Time: 20 sec.**, PSNR: 42.18



Total Variation Reconstruction 4x sub-sampled, 20 Iterations, Time: 10 min., PSNR: 41.16



[Hauptmann et al., Machine Learning for Medical Image Reconstruction, 2018]

UCL

LEARNING AN EXPLICIT MODEL CORRECTION

- The previous approach can be understood as an implicit model correction
 - →Works well, but provides limited insight

- In the following we investigate the question: Can we learn an explicit (nonlinear) model correction?
 - Can we then solve a variational problem and establish convergence guarantees?

LEARNING AN EXPLICIT MODEL CORRECTION

Consider $F_{\Theta} : Y \to Y$, applied as a correction to \widetilde{A} . Then the corrected operator is a composition

 $A_{\Theta} = F_{\Theta} \circ \widetilde{A}.$

Ideally, we would like $A_{\Theta}(x) \approx Ax$ for some $x \in X$ of interest.

The primary question is: can A_{Θ} be (subsequently) used in a variational setting

$$x^* = \operatorname*{arg\,min}_{x\in X} rac{1}{2} \|A_{\Theta}(x) - y\|_Y^2 + \lambda R(x).$$

A: Accurate model \widetilde{A} : Approximate model F_{Θ} : Forward correction A_{Θ} : Corrected model

INCORPORATION INTO VARIATIONAL APPROACHES

We require that the solutions of the two minimisation problems, involving the operator correction A_{Θ} and A, are close

$$\underset{x\in X}{\operatorname{arg\,min}} \frac{1}{2} \|A_{\Theta}(x) - y\|_{Y}^{2} + \lambda R(x) \approx \underset{x\in X}{\operatorname{arg\,min}} \frac{1}{2} \|Ax - y\|_{Y}^{2} + \lambda R(x).$$

We consider first order methods to draw connections to learned iterative schemes.

Using a classic gradient descent scheme:

$$x_{k+1} = x_k - \gamma_k \nabla_x \left(\frac{1}{2} \|Ax_k - y\|_X^2 + \lambda R(x_k) \right).$$

Thus, we need a gradient consistency of the approximate gradient

$$\nabla_{x} \|A_{\Theta}(x) - y\|_{X}^{2} \approx \nabla_{x} \|Ax - y\|_{X}^{2}.$$

A: Accurate model \widetilde{A} : Approximate model F_{Θ} : Forward correction A_{Θ} : Corrected model

UCL

GRADIENT CONSISTENCY AND THE ADJOINT PROBLEM

Given a nonlinear correction operator F_{Θ} and the corrected operator $A_{\Theta} = F_{\Theta} \circ \widetilde{A}$ we obtain the following gradient

$$\frac{1}{2}\nabla_{x}\|A_{\Theta}(x)-y\|_{2}^{2}=\widetilde{A}^{*}\left[DF_{\Theta}(\widetilde{A}x)\right]^{*}\left(F_{\Theta}(\widetilde{A}x)-y\right).$$

 $DF_{\Theta}(y)$ is the Fréchet derivative of F_{Θ} at y, which is a linear operator $Y \to Y$.

That means, to satisfy the gradient consistency condition, we would need

$$\widetilde{A}^*\left[DF_{\Theta}(\widetilde{A}x)\right]^*\left(F_{\Theta}(\widetilde{A}x)-y\right)\approx A^*(Ax-y).$$

However this solution comes with its own drawback: the range of the corrected fidelity term's gradient is limited by the range of the approximate adjoint, $\mathbf{rng}(\widetilde{A}^*)$. Thus, the key difficulty lies in the differences of the range of the accurate and the approximate adjoints (rather than the differences in the forward operators themselves). A: Accurate model \widetilde{A} : Approximate model F_{Θ} : Forward correction A_{Θ} : Corrected model

A FORWARD-ADJOINT CORRECTION

To achieve a gradient consistent model correction, we need two networks instead:

$$A_{\Theta} := F_{\Theta} \circ \widetilde{A}, \quad A_{\Phi}^* := G_{\Phi} \circ \widetilde{A}^*.$$

The corrected operators can then be used to compute approximate gradients:

$$A^*(Ax-y)\approx \left(G_{\Phi}\circ\widetilde{A}^*\right)\left(F_{\Theta}(\widetilde{A}x)-y\right).$$

ESSENTIAL TOOL: GRADIENT ALIGNMENT

We can consider now the two functionals

$$\mathcal{L}(x) := \frac{1}{2} \|Ax - y\|_{Y}^{2} + \lambda R(x), \ \mathcal{L}_{\Theta}(x) := \frac{1}{2} \|A_{\Theta}(x) - y\|_{Y}^{2} + \lambda R(x)$$

and aim to establish a convergence result using the forward-adjoint correction.

For that purpose, we need the alignment of the gradients

$$\cos \Phi_{v}(x) := rac{\langle
abla \mathcal{L}(x),
abla^{\dagger} \mathcal{L}_{\Theta}(x)
angle}{\|
abla \mathcal{L}(x) \|^{2}}.$$

With a slight abuse of notation, we denote the corrected gradient $\nabla^{\dagger} \mathcal{L}_{\Theta}(x) := A_{\Phi}^*(A_{\Theta}(x) - y) + \lambda \nabla R(x).$

CONVERGENCE RESULT

Theorem (Convergence to a neighbourhood of \hat{x})

Let $\epsilon > 0$ and suitable δ (controlling the subdifferential of \mathcal{L}_{Θ}). Assume adjoint and forward operator are fit up to a $\delta/4$ -margin, i.e.

$$\|A\|_{X \to Y} \|(A - A_{\Theta})(x_n)\|_Y < \delta/4, \quad \|(A^* - A_{\Phi}^*)(A_{\Theta}(x_n) - y)\|_X < \delta/4$$

for all y and x_n obtained during gradient descent over \mathcal{L}_{Θ} . Then eventually the gradient descent dynamics over \mathcal{L}_{Θ} will reach an ϵ neighbourhood of the accurate solution \hat{x} . $\mathcal{L}: "Accurate" functional$ $\mathcal{L}_{\Theta}: "Corrected" functional$ $\nabla^{\dagger}\mathcal{L}_{\Theta}: Corrected gradient$ $\widehat{x}: Minimiser of <math>\mathcal{L}$

A: Accurate model \widetilde{A} : Approximate model F_{Θ} : Forward correction A_{Θ} : Corrected model G_{Φ} : Adjoint correction A^*_{Φ} : Corrected Adjoint

[Lunz, Hauptmann, Tarvainen, Schönlieb, Arridge, SIAM J. Imaging Sciences, 2021]

TRAINING REGIME

Given the forward and adjoint corrections:

$$A_{\Theta} := F_{\Theta} \circ \widetilde{A}, \quad A_{\Phi}^* := G_{\Phi} \circ \widetilde{A}^*.$$

And training samples (x^i, Ax^i) , we can then train the corrections:

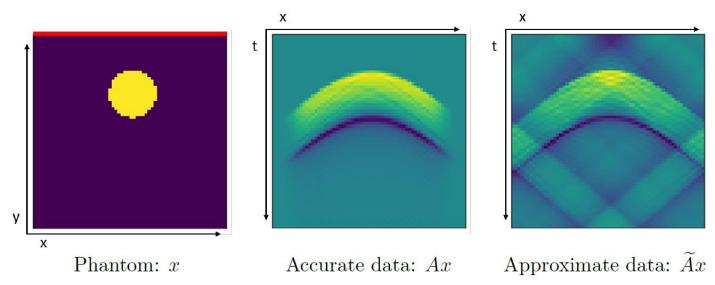
A: Accurate model \widetilde{A} : Approximate model F_{Θ} : Forward correction A_{Θ} : Corrected model G_{Φ} : Adjoint correction A^*_{Φ} : Corrected Adjoint

$$\min_{\Theta} \sum_{i} \|F_{\Theta}(\widetilde{A}x^{i}) - Ax^{i}\|_{Y} \text{ and } \min_{\phi} \sum_{i} \|G_{\Phi}(\widetilde{A}^{*}r^{i}) - A^{*}r^{i}\|_{X}.$$

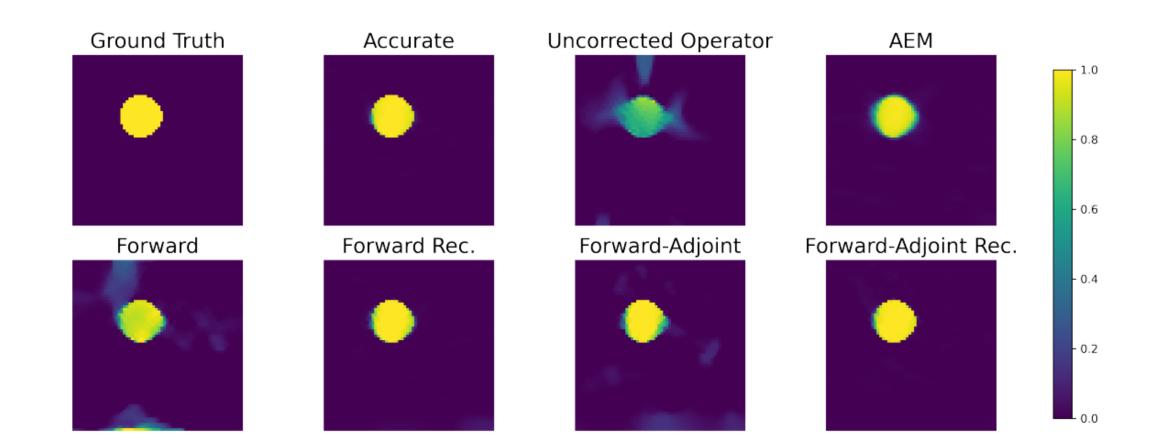
Note, for the adjoint correction, we choose the direction $r^i = F_{\Theta}(Ax^i) - y^i$. This ensures that the adjoint correction is trained in relevant directions for the variational problem.

TRAINING REGIME

- Training in 2D limited-view scenario (PAT)
- Use of accurate and approximate model (FFT based)
- Train corrections on 2 simulated datasets (ball and vessel phantoms)
- > Solve variational problem with total variation as regulariser



NUMERICAL EVALUATION ON SIMPLE DATA



SOME THOUGHTS ON THE OPERATOR CORRECTION

- > Approximate models can be used to speed up reconstruction time
- Implicit corrections work well within learned iterative reconstructions, but are difficult to analyse
- Explicit corrections can be incorporated into classical variational framework to obtain convergence results
 Primary limitation: Accurate operator needs to be known
- Theoretical analysis reveals problems as well as solutions:
 Approximate operators need correction for forward and adjoint
 Primal-dual methods

、」。 [17] 【____ UNIVERSITY OF OULU

COMBINING THE GAINED KNOWLEDGE

We now aim to formulate a model-corrected learned primal-dual approach:
→ Require end-to-end training to work well (by empirical evidence)
→ We run in the aforementioned scalability issues

The originally proposed Learned Primal Dual is given by:

$$\begin{cases} q^0 = y \text{ and } x^0 \in X \text{ given} \\ q^{k+1} = \Lambda_{\phi_k} (q^k, Ax^k, y) & \text{for } k = 0, \dots, N-1. \\ x^{k+1} = \Gamma_{\theta_k} (x^k, A^* q^{k+1}) \end{cases}$$

Here, $\Gamma_{\theta_k} \colon X \times X \to X$ and $\Lambda_{\phi_k} \colon Y \times Y \times Y \to Y$ are update operators (neural networks) in image (primal) and measurement (dual) space, respectively.

[Adler, Öktem, IEEE Transactions on Medical Imaging, 2018]

TOWARDS AN END-TO-END METHOD

We consider the variational problem

$$\widehat{x} = \underset{x \in X}{\arg\min} \|Ax - y\|_2^2 + \lambda R(x).$$

The primal dual hybrid gradient method then computes:

$$q^{0} = y \text{ and } x^{0} \in X \text{ given}$$
$$q_{k+1} = \frac{q_{k} + \sigma(A\widetilde{x}_{k} - y)}{1 + \sigma}$$
$$x_{k+1} = \operatorname{prox}_{R,\lambda\tau} (x_{k} - \tau A^{*}q_{k+1}),$$
$$\widetilde{x}_{k+1} = x_{k+1} + \theta(x_{k+1} - x_{k}).$$

TOWARDS AN END-TO-END METHOD

- ▶ Replace the accurate model A with the approximate \widetilde{A}
- ▶ Replace the accurate adjoint A^* with the fast inverse A^{\dagger}
- lnclude the model correction $F_{\theta}(\widetilde{A})$
- ▶ Replace the proximal operator with a network G_{ϕ}
- Use weight sharing (also reduces memory foot print)

$$q^0 = y \text{ and } x^0 \in X \text{ given}$$

 $q_{k+1} = rac{q_k + \sigma(A\widetilde{x}_k - y)}{1 + \sigma}$
 $x_{k+1} = \operatorname{prox}_{R,\lambda\tau} (x_k - \tau A^* q_{k+1}),$
 $\widetilde{x}_{k+1} = x_{k+1} + \theta(x_{k+1} - x_k).$

TOWARDS AN END-TO-END METHOD

- ▶ Replace the accurate model A with the approximate \widetilde{A}
- ▶ Replace the accurate adjoint A^* with the fast inverse A^{\dagger}
- lnclude the model correction $F_{\theta}(\widetilde{A})$
- ▶ Replace the proximal operator with a network G_{ϕ}
- Use weight sharing (also reduces memory foot print)

We then obtain a model-corrected learned primal dual as:

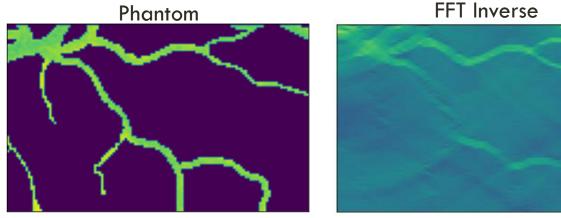
$$egin{aligned} q_{k+1} &= rac{q_k + \sigma(F_ heta(\widetilde{A}x_k) - y)}{1 + \sigma} \ x_{k+1} &= G_\phi\left(x_k - au A^\dagger q_{k+1}
ight). \end{aligned}$$

UNIVERSITY OF OULU

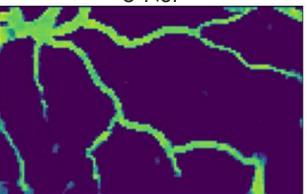
UCL

PRELIMINARY RESULTS IN 2D

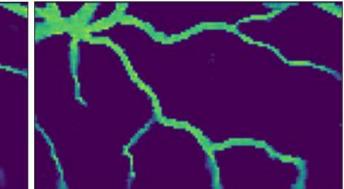
- We trained the model in 2D for a resolution of 120x80 in only 1 hour
- Models are implemented using pytorch with full support of automatic differentiation



U-Net



Constrained MC-LPD



FINAL REMARKS

Extension and training for 3D and in-vivo measurements is ongoing (promising!) \rightarrow Full approach with constrained training soon on arXiv

Convergence and stability guarantees depend on:

- Choice of loss function for the model correction
- Choices for the "proximal network"
- See also the survey paper on convergent learned reconstructions: [Mukherjee, Hauptmann, Öktem, Pereyra, Schönlieb, IEEE Signal Processing Magazine (to appear)]

Engineering and Physical Sciences Research Council

Thank you for your attention