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LEARNED ITERATIVE RECONSTRUCTIONS

[Adler & Öktem, 2018], [Putzky & Welling, 2017]



TRAINING PROCEDURE: END-TO-END



PROBLEM WITH END-TO-END TRAINING?

• End-to-end training is not scalable depending on two factors:

➢ Memory limitations: Standard CNN creates “copies” of image ➔

Gradient check-pointing or invertible networks
[Putzky&Welling, 2019], [Etmann, Ke, Schönlieb, 2020]

➢ Operator evaluation: Repeated application of forward/adjoint operator

➢ No direct work-around for “non-trivial” operators

Possible solution: Greedy (sequential) training of each iterate

➢ Separate evaluation of forward operator from the training task.



TRAINING PROCEDURE: GREEDY APPROACH



LIMITED-VIEW PHOTOACOUSTIC TOMOGRAPHY

• Fabry Perot polymer film 

ultrasound sensor is a planar 

interferometer

➔ Limited-view setting

➔ Sparse-sampling for speed-up

[Jathoul et al., Nature Photonics, 2015]



TRAINING ON VESSEL PHANTOMS

240x240x80



APPLICATION TO HUMAN IN-VIVO MEASUREMENTS
• Reduces reconstruction time by a factor 4 (by reduction of iterations),
but reconstruction time still limited by operator evaluation.

• Considerably improves reconstruction quality

Reference

Fully-sampled data

Learned Reconstruction

4x sub-sampled, 5 Iterations, 

Time: 2.5 min., PSNR: 41.40

Total Variation Reconstruction

4x sub-sampled, 20 Iterations,

Time: 10 min., PSNR: 38.05

[Hauptmann et al., IEEE Transactions on Medical Imaging, 2018]



Can we formulate a principled way to achieve scalability and computational 
speed-up, using model reduction techniques?

Here we understand reduced models in a broad sense:

➢To achieve a reduction in computational complexity by coarser discretisations, analytic approximations or 
computationally more efficient formulations.

When using a reduced/approximate model, we typically suffer a loss of accuracy. This 
needs to be compensated for.

➢In the following we will discuss two different paradigms to compensate for the introduced approximation 
errors: implicit or explicit

UTILISING REDUCED MODELS



UTILISING AN APPROXIMATE MODEL

[Köstli et al., 2001], [Cox and Beard, 2005]
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UTILISING A REDUCED MODEL
•Bottleneck of iterative reconstruction time is the application of the forward model

➢Use a fast approximate model in the iterative reconstruction instead (8x faster)

➢But approximate model introduces additional artefacts
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UTILISING A REDUCED MODEL: IMPLICIT CORRECTION

• Trained supervised on reference 

reconstruction from fully sampled data

• 5 iterates are trained in a greedy approach



ACCELERATION BY USING AN APPROXIMATE MODEL

Reference

Fully-sampled data

Learned Reconstruction

4x sub-sampled, 5 Iterations, 

Time: 20 sec., PSNR: 42.18

Total Variation Reconstruction

4x sub-sampled, 20 Iterations,

Time: 10 min., PSNR: 41.16

• Reduces reconstruction time by another factor of ~8 ( → 32x compared to TV)
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[Hauptmann et al., Machine Learning for Medical Image Reconstruction, 2018]



LEARNING AN EXPLICIT MODEL CORRECTION 

• The previous approach can be understood as an implicit model correction

➔Works well, but provides limited insight

• In the following we investigate the question: Can we learn an explicit 
(nonlinear) model correction?

➔Can we then solve a variational problem and establish 
convergence guarantees? 



LEARNING AN EXPLICIT MODEL CORRECTION 



INCORPORATION INTO VARIATIONAL APPROACHES



GRADIENT CONSISTENCY AND THE ADJOINT PROBLEM



A FORWARD-ADJOINT CORRECTION



ESSENTIAL TOOL: GRADIENT ALIGNMENT



CONVERGENCE RESULT

[Lunz, Hauptmann, Tarvainen, Schönlieb, Arridge, SIAM J. Imaging Sciences, 2021]



TRAINING REGIME



TRAINING REGIME

➢ Training in 2D limited-view scenario (PAT)

➢ Use of accurate and approximate model (FFT based)

➢ Train corrections on 2 simulated datasets (ball and vessel phantoms)

➢ Solve variational problem with total variation as regulariser



NUMERICAL EVALUATION ON SIMPLE DATA 



SOME THOUGHTS ON THE OPERATOR CORRECTION 

➢ Approximate models can be used to speed up reconstruction time

➢ Implicit corrections work well within learned iterative reconstructions, 

but are difficult to analyse

➢ Explicit corrections can be incorporated into classical variational 

framework to obtain convergence results

➔Primary limitation: Accurate operator needs to be known

➢ Theoretical analysis reveals problems as well as solutions: 

Approximate operators need correction for forward and adjoint 

➔ Primal-dual methods



COMBINING THE GAINED KNOWLEDGE

We now aim to formulate a model-corrected learned primal-dual approach: 

→ Require end-to-end training to work well (by empirical evidence)

→We run in the aforementioned scalability issues

[Adler, Öktem, IEEE Transactions on Medical Imaging, 2018]



TOWARDS AN END-TO-END METHOD



TOWARDS AN END-TO-END METHOD



TOWARDS AN END-TO-END METHOD



PRELIMINARY RESULTS IN 2D
• We trained the model in 2D for a resolution of 120x80 in only 1 hour

• Models are implemented using pytorch with full support of automatic differentiation

Phantom FFT Inverse

U-Net Model-corrected LPDLearned proximal Constrained MC-LPD



FINAL REMARKS

Extension and training for 3D and in-vivo measurements is ongoing (promising!)

→Full approach with constrained training soon on arXiv

Convergence and stability guarantees depend on:

➢ Choice of loss function for the model correction

➢ Choices for the “proximal network”

➢ See also the survey paper on convergent learned reconstructions: 
[Mukherjee, Hauptmann, Öktem, Pereyra, Schönlieb, IEEE Signal Processing Magazine (to appear)]
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