Fractional graph Laplacian for image reconstruction

Marco Donatelli

Dept. of Science and High Tecnology - U. Insubria (Italy)

Joint work with
S. Aleotti (U. Insubria) and A. Buccini (U. Cagliari)
"Inverse Problems on Large Scales"
November 28 - December 2, 2022

Outline

Fractional
graph
Laplacian for image reconstruction M. Donatell

Graph

 Laplacian(1) Model problem
(2) Graph Laplacian
(3) MM-GKS for $\ell^{2}-\ell^{q}$ problems
4. Fractional Graph Laplacian
(5) Numerical Results
(6) Conclusions
(1) Model problem
(2) Graph Laplacian
(3) MM-GKS for $\ell^{2}-\ell^{q}$ problems

MM-GKS
for
$e^{2}-c$
problems
Fractional

Graph

Laplacian
Numerical Results
(5) Numerical Results Conclusions
(4) Fractional Graph Laplacian
(6) Conclusions

Outline

Graph

Laplacian

The model problem

Fractional graph

We consider image reconstruction problems of the form

$$
\begin{equation*}
A \mathbf{x}+\boldsymbol{\eta}=\mathbf{b}^{\delta} \tag{1}
\end{equation*}
$$

where

- $A \in \mathbb{R}^{m \times n}$ is a severely ill-conditioned matrix (the singular values decay to zero rapidly and with no significant gap)
- $\boldsymbol{\eta} \in \mathbb{R}^{m}$ is the noise vector
- $\mathbf{b}^{\delta} \in \mathbb{R}^{m}$ is the measured data
- $\mathbf{x} \in \mathbb{R}^{n}$ is the unknown image to recover

Applications

- Image deblurring
- Computer tomography

Choice of L

- Usually is the discretization of a differential operator or a wavelet transform
- We consider the fractional graph Laplacian: $L \rightarrow L_{\omega}^{\alpha}, \alpha>0$.
(2) Graph Laplacian

Graph

(5) Numerical Results

4 Fractional Graph Laplacian
(3) MM-GKS for $\ell^{2}-\ell^{q}$ problems
(6) Conclusions

Outline

(1) Model problem

Weighted Graph

Fractional
graph
Laplacian for image reconstruction
M.

Donatelli

A weighted graph is represented by a pair $\omega=(\mathcal{V}, \mathcal{E})$, where

- \mathcal{V} is the set of vertices
- $\mathcal{E} \subset \mathcal{V} \times \mathcal{V} \times \mathbb{R}$ associates the positive weight $\omega_{(i, j)}$ at the edge (i, j)

The adjacency matrix

Let $n=|\mathcal{V}|$, the number of nodes. The adjacency matrix $G \in \mathbb{R}^{n \times n}$ is

$$
G_{i, j}= \begin{cases}\omega_{(i, j)} & \text { if }\left(i, j, \omega_{(i, j)}\right) \in \mathcal{E} \\ 0 & \text { otherwise }\end{cases}
$$

A graph is undirected $\Leftrightarrow G$ is symmetric

Graph Laplacian

Fractional graph Laplacian for image reconstruc tion

Properties of L_{ω}

- L_{ω} is symmetric positive definite
- $\mathcal{N}\left(L_{\omega}\right) \supseteq \operatorname{span}\{\mathbf{1}\}$

Construction of the Graph

Construction of a weighted and undirected graph for the image $X \in \mathbb{R}^{d \times d}$

- The nodes are the pixels of $X \Rightarrow n=d^{2}$
- To obtain a sparse matrix L_{ω}, connect two pixels X_{i} and X_{j} only if they are "spatially" close enough: $\|\mathbf{i}-\mathbf{j}\|_{\infty} \leq R$
- A common weight function is the Gaussian function: the weights depend on how similar the values (the intensity of two pixels) are

$$
G_{\mathrm{i}, \mathrm{j}}= \begin{cases}\mathrm{e}^{-\left(X_{\mathrm{i}}-x_{\mathrm{j}}\right)^{2} / \sigma}, & \text { if } 0<\|\mathbf{i}-\mathbf{j}\|_{\infty} \leq R, \mathbf{i} \neq \mathbf{j} \\ 0, & \text { otherwise }\end{cases}
$$

- For instance, we use $R=5$ and $\sigma=10^{-3}$
- Applications
- Denoising: [Pang and Cheung, IEEE Trans. Image Process. 2017]
- Segmentations: [Calatroni et al., JMIV 2017]
- Deblurring: [Bianchi et al., ETNA 2021]

Computation of the image

The construction of the graph needs a good approximation of the true image!

- This is computed solving the $\ell_{2}-\ell_{2}$ problem

$$
\begin{equation*}
\mathbf{x}_{\mu}=\arg \min _{\mathbf{x}}\left\|A \mathbf{x}-\mathbf{b}^{\delta}\right\|_{2}^{2}+\mu\|L \mathbf{x}\|_{2}^{2} \tag{3}
\end{equation*}
$$

where

- L is a discretization of the 2D gradient:

$$
L=\left[\begin{array}{l}
L_{1} \otimes I \tag{4}\\
I \otimes L_{1}
\end{array}\right] \in \mathbb{R}^{2 n \times n},
$$

where \otimes is the Kronecker product, $I \in \mathbb{R}^{d \times d}$ is the identity matrix, and L_{1} is the discretization of the first derivative.

- μ is determined by GCV
- The $\ell_{2}-\ell_{2}$ problem in (3) is solved by the Generalized Krylov (GKS) method proposed in [Lampe et al. LAA 2012]. We fix the size of the Krylov subspace equal to 50 (accurate solution is not necessary).

Graph

Laplacian

MM-GKS

for

$\ell^{2}-\ell^{q}$
problems
Fractional

Graph

Laplacian
Numerical Results

Outline

(5) Numerical Results
(2) Graph Laplacian
(3) MM-GKS for $\ell^{2}-\ell^{q}$ problems
(4) Fractional Graph Laplacian
(6) Conclusions
(1) Model problem

Fractional graph Laplacian for image reconstruction
M.

Algorithm to solve $\ell^{2}-\ell^{q}$ with L_{ω} :
(1) Compute a cheap initial approximation x_{μ} by GKS, where μ is estimated by GCV
(2) Construct the Graph Laplacian matrix L_{ω} associated to \mathbf{x}_{μ}
(3) Solve the $\ell^{2}-\ell^{q}$ problem (2) with L_{ω} by the MM-GKS (majorization-minimization GKS) method proposed in [Huang et al., BIT 2017]

Smoothed functional

Fractional graph Laplacian for image reconstruction

For $q \leq 1$ the functional in (2) is non-smooth \rightarrow smooth the functional.
Fix $\varepsilon>0$ (i.e., $\varepsilon=0.1$) and $\Phi_{q, \varepsilon}(t)=\left(\sqrt{t^{2}+\varepsilon^{2}}\right)^{q}$ s.t.

$$
\|\mathbf{x}\|_{q}^{q} \approx \sum_{i=1}^{n} \Phi_{q, \varepsilon}\left(x_{i}\right)
$$

Define the functional

$$
\mathcal{J}_{\varepsilon}(\mathbf{x}):=\frac{1}{2}\left\|A \mathbf{x}-\mathbf{b}^{\delta}\right\|_{2}^{2}+\frac{\mu}{q} \sum_{i=1}^{n} \Phi_{q, \varepsilon}\left((L \mathbf{x})_{i}\right)
$$

and replace the problem (2) with its smoothed version

$$
\begin{equation*}
\min _{\mathrm{x}} \mathcal{J}_{\varepsilon}(\mathbf{x}) \tag{5}
\end{equation*}
$$

solved by the majorization-minimization method.

Majorization-minimization method

Fractional graph
Laplacian for image reconstruction

For computing a sequence $\mathbf{x}^{(k)}$ that converges to a stationary point of $\mathcal{J}_{\varepsilon}$:
(1) At each step the functional $\mathcal{J}_{\varepsilon}$ is majorized by a quadratic function $\mathcal{Q}\left(\mathbf{x}, \mathbf{x}^{(k)}\right)$ that is tangent to $\mathcal{J}_{\varepsilon}$ at $\mathbf{x}^{(k)}$
(2) $\mathbf{x}^{(k+1)}$ is the unique minimizer of $\mathcal{Q}\left(\mathbf{x}, \mathbf{x}^{(k)}\right)$

- Define the quadratic tangent majorant of $\mathcal{J}_{\varepsilon}$ in $\mathbf{x}^{(k)}$ [Huang et al., BIT 2017]

$$
\mathcal{Q}^{F}\left(\mathbf{x}, \mathbf{x}^{(k)}\right)=\frac{1}{2}\left\|A \mathbf{x}-\mathbf{b}^{\delta}\right\|_{2}^{2}+\frac{\mu \varepsilon^{q-2}}{2}\left(\|L \mathbf{x}\|_{2}^{2}-2\left\langle\boldsymbol{\omega}_{F}^{(k)}, L \mathbf{x}\right\rangle\right)+c
$$

$$
\text { where } \boldsymbol{\omega}_{F}^{(k)}=\mathbf{u}^{(k)}\left(1-\left(\frac{\left(\mathbf{u}^{(k)}\right)^{2}+\varepsilon^{2}}{\varepsilon^{2}}\right)^{q / 2-1}\right) \text { for } \mathbf{u}^{(k)}=L \mathbf{x}^{(k)}
$$

- Defining $\nu=\mu \varepsilon^{q-2}$, the next iterate $\mathbf{x}^{(k+1)}$ can be obtained by

$$
\mathbf{x}^{(k+1)}=\arg \min _{\mathbf{x}}\left\|\left[\begin{array}{c}
A \tag{6}\\
\nu^{1 / 2} L
\end{array}\right] \mathbf{x}-\left[\begin{array}{c}
\mathbf{b}^{\delta} \\
\nu^{1 / 2} \boldsymbol{\omega}_{F}^{(k)}
\end{array}\right]\right\|_{2}^{2}
$$

- An approximate solution of (6) can be computed by GKS
- ν is automatically estimated at each iteration by discrepancy principle:

$$
\nu \rightarrow \nu_{k}
$$

Minimization step

Fractional graph Laplacian for image reconstruction

- Enlarge the subspace by

$$
V_{k+1}=\left[V_{k}, \frac{\mathbf{r}^{(k+1)}}{\left\|\mathbf{r}^{(k+1)}\right\|_{2}}\right]
$$

where

$$
\mathbf{r}^{(k+1)}=A^{T}\left(A \mathbf{x}^{(k+1)}-\mathbf{b}^{\delta}\right)+\lambda L^{T} W_{\mathrm{reg}}^{(k)} L \mathbf{x}^{(k+1)}
$$

Restarting

Fractional graph Laplacian for image reconstruction
M.

This restarting strategy is proposed in [Buccini and Reichel, APNUM in press]

- Most of the coefficients of $\mathbf{y}^{(k+1)}$ almost vanish and so restart V_{k} every r iterations: if $k \equiv 0 \bmod r$ set

$$
V_{k}=\mathbf{x}^{(k)} /\left\|\mathbf{x}^{(k)}\right\|
$$

- It holds

$$
\mathcal{J}_{\varepsilon}\left(\mathbf{x}^{(k+1)}\right) \leq \mathcal{J}_{\varepsilon}\left(\mathbf{x}^{(k)}\right)
$$

and exists a converging subsequence $\mathbf{x}^{\left(k_{j}\right)}$

- In practice, the entire sequence converges saving a lot of memory
- A standard choice is $r=30$

Outline

Fractional
graph
Laplacian
for image reconstruc
tion
M.

Donatell

Graph

Laplacian
MM-GKS for
$8^{2}-8^{q}$
problems
Fractional Graph Laplacian

Numerica Results

Conclusions

(1) Model problem
(2) Graph Laplacian
(3) MM-GKS for $\ell^{2}-\ell^{q}$ problems

4 Fractional Graph Laplacian
(5) Numerical Results
(6) Conclusions

Fractional Graph Laplacian

New step

The computed solution can be used to construct a new Graph Laplacian with enhanced diffusion $\quad \Longrightarrow \quad L_{\omega}^{\alpha}, \alpha>0$

- L_{ω} is sparse and positive definite
- Functions on L_{ω} can be well approximated in a small Krylov subspace by Lanczos method [Susnjara et al., arXiv 2015]
- The fractional graph Laplacian introduces non-local dynamics [Benzi et al., JCN 2020]
- Nonlinear fractional diffusion models for image reconstruction, see e.g. [Guo et al., IPI 2019], [Bahador et al., CMA 2022]

Computation of L_{ω}^{α}

- The step k of the MM-GKS method computes the product $L_{\omega}^{\alpha} V_{k}$

Precomputing phase

- For a small $m \in \mathbb{N}$, e.g., $m=10$, compute the Lanczos factorization

$$
L_{\omega} Q_{m}=Q_{m} T_{m}+\beta_{m} \mathbf{q}_{m+1} \mathbf{e}_{m}^{T}
$$

- Compute the spectral decomposition of the projected matrix $T_{m}=U_{m} D_{m} U_{m}^{T}$ such that

$$
L_{\omega} \approx Q_{m} U_{m} D_{m} U_{m}^{T} Q_{m}^{T}
$$

- The product

$$
L_{\omega}^{\alpha} V_{k}=\left[L_{\omega}^{\alpha} \mathbf{v}_{1}, \ldots, L_{\omega}^{\alpha} \mathbf{v}_{k}\right]
$$

is approximated adding the new vector

$$
L_{\omega}^{\alpha} \mathbf{v}_{k} \approx Q_{m} U_{m} D_{m}^{\alpha} U_{m}^{T} Q_{m}^{T} \mathbf{v}_{k}
$$

Outline

Fractional
graph
Laplacian
for image reconstruc-
tion
M.

Donatelli

Graph

Laplacian
MM-GKS for
$\ell^{2}-e^{q}$ problems

Fractional Graph
Laplacian
Numerical
Results

Conclusions
(1) Model problem
(2) Graph Laplacian
(3) MM-GKS for $\ell^{2}-\ell^{q}$ problems

4 Fractional Graph Laplacian
(5) Numerical Results

6 Conclusions

Setting

Fractional graph Laplacian for image reconstruction M.

Algorithm parameters

- Graph Laplacian: $R=5$ and $\sigma=10^{-3}$ (weights)
- MM-GKS: $\varepsilon=0.1$ (smoothing) and $r=30$ (restarting)

Model and methods

The same $\ell^{2}-\ell^{q}$ problem in (2) with:

- $\mathrm{q}=0.1$
- TV: MM-GKS with L defined as in (4) as proposed in [Buccini and Reichel, APNUM, in press]

Example Deblurring

- Hubble Space Telescope blurred and noisy (238×238)
- Gaussian noise such that $\|\boldsymbol{\eta}\|_{2}=0.01\|\mathbf{b}\|_{2}$
- zero-Dirichlet boundary conditions

True image

Observed image

Restoration Errors

Fractional graph Laplacian for image reconstruction

Restored images

Fractional
graph
Laplacian
for image reconstruction
for
2
$\ell^{2}-e^{q}$
problems
Fractional
Graph
Laplacian
Numerical
Results
Conclusions

TV

$$
\alpha=1.5
$$

$\alpha=1$

$\alpha=2$

Fractional
graph Laplacian for image reconstruction M.

Donatelli
Model
problem

Graph

Laplacian
MM-GKS
for
$\ell^{2}-e^{q}$
problems
Fractional
Graph
Laplacian
Numerical Results

True

$\alpha=1$

$\alpha=1.8$

Example Tomography

- Shepp-Logan Phantom with 179 parallel beams at 180 equispaced angles between 0 and π
- Gaussian noise such that $\|\boldsymbol{\eta}\|_{2}=0.02\|\mathbf{b}\|_{2}$
- Example created using the IRtools toolbox [Gazzola, Hansen, Nagy, 2017]

True image (128×128)

Sinogram (179 $\times 180$)

Restoration Errors

Fractional graph Laplacian for image reconstruc tion

Restored images

Fractional
graph
Laplacian
for image
reconstruc-
tion
M.

Donatelli

Model
problem

Graph

Laplacian
MM-GKS
for
$e^{2}-e^{9}$
problems
Fractional
Graph
Laplacian
Numerical Results

$\alpha=1$

$\alpha=0.5$

Fractional
graph
Laplacian
for image reconstruc-
tion
M.

Donatelli

Graph

Laplacian
MM-GKS
for
$\ell^{2}-e^{q}$
problems
Frectional

Graph

Laplacian
Numerical Results

Conclusions

Outline

(1) Model problem
(2) Graph Laplacian
(3) MM-GKS for $\ell^{2}-\ell^{q}$ problems
(4) Fractional Graph Laplacian
(5) Numerical Results
(6) Conclusions

Conclusions and future work

Fractional graph Laplacian for image reconstruction

The proposed algorithm

- use the fractional graph Laplacian as regularization operator in the $\ell^{2}-\ell^{q}$ problem for imaging problems
- can be applied to large scale problems thanks to the projection into Krylov subspaces of fairly small dimension
- some parameters are fixed and other automatically estimated \rightarrow no tuning is required for a fixed α

Research directions

- Automatic estimation and/or variable α
- Add the nonnegative constraint using [Buccini, Pasha, Reichel, 2021]
- Non-Gaussian noise $\rightarrow \ell^{p}-\ell^{q}$ problem

References

Fractional graph Laplacian for image reconstruction M.

R D. Bianchi, A. Buccini, M. Donatelli, E. Randazzo, Graph Laplacian for image deblurring Electronic Transactions on Numerical Analysis, 2021, 55, pp. 169-186
(A. Buccini, M. Donatelli
Graph Laplacian in $\ell^{2}-\ell^{q}$ regularization for image reconstruction Proceedings - 2021 21st International Conference on Computational Science and Its Applications, ICCSA 2021, 2021, pp. 29-38
\square S. Aleotti, A. Buccini, M. Donatelli

Fraction Graph Laplacian for image reconstruction
in progress

