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The model problem

Fractional
graph

Laplacian
for image i i .
reconstruc- We consider image reconstruction problems of the form

tion

5
Ax+mn =b°, (1)

Model where
problem

e A€ R™" is a severely ill-conditioned matrix (the singular values decay
to zero rapidly and with no significant gap)

e 1 € R" is the noise vector
o b® € R™ is the measured data

@ x € R" is the unknown image to recover

Applications

o Image deblurring

o Computer tomography
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The regularized %> — ¢9 minimization problem

A regularized solution can be obtained by solving the /> — ¢9 minimization
problem
1 S|, q
min 5 HAx—b H2+5 L] ()
where 0 < g <2, L € R**", i > 0, assuming that
N(A)NN(L) = {0}

@ Usually is the discretization of a differential operator or a wavelet

transform
@ We consider the fractional graph Laplacian: L — LS, a0 > 0.
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Weighted Graph

A weighted graph is represented by a pair w = (V, £), where

@ V is the set of vertices
@ £ CV xV xR associates the positive weight w; j at the edge (i, )

The adjacency matrix
Let n = |V|, the number of nodes. The adjacency matrix G € R"*" is

G — Wi j) if (i,j,w(,-,j)) S g,
" 0 otherwise,

A graph is undirected < G is symmetric
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o Let G be symmetric

@ Denote by D the (degrees) diagonal matrix

Graph
Laplacian

D;j; = Z Gi;
i=1
and define the graph Laplacian L, as

L _Db-¢

Gl
where ||-||¢ is the Frobenius norm

Properties of L,

e L, is symmetric positive definite
e N(L,) D span{1}
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Construction of the Graph

Construction of a weighted and undirected graph for the image X € R¥*?

o The nodes are the pixels of X = n = d?

@ To obtain a sparse matrix L., connect two pixels X; and Xj only if they
are “spatially” close enough: [li —jl|,, <R

@ A common weight function is the Gaussian function: the weights depend
on how similar the values (the intensity of two pixels) are

G [ e 0 < li—jll, <R, i#],
" 0, otherwise,

o For instance, we use R =5 and o = 1073

@ Applications
o Denoising: [Pang and Cheung, IEEE Trans. Image Process. 2017]
o Segmentations: [Calatroni et al., JMIV 2017]
o Deblurring: [Bianchi et al., ETNA 2021]
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Computation of the image

The construction of the graph needs a good approximation of the true image!

@ This is computed solving the ¢2 — ¢> problem
: 5|2 2
X, = arg min HAx—b Hz—l—uHLtz, (3)
X
where
o L is a discretization of the 2D gradient:

Lol 2nxn
L‘[I@LJGR , @)

where @ is the Kronecker product, / € R9*? is the identity matrix, and
Ly is the discretization of the first derivative.

@ /i is determined by GCV

@ The ¢, — ¢, problem in (3) is solved by the Generalized Krylov (GKS)
method proposed in [Lampe et al. LAA 2012]. We fix the size of the
Krylov subspace equal to 50 (accurate solution is not necessary).
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Algorithm ¢? — ¢9 with Graph Laplacian

Algorithm to solve % — 09 with L,,:

© Compute a cheap initial approximation x,, by GKS, where p is
estimated by GCV

@ Construct the Graph Laplacian matrix L., associated to x,,

© Solve the £2 — (9 problem (2) with L., by the MM-GKS
(majorization-minimization GKS) method proposed in
[Huang et al., BIT 2017]
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feconstitc: For g < 1 the functional in (2) is non-smooth — smooth the functional.
Fix e > 0 (i.e., e = 0.1) and &g .(t) = (V2 +£2)7 sit.
n
Ix[18 x> ®q ().

i=1
MM-GKS Define the functional
for g
problems

7.0 = & |ax—w [ + “§¢q,€((Lx),—)

and replace the problem (2) with its smoothed version

mxin J=(x) (5)

solved by the majorization-minimization method.
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Majorization-minimization method

Fractional

graph . . .
Laplacian For computing a sequence x(¥) that converges to a stationary point of J.:
reconsHuc © At each step the functional J. is majorized by a quadratic function

9(x, x(k)) that is tangent to J: at x)
@ x(“*V is the unique minimizer of Q(x,x"))
' 1
‘ 1
MM-GKS \ ,
fql)' \ n
0= — 09 \ B

problems




The quadratic tangent majorant
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tion 2017]

1 2 -2
o (x,x¥) = 5 HAx — b‘sH + M€2 (||Lx||§ -2 <w(Fk), Lx>) +c,
2
where "-’(Fk) =u® (1 a ((U(k)f)#)qpil) for u® = [x(A

MM-GKS
for
szT o9 o Defining v = ue72, the next iterate x%**1) can be obtained by
problems

2

(6)

(k+1) _ . A b®
X =argmin ||| 1 | X~ 1/1/2w£:k)

@ An approximate solution of (6) can be computed by GKS

2

@ v is automatically estimated at each iteration by discrepancy principle:

V —r Vg
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Minimization step

o Let V € R"™¥ with orthonormal columns, we look for y(**1) € R¥ s. t.

(D) — ka(k+1)
@ Using the economic QR factorizations

AVk = QARAa and (Wreg ) LVk QL RL,

estimate ux by the discrepancy principle and solve

y 1) = arg min 2 ||Ray — Qb7 | + 2 | Ruyl

yERK

o Enlarge the subspace by

(k1)
Vipr = |:Vk7 4||r(k+1)||2:|

where
k+1 T (k+1) é T k k+1
r = A (Ax+ b)+)\L WL Lx <)
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This restarting strategy is proposed in [Buccini and Reichel, APNUM in press]
o Most of the coefficients of y(**1) almost vanish and so restart V every r
iterations: if k =0 mod r set
Vie=x" /x|
MM-GKS
#_ o It holds
problems js(x(k+1)) S js(x(k))

and exists a converging subsequence x)
@ In practice, the entire sequence converges saving a lot of memory

@ A standard choice is r = 30
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Fractional Graph Laplacian

The computed solution can be used to construct a new Graph Laplacian with

enhanced diffusion — LS, >0

e L, is sparse and positive definite

@ Functions on L, can be well approximated in a small Krylov subspace by
Lanczos method [Susnjara et al., arXiv 2015]

@ The fractional graph Laplacian introduces non-local dynamics [Benzi et
al., JCN 2020]

@ Nonlinear fractional diffusion models for image reconstruction, see e.g.
[Guo et al., IPI 2019], [Bahador et al., CMA 2022]
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Computation of L

@ The step k of the MM-GKS method computes the product LSV

Precomputing phase
o For a small m € N, e.g., m = 10, compute the Lanczos factorization

Ly Qm = Qm Tm+ ﬂmqurlem

=
o Compute the spectral decomposition of the projected matrix
Tm = UnDmUT such that

Ly % QuUnDnUn,Qny
@ The product

Lg Vk = [Lgvl, ey ijvk]
is approximated adding the new vector

Lovk = QuUnDS UL Qv
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o Graph Laplacian: R =5 and o = 102 (weights)
@ MM-GKS: £ = 0.1 (smoothing) and r = 30 (restarting)
The same 2 — ¢7 problem in (2) with:
e q=0.1
Numerical @ TV: MM-GKS with L defined as in (4) as proposed in [Buccini and
RS Reichel, APNUM, in press] )




Example Deblurring
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e @ Hubble Space Telescope blurred and noisy (238 x 238)
oo @ Gaussian noise such that ||n||, = 0.01]b]|,

@ zero-Dirichlet boundary conditions

Numerical
Results

True image Observed image
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Restoration Errors

Fractional
Lagf‘aai:;" Method RRE PSNR SSIM
o e O — 0 0.1318 2749  0.8695
'e“’t'i‘:;“‘c’ TV 0.0933 30.49 0.9114
Graph Laplacian 0.0857 31.23 0.9445
Fractional Graph
Laplacian (o =1.6) 0.0782 32.02 0.9524
PSNR vs « SSIM vs «
32 * ] st
319 ] o9s2 '\S
31.8 1 0951
Numerical 317 0.95
Results 316 1
o 0.949
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0.948
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True

a=1.8



Example Tomography
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tion @ Shepp-Logan Phantom with 179 parallel beams at 180 equispaced angles
! between 0 and 7

Donatell

e Gaussian noise such that ||n||, = 0.02]b]|,
o Example created using the IRtools toolbox [Gazzola, Hansen, Nagy, 2017]

Numerical
Results

True image (128 x 128) Sinogram (179 x 180)
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Method RRE PSNR SSIM
Uy — Uy 0.1482 28.80 0.6333
TV 0.0544 37.51 0.9600
Graph Laplacian 0.05682 36.91 0.9844
Fractional Graph
Laplacian (o« = 0.6) 0.0391 40.38  0.9918
PSNR vs « SSIM vs «
W - W
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Conclusions and future work

The proposed algorithm

@ use the fractional graph Laplacian as regularization operator in the
£ — {9 problem for imaging problems

@ can be applied to large scale problems thanks to the projection into
Krylov subspaces of fairly small dimension

@ some parameters are fixed and other automatically estimated — no
tuning is required for a fixed «

v

Research directions

@ Automatic estimation and/or variable o

o Add the nonnegative constraint using [Buccini, Pasha, Reichel, 2021]

@ Non-Gaussian noise — £ — {9 problem
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