
Fractional graph Laplacian for image reconstruction

Marco Donatelli

Dept. of Science and High Tecnology – U. Insubria (Italy)

Joint work with
S. Aleotti (U. Insubria) and A. Buccini (U. Cagliari)

“Inverse Problems on Large Scales”
November 28 – December 2, 2022



Fractional
graph

Laplacian
for image
reconstruc-

tion

M.
Donatelli

Model
problem

Graph
Laplacian

MM-GKS
for
`2 − `q

problems

Fractional
Graph
Laplacian

Numerical
Results

Conclusions

Outline

1 Model problem

2 Graph Laplacian

3 MM-GKS for `2 − `q problems

4 Fractional Graph Laplacian

5 Numerical Results

6 Conclusions



Fractional
graph

Laplacian
for image
reconstruc-

tion

M.
Donatelli

Model
problem

Graph
Laplacian

MM-GKS
for
`2 − `q

problems

Fractional
Graph
Laplacian

Numerical
Results

Conclusions

Outline

1 Model problem

2 Graph Laplacian

3 MM-GKS for `2 − `q problems

4 Fractional Graph Laplacian

5 Numerical Results

6 Conclusions



Fractional
graph

Laplacian
for image
reconstruc-

tion

M.
Donatelli

Model
problem

Graph
Laplacian

MM-GKS
for
`2 − `q

problems

Fractional
Graph
Laplacian

Numerical
Results

Conclusions

The model problem

We consider image reconstruction problems of the form

Ax + η = bδ, (1)

where

A ∈ Rm×n is a severely ill-conditioned matrix (the singular values decay
to zero rapidly and with no significant gap)

η ∈ Rm is the noise vector

bδ ∈ Rm is the measured data

x ∈ Rn is the unknown image to recover

Applications

Image deblurring

Computer tomography
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The regularized `2 − `q minimization problem

A regularized solution can be obtained by solving the `2 − `q minimization
problem

min
x

1

2

∥∥∥Ax− bδ
∥∥∥2
2

+
µ

q
‖Lx‖qq (2)

where 0 < q ≤ 2, L ∈ Rs×n, µ > 0, assuming that

N (A) ∩N (L) = {0}

Choice of L

Usually is the discretization of a differential operator or a wavelet
transform

We consider the fractional graph Laplacian: L→ Lαω, α > 0.
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Weighted Graph

A weighted graph is represented by a pair ω = (V, E), where

V is the set of vertices

E ⊂ V × V × R associates the positive weight ω(i,j) at the edge (i , j)

The adjacency matrix

Let n = |V|, the number of nodes. The adjacency matrix G ∈ Rn×n is

Gi,j =

{
ω(i,j) if (i , j , ω(i,j)) ∈ E ,
0 otherwise,

A graph is undirected ⇔ G is symmetric
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Graph Laplacian

Let G be symmetric

Denote by D the (degrees) diagonal matrix

Dj,j =
n∑

i=1

Gi,j

and define the graph Laplacian Lω as

Lω =
D − G

‖G‖F

where ‖·‖F is the Frobenius norm

Properties of Lω

Lω is symmetric positive definite

N (Lω) ⊇ span{1}
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Construction of the Graph

Construction of a weighted and undirected graph for the image X ∈ Rd×d

The nodes are the pixels of X ⇒ n = d2

To obtain a sparse matrix Lω, connect two pixels Xi and Xj only if they
are “spatially” close enough: ‖i− j‖∞ ≤ R

A common weight function is the Gaussian function: the weights depend
on how similar the values (the intensity of two pixels) are

Gi,j =

{
e−(Xi−Xj)

2/σ, if 0 < ‖i− j‖∞ ≤ R, i 6= j,
0, otherwise,

For instance, we use R = 5 and σ = 10−3

Applications
Denoising: [Pang and Cheung, IEEE Trans. Image Process. 2017]
Segmentations: [Calatroni et al., JMIV 2017]
Deblurring: [Bianchi et al., ETNA 2021]
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Computation of the image

The construction of the graph needs a good approximation of the true image!

This is computed solving the `2 − `2 problem

xµ = arg min
x

∥∥∥Ax− bδ
∥∥∥2
2

+ µ ‖Lx‖22 , (3)

where

L is a discretization of the 2D gradient:

L =

[
L1 ⊗ I
I ⊗ L1

]
∈ R2n×n, (4)

where ⊗ is the Kronecker product, I ∈ Rd×d is the identity matrix, and
L1 is the discretization of the first derivative.

µ is determined by GCV

The `2 − `2 problem in (3) is solved by the Generalized Krylov (GKS)
method proposed in [Lampe et al. LAA 2012]. We fix the size of the
Krylov subspace equal to 50 (accurate solution is not necessary).
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Algorithm `2 − `q with Graph Laplacian

Algorithm to solve `2 − `q with Lω:

1 Compute a cheap initial approximation xµ by GKS, where µ is
estimated by GCV

2 Construct the Graph Laplacian matrix Lω associated to xµ

3 Solve the `2 − `q problem (2) with Lω by the MM-GKS
(majorization-minimization GKS) method proposed in
[Huang et al., BIT 2017]
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Smoothed functional

For q ≤ 1 the functional in (2) is non-smooth → smooth the functional.

Fix ε > 0 (i.e., ε = 0.1) and Φq,ε(t) =
(√

t2 + ε2
)q

s.t.

‖x‖qq ≈
n∑

i=1

Φq,ε(xi ).

Define the functional

Jε(x) :=
1

2

∥∥∥Ax− bδ
∥∥∥2
2

+
µ

q

n∑
i=1

Φq,ε((Lx)i )

and replace the problem (2) with its smoothed version

min
x
Jε(x) (5)

solved by the majorization-minimization method.
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Majorization-minimization method

For computing a sequence x(k) that converges to a stationary point of Jε:

1 At each step the functional Jε is majorized by a quadratic function
Q(x, x(k)) that is tangent to Jε at x(k)

2 x(k+1) is the unique minimizer of Q(x, x(k))
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The quadratic tangent majorant

Define the quadratic tangent majorant of Jε in x(k) [Huang et al., BIT
2017]

QF (x, x(k)) =
1

2

∥∥∥Ax− bδ
∥∥∥2
2

+
µεq−2

2

(
‖Lx‖22 −2

〈
ω

(k)
F , Lx

〉)
+ c,

where ω
(k)
F = u(k)

(
1−

(
(u(k))2+ε2

ε2

)q/2−1
)

for u(k) = Lx(k)

Defining ν = µεq−2, the next iterate x(k+1) can be obtained by

x(k+1) = arg min
x

∥∥∥∥[ A

ν1/2L

]
x−

[
bδ

ν1/2ω
(k)
F

]∥∥∥∥2
2

(6)

An approximate solution of (6) can be computed by GKS

ν is automatically estimated at each iteration by discrepancy principle:

ν → νk
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Minimization step

Let Vk ∈ Rn×k with orthonormal columns, we look for y(k+1) ∈ Rk s. t.

x(k+1) = Vky
(k+1)

Using the economic QR factorizations

AVk = QARA, and
(
W (k)

reg

) 1
2
LVk = QLRL,

estimate µk by the discrepancy principle and solve

y(k+1) = arg min
y∈Rk

1

2

∥∥∥RAy − QT
A b

δ
∥∥∥2
2

+
µk

2
‖RLy‖22 .

Enlarge the subspace by

Vk+1 =

[
Vk ,

r(k+1)

‖r(k+1)‖2

]
where

r(k+1) = AT
(
Ax(k+1) − bδ

)
+ λLTW (k)

reg Lx
(k+1)
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Restarting

This restarting strategy is proposed in [Buccini and Reichel, APNUM in press]

Most of the coefficients of y(k+1) almost vanish and so restart Vk every r
iterations: if k ≡ 0 mod r set

Vk = x(k)/‖x(k)‖

It holds
Jε(x(k+1)) ≤ Jε(x(k))

and exists a converging subsequence x(kj )

In practice, the entire sequence converges saving a lot of memory

A standard choice is r = 30
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Fractional Graph Laplacian

New step

The computed solution can be used to construct a new Graph Laplacian with
enhanced diffusion =⇒ Lαω, α > 0

Lω is sparse and positive definite

Functions on Lω can be well approximated in a small Krylov subspace by
Lanczos method [Susnjara et al., arXiv 2015]

The fractional graph Laplacian introduces non-local dynamics [Benzi et
al., JCN 2020]

Nonlinear fractional diffusion models for image reconstruction, see e.g.
[Guo et al., IPI 2019], [Bahador et al., CMA 2022]
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Computation of Lαω

The step k of the MM-GKS method computes the product LαωVk

Precomputing phase

For a small m ∈ N, e.g., m = 10, compute the Lanczos factorization

LωQm = QmTm + βmqm+1e
T
m

Compute the spectral decomposition of the projected matrix
Tm = UmDmU

T
m such that

Lω ≈ QmUmDmU
T
mQ

T
m

The product
LαωVk = [Lαωv1, . . . , L

α
ωvk ]

is approximated adding the new vector

Lαωvk ≈ QmUmD
α
mU

T
mQT

mvk
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Setting

Algorithm parameters

Graph Laplacian: R = 5 and σ = 10−3 (weights)

MM-GKS: ε = 0.1 (smoothing) and r = 30 (restarting)

Model and methods

The same `2 − `q problem in (2) with:

q=0.1

TV: MM-GKS with L defined as in (4) as proposed in [Buccini and
Reichel, APNUM, in press]
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Example Deblurring

Hubble Space Telescope blurred and noisy (238× 238)

Gaussian noise such that ‖η‖2 = 0.01 ‖b‖2
zero-Dirichlet boundary conditions

True image Observed image
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Restoration Errors

Method RRE PSNR SSIM
`2 − `2 0.1318 27.49 0.8695
TV 0.0933 30.49 0.9114
Graph Laplacian 0.0857 31.23 0.9445
Fractional Graph
Laplacian (α = 1.6) 0.0782 32.02 0.9524

PSNR vs α SSIM vs α
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Fractional Graph Laplacian
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Restored images

TV α = 1

α = 1.5 α = 2
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Zoom

True TV

α = 1 α = 1.8
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Example Tomography

Shepp-Logan Phantom with 179 parallel beams at 180 equispaced angles
between 0 and π

Gaussian noise such that ‖η‖2 = 0.02 ‖b‖2
Example created using the IRtools toolbox [Gazzola, Hansen, Nagy, 2017]

True image (128× 128) Sinogram (179× 180)
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Restoration Errors

Method RRE PSNR SSIM
`2 − `2 0.1482 28.80 0.6333
TV 0.0544 37.51 0.9600
Graph Laplacian 0.0582 36.91 0.9844
Fractional Graph
Laplacian (α = 0.6) 0.0391 40.38 0.9918

PSNR vs α SSIM vs α
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Fractional Graph Laplacian
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Restored images

`2 − `2 TV

α = 1 α = 0.5
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Conclusions and future work

The proposed algorithm

use the fractional graph Laplacian as regularization operator in the
`2 − `q problem for imaging problems

can be applied to large scale problems thanks to the projection into
Krylov subspaces of fairly small dimension

some parameters are fixed and other automatically estimated → no
tuning is required for a fixed α

Research directions

Automatic estimation and/or variable α

Add the nonnegative constraint using [Buccini, Pasha, Reichel, 2021]

Non-Gaussian noise → `p − `q problem
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