SSVM 2023

The 9th International Conference on
Scale Space and Variational Methods in Computer Vision Santa Margherita di Pula (CA), Sardinia, Italy

Important dates

Paper submission:
January 16, 2023
Notification of acceptance:
February 27, 2023

Hotel Flamingo

Compressed sensing for the sparse Radon transform

Giovanni S. Alberti
MaLGa - Machine Learning Genoa Center
Department of Mathematics
University of Genoa

Joint work with

Alessandro Felisi (UniGe)

Matteo Santacesaria (UniGe)

S. Ivan Trapasso (PoliTo)

Outline

The sparse Radon transform

Compressed sensing

Compressed sensing for the sparse Radon transform

Outline

The sparse Radon transform

Compressed sensing

Compressed sensing for the sparse Radon transform

The Radon transform

$$
\mathcal{R u}(\theta, s)=\int_{\theta^{\perp}} u(y+s \theta) d y
$$

The Radon transform ${ }^{1}$

- Domain: $\mathcal{B}_{1}=\mathrm{B}(0,1) \subseteq \mathbb{R}^{2}$
${ }^{1}$ Natterer, The Mathematics of Computerized Tomography, 2001 Quinto, An Introduction to X-ray tomography and Radon Transforms, 2006

The Radon transform ${ }^{1}$

- Domain: $\mathcal{B}_{1}=\mathrm{B}(0,1) \subseteq \mathbb{R}^{2}$
- Radon transform at fixed angle $\theta \in \mathbb{S}^{1}$:

$$
\mathcal{R}_{\theta}: L^{2}\left(\mathcal{B}_{1}\right) \rightarrow L^{2}(-1,1), \quad \mathcal{R}_{\theta} u(s)=\int_{\theta^{\perp}} u(y+s \theta) d y
$$

The Radon transform ${ }^{1}$

- Domain: $\mathcal{B}_{1}=\mathrm{B}(0,1) \subseteq \mathbb{R}^{2}$
- Radon transform at fixed angle $\theta \in \mathbb{S}^{1}$:

$$
\mathcal{R}_{\theta}: L^{2}\left(\mathcal{B}_{1}\right) \rightarrow L^{2}(-1,1), \quad \mathcal{R}_{\theta} u(s)=\int_{\theta^{\perp}} u(y+s \theta) d y
$$

- Radon transform:

$$
\mathcal{R}: \mathrm{L}^{2}\left(\mathcal{B}_{1}\right) \rightarrow \mathrm{L}^{2}\left(\mathbb{S}^{1} \times[-1,1]\right), \quad \mathcal{R} \mathfrak{u}(\theta, s)=\mathcal{R}_{\theta} \mathfrak{u}(s)
$$

The Radon transform ${ }^{1}$

- Domain: $\mathcal{B}_{1}=\mathrm{B}(0,1) \subseteq \mathbb{R}^{2}$
- Radon transform at fixed angle $\theta \in \mathbb{S}^{1}$:

$$
\mathcal{R}_{\theta}: L^{2}\left(\mathcal{B}_{1}\right) \rightarrow L^{2}(-1,1), \quad \mathcal{R}_{\theta} u(s)=\int_{\theta^{\perp}} u(y+s \theta) d y
$$

- Radon transform:

$$
\mathcal{R}: \mathrm{L}^{2}\left(\mathcal{B}_{1}\right) \rightarrow \mathrm{L}^{2}\left(\mathbb{S}^{1} \times[-1,1]\right), \quad \mathcal{R} \mathfrak{u}(\theta, s)=\mathcal{R}_{\theta} \mathfrak{u}(s)
$$

- Ill-posedness/inversion:

$$
\|\mathcal{R u}\|_{\mathrm{L}^{2}} \asymp\|\mathfrak{u}\|_{\mathrm{H}^{-\frac{1}{2}}}
$$

The sparse Radon transform

$$
\mathcal{R}_{\theta} u(s)=\int_{\theta^{\perp}} u(y+s \theta) d y, \quad \theta=\theta_{1}
$$

The sparse Radon transform

$$
\mathcal{R}_{\theta} \mathfrak{u}(s)=\int_{\theta^{\perp}} u(y+s \theta) d y, \quad \theta=\theta_{2}
$$

The sparse Radon transform

$$
\mathcal{R}_{\theta} u(s)=\int_{\theta^{\perp}} u(y+s \theta) d y, \quad \theta=\theta_{3}
$$

The sparse Radon transform

$$
\mathcal{R}_{\theta} u(s)=\int_{\theta^{\perp}} u(y+s \theta) d y, \quad \theta=\theta_{4}
$$

The sparse Radon transform

$$
\left(\mathcal{R u}{ }^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R} u^{\dagger}\left(\theta_{\mathrm{m}}, \cdot\right)\right), \quad \theta_{1}, \ldots, \theta_{\mathrm{m}} \stackrel{\text { i.i.d. }}{\sim} v \text { uniform on } \mathbb{S}^{1}
$$

The sparse Radon inverse problem

- Data:

$$
\left(\mathcal{R u}{ }^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R} u^{\dagger}\left(\theta_{\mathrm{m}}, \cdot\right)\right), \quad \theta_{1}, \ldots, \theta_{\mathrm{m}} \stackrel{\text { i.i.d. }}{\sim} v \text { uniform on } \mathbb{S}^{1}
$$

The sparse Radon inverse problem

- Data:

$$
\left(\mathcal{R u}^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R u}^{\dagger}\left(\theta_{\mathfrak{m}}, \cdot\right)\right), \quad \theta_{1}, \ldots, \theta_{\mathfrak{m}} \stackrel{\text { i.i.d. }}{\sim} v \text { uniform on } \mathbb{S}^{1}
$$

- Unknown:

$$
\mathrm{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

The sparse Radon inverse problem

- Data:

$$
\left(\mathcal{R u} u^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R} u^{\dagger}\left(\theta_{\mathfrak{m}}, \cdot\right)\right), \quad \theta_{1}, \ldots, \theta_{\mathrm{m}} \stackrel{\text { i.i.d. }}{\sim} v \text { uniform on } \mathbb{S}^{1}
$$

- Unknown:

$$
u^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

- Subsampled measurements \Longrightarrow need a-priori information on u^{\dagger}
- Natural assumption: u^{\dagger} is sparse

(Some) related literature

$$
\left(\mathcal{R u}^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R u}^{\dagger}\left(\theta_{\mathrm{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathrm{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

(Some) related literature

$$
\left(\mathcal{R} u^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R} u^{\dagger}\left(\theta_{\mathrm{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad u^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Empirical works:

- Siltanen et al, Statistical inversion for medical x-ray tomography with few radiographs, 2003
- Hämäläinen et al, Sparse Tomography, 2013
- Jørgensen and Sidky, How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography, 2015
- Jørgensen, Coban, Lionheart, McDonald and Withers, SparseBeads data: benchmarking sparsity-regularized computed tomography, 2017
- Bubba and Ratti, Shearlet-based regularization in statistical inverse learning with an application to x-ray tomography, 2022

(Some) related literature

$$
\left(\mathcal{R} u^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R} u^{\dagger}\left(\theta_{\mathrm{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad u^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Empirical works:

- Siltanen et al, Statistical inversion for medical x-ray tomography with few radiographs, 2003
- Hämäläinen et al, Sparse Tomography, 2013
- Jørgensen and Sidky, How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography, 2015
- Jørgensen, Coban, Lionheart, McDonald and Withers, SparseBeads data: benchmarking sparsity-regularized computed tomography, 2017
- Bubba and Ratti, Shearlet-based regularization in statistical inverse learning with an application to x-ray tomography, 2022
Theoretical works:

A theory of sparse Radon transform?

Main question:
number of measurements (sample complexity) \longleftrightarrow sparsity of u^{\dagger}

A theory of sparse Radon transform?

Main question:
number of measurements (sample complexity) \longleftrightarrow sparsity of u^{\dagger}

Compressed sensing!

A theory of sparse Radon transform?

Main question:
number of measurements (sample complexity) \longleftrightarrow sparsity of u^{\dagger}

Compressed sensing! But...

A theory of sparse Radon transform?

Main question:
number of measurements (sample complexity) \longleftrightarrow sparsity of u^{\dagger}

Compressed sensing! But...

- From Jørgensen, Coban, Lionheart, McDonald and Withers, 2017:

Compressive sensing connects the critical number of projections to the image sparsity, but does not cover CT. Empirical results suggest a similar connection.

A theory of sparse Radon transform?

Main question:
number of measurements (sample complexity) \longleftrightarrow sparsity of u^{\dagger}

Compressed sensing! But...

- From Jørgensen, Coban, Lionheart, McDonald and Withers, 2017:

Compressive sensing connects the critical number of projections to the image sparsity, but does not cover CT. Empirical results suggest a similar connection.

- From Hansen, 2017:

We used simulations studies to provide a foundation for the use of sparsity in CT where, unlike compressed sensing, it is not possible to give rigorous proofs.

A theory of sparse Radon transform?

Main question:
number of measurements (sample complexity) \longleftrightarrow sparsity of u^{\dagger}

Compressed sensing! But...

- From Jørgensen, Coban, Lionheart, McDonald and Withers, 2017:

Compressive sensing connects the critical number of projections to the image sparsity, but does not cover CT. Empirical results suggest a similar connection.

- From Hansen, 2017:

We used simulations studies to provide a foundation for the use of sparsity in CT where, unlike compressed sensing, it is not possible to give rigorous proofs.

- From me, 2017

A theory of sparse Radon transform?

Main question:
number of measurements (sample complexity) \longleftrightarrow sparsity of u^{\dagger}

Compressed sensing! But...

- From Jørgensen, Coban, Lionheart, McDonald and Withers, 2017:

Compressive sensing connects the critical number of projections to the image sparsity, but does not cover CT. Empirical results suggest a similar connection.

- From Hansen, 2017:

We used simulations studies to provide a foundation for the use of sparsity in CT where, unlike compressed sensing, it is not possible to give rigorous proofs.

- From me, 2017:

Discussions started at " 100 years of the Radon transform", RICAM

WARNING

WARNING

Main result at the end!

WARNING

Main result at the end!

SPOILER

WARNING

Main result at the end!
 SPOILER
 $\mathrm{m} \gtrsim$ sparsity

Outline

The sparse Radon transform

Compressed sensing

Compressed sensing for the sparse Radon transform

Compressed sensing ${ }^{2}$

${ }^{2}$ E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8) (2006), 1207-1223
D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4) (2006), 1289-1306

Compressed sensing ${ }^{2}$

Setup:
${ }^{2}$ E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8) (2006), 1207-1223
D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4) (2006), 1289-1306

Compressed sensing ${ }^{2}$

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: $A: \mathbb{R}^{M} \rightarrow \mathbb{R}^{m}$ linear
- $(A u)_{l}=\left\langle u, \psi_{l}\right\rangle, l=1, \ldots, m$
${ }^{2}$ E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8) (2006), 1207-1223
D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4) (2006), 1289-1306

Compressed sensing ${ }^{2}$

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: A: $\mathbb{R}^{M} \rightarrow \mathbb{R}^{m}$ linear
- $(A u)_{l}=\left\langle u, \psi_{\imath}\right\rangle, l=1, \ldots, m$
- the number of measurements is $m \leqslant M$
${ }^{2}$ E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8) (2006), 1207-1223
D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4) (2006), 1289-1306

Compressed sensing ${ }^{2}$

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: A: $\mathbb{R}^{M} \rightarrow \mathbb{R}^{m}$ linear
- $(A u)_{l}=\left\langle u, \psi_{\imath}\right\rangle, l=1, \ldots, m$
- the number of measurements is $m \leqslant M$
- example: $A=$ subsampled Fourier transform, $\psi_{l}=$ trigonometric polynomials (MRI)
${ }^{2}$ E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8) (2006), 1207-1223
D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4) (2006), 1289-1306

Compressed sensing ${ }^{2}$

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: A: $\mathbb{R}^{M} \rightarrow \mathbb{R}^{m}$ linear
- $(A u)_{l}=\left\langle u, \psi_{\imath}\right\rangle, l=1, \ldots, m$
- the number of measurements is $m \leqslant M$
- example: $A=$ subsampled Fourier transform, $\psi_{l}=$ trigonometric polynomials (MRI)

u^{\dagger}

Measured frequencies
${ }^{2}$ E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8) (2006), 1207-1223
D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4) (2006), 1289-1306

Compressed sensing ${ }^{2}$

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: $A: \mathbb{R}^{M} \rightarrow \mathbb{R}^{m}$ linear
- $(\mathrm{Au})_{l}=\left\langle u, \psi_{\mathrm{l}}\right\rangle, \mathrm{l}=1, \ldots, \mathrm{~m}$
- the number of measurements is $m \leqslant M$
- example: $A=$ subsampled Fourier transform, $\psi_{\imath}=$ trigonometric polynomials (MRI)

Problem:

${ }^{2}$ E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8) (2006), 1207-1223
D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4) (2006), 1289-1306

Compressed sensing ${ }^{2}$

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: A: $\mathbb{R}^{M} \rightarrow \mathbb{R}^{m}$ linear
- $(\mathrm{Au})_{l}=\left\langle u, \psi_{\mathrm{l}}\right\rangle, \mathrm{l}=1, \ldots, \mathrm{~m}$
- the number of measurements is $m \leqslant M$
- example: $A=$ subsampled Fourier transform, $\psi_{\imath}=$ trigonometric polynomials (MRI)

Problem: given $y:=A u^{\dagger}$, retrieve the signal u^{\dagger}
${ }^{2}$ E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8) (2006), 1207-1223
D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4) (2006), 1289-1306

Compressed sensing ${ }^{2}$

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: A: $\mathbb{R}^{M} \rightarrow \mathbb{R}^{m}$ linear
- $(\mathrm{Au})_{l}=\left\langle u, \psi_{\mathrm{l}}\right\rangle, \mathrm{l}=1, \ldots, \mathrm{~m}$
- the number of measurements is $m \leqslant M$
- example: $A=$ subsampled Fourier transform, $\psi_{\imath}=$ trigonometric polynomials (MRI)

Problem: given $y:=A u^{\dagger}$, retrieve the signal u^{\dagger}
Issue:
${ }^{2}$ E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8) (2006), 1207-1223
D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4) (2006), 1289-1306

Compressed sensing ${ }^{2}$

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: A: $\mathbb{R}^{M} \rightarrow \mathbb{R}^{m}$ linear
- $(A u)_{l}=\left\langle u, \psi_{l}\right\rangle, l=1, \ldots, m$
- the number of measurements is $m \leqslant M$
- example: $A=$ subsampled Fourier transform, $\psi_{\imath}=$ trigonometric polynomials (MRI)

Problem: given $y:=A u^{\dagger}$, retrieve the signal u^{\dagger}
Issue: impossible when $m \ll M$

[^0]
Compressed sensing ${ }^{2}$

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: $A: \mathbb{R}^{M} \rightarrow \mathbb{R}^{m}$ linear
- $(\mathrm{Au})_{l}=\left\langle u, \psi_{\mathrm{l}}\right\rangle, \mathrm{l}=1, \ldots, \mathrm{~m}$
- the number of measurements is $m \leqslant M$
- example: $A=$ subsampled Fourier transform, $\psi_{\imath}=$ trigonometric polynomials (MRI)

Problem: given $y:=A u^{\dagger}$, retrieve the signal u^{\dagger}
Issue: impossible when $m \ll M$

Solution:

${ }^{2}$ E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8) (2006), 1207-1223
D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4) (2006), 1289-1306

Compressed sensing ${ }^{2}$

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: $A: \mathbb{R}^{M} \rightarrow \mathbb{R}^{m}$ linear
- $(A u)_{l}=\left\langle u, \psi_{\imath}\right\rangle, l=1, \ldots, m$
- the number of measurements is $m \leqslant M$
- example: $A=$ subsampled Fourier transform, $\psi_{\imath}=$ trigonometric polynomials (MRI)

Problem: given $y:=A u^{\dagger}$, retrieve the signal u^{\dagger}
Issue: impossible when $m \ll M$
Solution: consider only sparse u^{\dagger}

Compressed sensing ${ }^{2}$

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: $A: \mathbb{R}^{M} \rightarrow \mathbb{R}^{m}$ linear
- $(A u)_{l}=\left\langle u, \psi_{\imath}\right\rangle, l=1, \ldots, m$
- the number of measurements is $m \leqslant M$
- example: $A=$ subsampled Fourier transform, $\psi_{\imath}=$ trigonometric polynomials (MRI)

Problem: given $y:=A u^{\dagger}$, retrieve the signal u^{\dagger}
Issue: impossible when $m \ll M$
Solution: consider only sparse u^{\dagger}, and retrieve u^{\dagger} in a nonlinear fashion

[^1]
Sparsity

- $\left\{\phi_{n}\right\}_{n=1}^{M}$: orthonormal basis of \mathbb{R}^{M}

Sparsity

- $\left\{\phi_{n}\right\}_{n=1}^{M}$: orthonormal basis of \mathbb{R}^{M}
- $\Phi: \mathbb{R}^{M} \rightarrow \mathbb{R}^{M},(\Phi u)_{n}:=\left\langle u, \phi_{\mathfrak{n}}\right\rangle$: analysis operator

Sparsity

- $\left\{\phi_{n}\right\}_{n=1}^{M}$: orthonormal basis of \mathbb{R}^{M}
- $\Phi: \mathbb{R}^{\mathcal{M}} \rightarrow \mathbb{R}^{\mathcal{M}},(\Phi u)_{n}:=\left\langle u, \phi_{n}\right\rangle$: analysis operator
- If $\|\Phi u\|_{0}:=\#\left\{n \in \mathbb{N}:(\Phi u)_{n} \neq 0\right\}$, then

$$
\Sigma_{s}:=\left\{u \in \mathbb{R}^{M}:\|\Phi u\|_{0} \leqslant s\right\} \text { is called the set of } s \text {-sparse signals }
$$

Sparsity

- $\left\{\phi_{n}\right\}_{n=1}^{M}$: orthonormal basis of \mathbb{R}^{M}
- $\Phi: \mathbb{R}^{\mathcal{M}} \rightarrow \mathbb{R}^{\mathcal{M}},(\Phi u)_{n}:=\left\langle u, \phi_{n}\right\rangle$: analysis operator
- If $\|\Phi u\|_{0}:=\#\left\{n \in \mathbb{N}:(\Phi u)_{n} \neq 0\right\}$, then

$$
\Sigma_{s}:=\left\{u \in \mathbb{R}^{M}:\|\Phi u\|_{0} \leqslant s\right\} \text { is called the set of } s \text {-sparse signals }
$$

- In practice, compressibility:

$$
u=v+\text { small }, \quad v \in \Sigma_{s} .
$$

Real-world signals are compressible

Figure: Left: original image - Right: image obtained (roughly) by keeping only the 1% largest coefficients with respect to a discrete wavelet basis (JPEG-2000 compression standard)

Coherence

- $(\mathrm{Au})_{\mathrm{l}}=\left\langle\mathbf{u}, \psi_{\imath}\right\rangle$
- u is sparse with respect to $\left\{\Phi_{n}\right\}$

Coherence

- $(A u)_{l}=\left\langle u, \psi_{\imath}\right\rangle$
- u is sparse with respect to $\left\{\Phi_{n}\right\}$

In general, sparsity alone is not enough:

Coherence

- $(A u)_{l}=\left\langle u, \psi_{\imath}\right\rangle$
- u is sparse with respect to $\left\{\Phi_{n}\right\}$

In general, sparsity alone is not enough:

Coherence

- $(A u)_{l}=\left\langle u, \psi_{\imath}\right\rangle$
- u is sparse with respect to $\left\{\Phi_{n}\right\}$

In general, sparsity alone is not enough:

Coherence:

UniGe \mid Måkga

$$
B:=\max _{n, l}\left|\left\langle\Phi_{n}, \psi_{\imath}\right\rangle\right|,
$$

Coherence

- $(A u)_{l}=\left\langle u, \psi_{\imath}\right\rangle$
- u is sparse with respect to $\left\{\Phi_{n}\right\}$

In general, sparsity alone is not enough:

Coherence:

$$
B:=\max _{n, l}\left|\left\langle\Phi_{n}, \psi_{\imath}\right\rangle\right|, \quad \text { ideally: } B=\frac{1}{\sqrt{M}}
$$

Recovery estimate ${ }^{3}$

- $u^{\dagger} \in \mathbb{R}^{M}$: unknown signal
- u^{\dagger} is s-sparse w.r.t. $\left\{\Phi_{n}\right\}_{n}$
- $(A u)_{l}=\left\langle u, \psi_{\imath}\right\rangle, l=1, \ldots, m$: subsampled isometry

Recovery estimate ${ }^{3}$

- $u^{\dagger} \in \mathbb{R}^{M}$: unknown signal
- u^{\dagger} is s-sparse w.r.t. $\left\{\Phi_{n}\right\}_{n}$
- $(A u)_{l}=\left\langle u, \psi_{l}\right\rangle, l=1, \ldots, m$: subsampled isometry (e.g.: Fourier $\Longrightarrow \mathrm{MRI}$)

Recovery estimate ${ }^{3}$

- $\mathrm{u}^{\dagger} \in \mathbb{R}^{\mathrm{M}}$: unknown signal
- u^{\dagger} is s -sparse w.r.t. $\left\{\Phi_{\mathrm{n}}\right\}_{\mathrm{n}}$
- $(\mathrm{Au})_{\imath}=\left\langle u, \psi_{\imath}\right\rangle, \mathfrak{l}=1, \ldots, \mathrm{~m}$: subsampled isometry (e.g.: Fourier \Longrightarrow MRI)
- measurements: $y=A u^{\dagger}$

Recovery estimate ${ }^{3}$

- $u^{\dagger} \in \mathbb{R}^{M}$: unknown signal
- u^{\dagger} is s -sparse w.r.t. $\left\{\Phi_{\mathrm{n}}\right\}_{\mathrm{n}}$
- $(\mathrm{Au})_{\imath}=\left\langle u, \psi_{\imath}\right\rangle, \mathfrak{l}=1, \ldots, \mathrm{~m}$: subsampled isometry (e.g.: Fourier \Longrightarrow MRI)
- measurements: $y=A u^{\dagger}$
- minimization problem

$$
u_{*} \in \underset{u \in \mathbb{R}^{M}}{\arg \min }\left\{\|\Phi u\|_{1}: A u=y\right\}
$$

Recovery estimate ${ }^{3}$

- $\mathrm{u}^{\dagger} \in \mathbb{R}^{\mathrm{M}}$: unknown signal
- u^{\dagger} is s -sparse w.r.t. $\left\{\Phi_{\mathrm{n}}\right\}_{\mathrm{n}}$
- $(\mathrm{Au})_{l}=\left\langle u, \psi_{\imath}\right\rangle, \mathfrak{l}=1, \ldots, \mathrm{~m}$: subsampled isometry (e.g.: Fourier \Longrightarrow MRI)
- measurements: $y=A u^{\dagger}$
- minimization problem

$$
\mathbf{u}_{*} \in \underset{u \in \mathbb{R}^{M}}{\arg \min }\left\{\|\Phi u\|_{1}: A u=y\right\}
$$

Theorem
If

$$
m \gtrsim B^{2} M s \cdot \log \text { factors }
$$

Recovery estimate ${ }^{3}$

- $\mathrm{u}^{\dagger} \in \mathbb{R}^{\mathrm{M}}$: unknown signal
- u^{\dagger} is s -sparse w.r.t. $\left\{\Phi_{\mathrm{n}}\right\}_{\mathrm{n}}$
- $(\mathrm{Au})_{l}=\left\langle u, \psi_{\imath}\right\rangle, \mathfrak{l}=1, \ldots, \mathrm{~m}$: subsampled isometry (e.g.: Fourier \Longrightarrow MRI)
- measurements: $y=A u^{\dagger}$
- minimization problem

$$
\mathbf{u}_{*} \in \underset{u \in \mathbb{R}^{M}}{\arg \min }\left\{\|\Phi u\|_{1}: A u=y\right\}
$$

Theorem
If

$$
m \gtrsim B^{2} M s \cdot \log \text { factors } \quad(\text { Fourier: } m \gtrsim s)
$$

Recovery estimate ${ }^{3}$

- $\mathrm{u}^{\dagger} \in \mathbb{R}^{\mathrm{M}}$: unknown signal
- u^{\dagger} is s -sparse w.r.t. $\left\{\Phi_{\mathrm{n}}\right\}_{n}$
- $(\mathrm{Au})_{\mathrm{l}}=\left\langle\mathrm{u}, \psi_{\imath}\right\rangle, \mathrm{l}=1, \ldots, \mathrm{~m}$: subsampled isometry (e.g.: Fourier \Longrightarrow MRI)
- measurements: $y=A u^{\dagger}$
- minimization problem

$$
\mathfrak{u}_{*} \in \underset{u \in \mathbb{R}^{M}}{\arg \min }\left\{\|\Phi u\|_{1}: A u=y\right\}
$$

Theorem
If

$$
m \gtrsim B^{2} M s \cdot \log \text { factors } \quad \text { (Fourier: } m \gtrsim s \text {) }
$$

then, with high probability,

$$
u^{\dagger}=u_{*}
$$

Outline

The sparse Radon transform

Compressed sensing

Compressed sensing for the sparse Radon transform

Back to the sparse Radon transform

$$
\left(\mathcal{R} u^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R} u^{\dagger}\left(\theta_{\mathfrak{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad u^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Back to the sparse Radon transform

$$
\left(\mathcal{R} u^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R} u^{\dagger}\left(\theta_{\mathfrak{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathbf{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Main obstacles:

${ }^{4}$ A. Ebner, M. Haltmeier, Convergence rates for the joint solution of inverse problems with compressed sensing data, 2022

Back to the sparse Radon transform

$$
\left(\mathcal{R} u^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R u}^{\dagger}\left(\theta_{\mathfrak{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathrm{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Main obstacles:

- Infinite-dimensional setting
${ }^{4}$ A. Ebner, M. Haltmeier, Convergence rates for the joint solution of inverse problems with compressed sensing data, 2022

Back to the sparse Radon transform

$$
\left(\mathcal{R u}^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R} u^{\dagger}\left(\theta_{\mathfrak{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathbf{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Main obstacles:

- Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, Necessary and sufficient conditions for linear convergence of ℓ^{1}-regularization, 2011
Adcock, Hansen, Generalized Sampling and Infinite-Dimensional CS, 2016
${ }^{4}$ A. Ebner, M. Haltmeier, Convergence rates for the joint solution of inverse problems with compressed sensing data, 2022

Back to the sparse Radon transform

$$
\left(\mathcal{R u} u^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R} u^{\dagger}\left(\theta_{\mathrm{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathrm{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Main obstacles:

- Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, Necessary and sufficient conditions for linear
convergence of ℓ^{1}-regularization, 2011
Adcock, Hansen, Generalized Sampling and Infinite-Dimensional CS, 2016

- Pointwise values (aka interpolation) vs. scalar products

Back to the sparse Radon transform

$$
\left(\mathcal{R u}^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R} u^{\dagger}\left(\theta_{\mathrm{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathbf{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Main obstacles:

- Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, Necessary and sufficient conditions for linear
convergence of ℓ^{1}-regularization, 2011
Adcock, Hansen, Generalized Sampling and Infinite-Dimensional CS, 2016

- Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, Interpolation via weighted ℓ^{1} minimization, 2016

Back to the sparse Radon transform

$$
\left(\mathcal{R u}^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R} u^{\dagger}\left(\theta_{\mathfrak{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathbf{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Main obstacles:

- Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, Necessary and sufficient conditions for linear
convergence of ℓ^{1}-regularization, 2011
Adcock, Hansen, Generalized Sampling and Infinite-Dimensional CS, 2016

- Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, Interpolation via weighted ℓ^{1} minimization, 2016

- Vector-valued measurements?

Back to the sparse Radon transform

$$
\left(\mathcal{R u}^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R} u^{\dagger}\left(\theta_{\mathrm{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathrm{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Main obstacles:

- Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, Necessary and sufficient conditions for linear
convergence of ℓ^{1}-regularization, 2011
Adcock, Hansen, Generalized Sampling and Infinite-Dimensional CS, 2016

- Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, Interpolation via weighted ℓ^{1} minimization, 2016

- Vector-valued measurements?

Check: the whole theory still works

[^2]
Back to the sparse Radon transform

$$
\left(\mathcal{R} u^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R} u^{\dagger}\left(\theta_{\mathfrak{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathbf{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Main obstacles:

- Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, Necessary and sufficient conditions for linear
convergence of ℓ^{1}-regularization, 2011
Adcock, Hansen, Generalized Sampling and Infinite-Dimensional CS, 2016

- Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, Interpolation via weighted ℓ^{1} minimization, 2016

- Vector-valued measurements?

Check: the whole theory still works

1. Forward map \mathcal{R} affects sparsity

Back to the sparse Radon transform

$$
\left(\mathcal{R} u^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R} u^{\dagger}\left(\theta_{\mathfrak{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathbf{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Main obstacles:

- Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, Necessary and sufficient conditions for linear
convergence of ℓ^{1}-regularization, 2011
Adcock, Hansen, Generalized Sampling and Infinite-Dimensional CS, 2016

- Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, Interpolation via weighted ℓ^{1} minimization, 2016

- Vector-valued measurements?

Check: the whole theory still works

1. Forward map \mathcal{R} affects sparsity
2. Ill-posed problem ${ }^{4}$

1. Forward map \mathcal{R} affects sparsity ${ }^{5}$

1. Forward map \mathcal{R} affects sparsity ${ }^{5}$

- A priori assumption: u^{\dagger} is s-sparse/compressible
${ }^{5}$ E. Herrholz, G. Teschke, Compressive sensing principles and iterative sparse recovery for inverse and ill-posed problems, 2010

1. Forward map \mathcal{R} affects sparsity ${ }^{5}$

- A priori assumption: u^{\dagger} is s-sparse/compressible
- Problem: for general $\mathrm{F}, \mathrm{Fu}^{\dagger}$ might not be s-sparse w.r.t. a reasonable dictionary

1. Forward map \mathcal{R} affects sparsity ${ }^{5}$

- A priori assumption: u^{\dagger} is s-sparse/compressible
- Problem: for general $F, F u^{\dagger}$ might not be s-sparse w.r.t. a reasonable dictionary
- Solution: many dictionaries and operators of interest are 'compatible'

1. Forward map \mathcal{R} affects sparsity: quasi-diagonalization

- For $b=\frac{1}{2}$, the forward map \mathcal{R} satisfies

$$
\|\mathcal{R u}\|^{2} \asymp\|u\|_{\mathrm{H}^{-b}}^{2}, \quad u \in \mathrm{~L}^{2}\left(\mathcal{B}_{1}\right)
$$

1. Forward map \mathcal{R} affects sparsity: quasi-diagonalization

- For $b=\frac{1}{2}$, the forward map \mathcal{R} satisfies

$$
\|\mathcal{R u}\|^{2} \asymp\|u\|_{\mathbf{H}^{-b}}^{2}, \quad u \in \mathrm{~L}^{2}\left(\mathcal{B}_{1}\right)
$$

- the family $\left(\phi_{j, n}\right)_{j, n}$ (e.g.: wavelets) satisfies a Littlewood-Paley property ${ }^{6}$:

$$
\sum_{j, n} 2^{-2 b j}\left|\left\langle u, \phi_{j, n}\right\rangle\right|^{2} \asymp\|u\|_{H^{-b}}^{2}, \quad u \in L^{2}\left(\mathcal{B}_{1}\right)
$$

1. Forward map \mathcal{R} affects sparsity: quasi-diagonalization

- For $b=\frac{1}{2}$, the forward map \mathcal{R} satisfies

$$
\|\mathcal{R} u\|^{2} \asymp\|u\|_{\mathrm{H}^{-b}}^{2}, \quad u \in \mathrm{~L}^{2}\left(\mathcal{B}_{1}\right)
$$

- the family $\left(\phi_{j, n}\right)_{j, n}$ (e.g.: wavelets) satisfies a Littlewood-Paley property ${ }^{6}$:

$$
\sum_{j, n} 2^{-2 b j}\left|\left\langle u, \phi_{j, n}\right\rangle\right|^{2} \asymp\|u\|_{H^{-b}}^{2}, \quad u \in L^{2}\left(\mathcal{B}_{1}\right)
$$

- Then we have a quasi-diagonalization property:

$$
\|\mathcal{R u}\|^{2} \asymp \sum_{j, n} 2^{-2 b j}\left|\left\langle\mathfrak{u}, \phi_{j, n}\right\rangle\right|^{2}
$$

1. Forward map \mathcal{R} affects sparsity: quasi-diagonalization

- For $b=\frac{1}{2}$, the forward map \mathcal{R} satisfies

$$
\|\mathcal{R} u\|^{2} \asymp\|u\|_{\mathrm{H}^{-b}}^{2}, \quad u \in \mathrm{~L}^{2}\left(\mathcal{B}_{1}\right)
$$

- the family $\left(\phi_{j, n}\right)_{j, n}$ (e.g.: wavelets) satisfies a Littlewood-Paley property ${ }^{6}$:

$$
\sum_{j, n} 2^{-2 b j}\left|\left\langle u, \phi_{j, n}\right\rangle\right|^{2} \asymp\|u\|_{H^{-b}}^{2}, \quad u \in L^{2}\left(\mathcal{B}_{1}\right)
$$

- Then we have a quasi-diagonalization property:

$$
\|\mathcal{R u}\|^{2} \asymp \sum_{j, n} 2^{-2 b j}\left|\left\langle u, \phi_{j, n}\right\rangle\right|^{2}
$$

- \mathcal{R} is comparable to the action of a diagonal operator on the coefficients Φu

1. Forward map \mathcal{R} affects sparsity: quasi-diagonalization

- For $b=\frac{1}{2}$, the forward map \mathcal{R} satisfies

$$
\|\mathcal{R} u\|^{2} \asymp\|u\|_{\mathrm{H}^{-b}}^{2}, \quad u \in \mathrm{~L}^{2}\left(\mathcal{B}_{1}\right)
$$

- the family $\left(\phi_{j, n}\right)_{j, n}$ (e.g.: wavelets) satisfies a Littlewood-Paley property ${ }^{6}$:

$$
\sum_{j, n} 2^{-2 b j}\left|\left\langle u, \phi_{j, n}\right\rangle\right|^{2} \asymp\|u\|_{H^{-b}}^{2}, \quad u \in L^{2}\left(\mathcal{B}_{1}\right)
$$

- Then we have a quasi-diagonalization property:

$$
\|\mathcal{R u}\|^{2} \asymp \sum_{j, n} 2^{-2 b j}\left|\left\langle u, \phi_{j, n}\right\rangle\right|^{2}
$$

- \mathcal{R} is comparable to the action of a diagonal operator on the coefficients Φu
- Information on sparsity of $u^{\dagger} \Rightarrow$ information on $\mathcal{R u}{ }^{\dagger}$

2. Ill-posed problem: g-RIP

- Classical CS: Restricted Isometry Property (RIP)

$$
(1-\delta)\|u\|^{2} \leqslant\|A u\|_{2}^{2} \leqslant(1+\delta)\|u\|^{2}, \quad u \in \Sigma_{s}
$$

for m sufficiently large.

2. Ill-posed problem: g-RIP

- Classical CS: Restricted Isometry Property (RIP)

$$
(1-\delta)\|u\|^{2} \leqslant\|A u\|_{2}^{2} \leqslant(1+\delta)\|u\|^{2}, \quad u \in \Sigma_{s}
$$

for m sufficiently large.

- Our setting: generalized RIP (g-RIP) ${ }^{7}$

$$
(1-\delta)\left(\|G u\|^{2}+\alpha^{2}\|u\|^{2}\right) \leqslant\|A u\|^{2}+\alpha^{2}\|u\|^{2} \leqslant(1+\delta)\left(\|G u\|^{2}+\alpha^{2}\|u\|^{2}\right), \quad u \in \Sigma_{s}
$$

2. Ill-posed problem: g-RIP

- Classical CS: Restricted Isometry Property (RIP)

$$
(1-\delta)\|u\|^{2} \leqslant\|A u\|_{2}^{2} \leqslant(1+\delta)\|u\|^{2}, \quad u \in \Sigma_{s}
$$

for m sufficiently large.

- Our setting: generalized RIP (g-RIP) ${ }^{7}$

$$
(1-\delta)\left(\|G u\|^{2}+\alpha^{2}\|u\|^{2}\right) \leqslant\|A u\|^{2}+\alpha^{2}\|u\|^{2} \leqslant(1+\delta)\left(\|G u\|^{2}+\alpha^{2}\|u\|^{2}\right), \quad u \in \Sigma_{s}
$$

where

- $G:=\sqrt{P_{M} \mathcal{R} * \mathcal{R} l_{M}}$ encodes properties of the truncated forward map \mathcal{R}

2. Ill-posed problem: g-RIP

- Classical CS: Restricted Isometry Property (RIP)

$$
(1-\delta)\|u\|^{2} \leqslant\|A u\|_{2}^{2} \leqslant(1+\delta)\|u\|^{2}, \quad u \in \Sigma_{s}
$$

for m sufficiently large.

- Our setting: generalized RIP (g-RIP) ${ }^{7}$

$$
(1-\delta)\left(\|G u\|^{2}+\alpha^{2}\|u\|^{2}\right) \leqslant\|A u\|^{2}+\alpha^{2}\|u\|^{2} \leqslant(1+\delta)\left(\|G u\|^{2}+\alpha^{2}\|u\|^{2}\right), \quad u \in \Sigma_{s}
$$

where

- $\mathrm{G}:=\sqrt{\mathrm{P}_{\mathrm{M}} \mathcal{R}^{*} \mathcal{R l}_{\mathrm{M}}}$ encodes properties of the truncated forward map \mathcal{R}
$-\alpha \geqslant 0$ is a regularization parameter (elastic net)

Main result

$$
\left(\mathcal{R u}^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R u}^{\dagger}\left(\theta_{\mathfrak{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathbf{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Main result

$$
\left(\mathcal{R} u^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R u}^{\dagger}\left(\theta_{\mathrm{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathrm{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Theorem (A, Felisi, Santacesaria, Trapasso)

- Unknown: $\mathrm{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)$

Main result

$$
\left(\mathcal{R} u^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R u}^{\dagger}\left(\theta_{\mathfrak{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathrm{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Theorem (A, Felisi, Santacesaria, Trapasso)

- Unknown: $\mathrm{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)$
- Sparsity: u^{\dagger} is s-sparse wrt an ONB of wavelets $\left(\phi_{j, n}\right)_{j, n}$

Main result

$$
\left(\mathcal{R} u^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R u}^{\dagger}\left(\theta_{\mathfrak{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathrm{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Theorem (A, Felisi, Santacesaria, Trapasso)

- Unknown: $u^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)$
- Sparsity: u^{\dagger} is s-sparse wrt an ONB of wavelets $\left(\phi_{j, n}\right)_{j, n}$
- Measurements: $\theta_{1}, \ldots, \theta_{\mathrm{m}} \in[0, \pi]$ chosen uniformly at random with

$$
m \gtrsim s \cdot \log \text { factors }
$$

Main result

$$
\left(\mathcal{R} u^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R u}^{\dagger}\left(\theta_{\mathfrak{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathrm{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Theorem (A, Felisi, Santacesaria, Trapasso)

- Unknown: $u^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)$
- Sparsity: u^{\dagger} is s-sparse wrt an ONB of wavelets $\left(\phi_{j, n}\right)_{j, n}$
- Measurements: $\theta_{1}, \ldots, \theta_{\mathrm{m}} \in[0, \pi]$ chosen uniformly at random with

$$
m \gtrsim s \cdot \log \text { factors }
$$

- Minimization problem:

$$
\mathbf{u}_{*} \in \underset{\mathfrak{u}}{\arg \min }\|\Phi u\|_{1} \quad \text { subject to } \quad \mathcal{R}_{\theta_{\imath}} \mathfrak{u}=\mathcal{R}_{\theta_{\imath}} \mathfrak{u}^{\dagger}, l=1, \ldots, m
$$

Main result

$$
\left(\mathcal{R} u^{\dagger}\left(\theta_{1}, \cdot\right), \ldots, \mathcal{R u}^{\dagger}\left(\theta_{\mathfrak{m}}, \cdot\right)\right) \in \mathrm{L}^{2}(-1,1)^{\mathrm{m}} \quad \longrightarrow \quad \mathrm{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)
$$

Theorem (A, Felisi, Santacesaria, Trapasso)

- Unknown: $\mathrm{u}^{\dagger} \in \mathrm{L}^{2}\left(\mathcal{B}_{1}\right)$
- Sparsity: u^{\dagger} is s-sparse wrt an ONB of wavelets $\left(\phi_{j, n}\right)_{j, n}$
- Measurements: $\theta_{1}, \ldots, \theta_{\mathrm{m}} \in[0, \pi]$ chosen uniformly at random with

$$
m \gtrsim s \cdot \log \text { factors }
$$

- Minimization problem:

$$
\mathbf{u}_{*} \in \underset{\mathbf{u}}{\arg \min }\|\Phi u\|_{1} \quad \text { subject to } \quad \mathcal{R}_{\boldsymbol{\theta}_{\imath}} u=\mathcal{R}_{\theta_{\imath}} u^{\dagger}, l=1, \ldots, m
$$

Then, with high probability,

$$
u_{*}=u^{\dagger}
$$

A few comments

- This theorem is a particular case of an abstract result dealing with:
- compressed sensing and interpolation simultaneously
- Hilbert space-valued measurements
- ill-posed inverse problems

A few comments

- This theorem is a particular case of an abstract result dealing with:
- compressed sensing and interpolation simultaneously
- Hilbert space-valued measurements
- ill-posed inverse problems
- Explicit estimates with
- noisy data
- compressible (and not sparse) u^{\dagger}
- regularization with sampling: $\mathfrak{m}=\mathfrak{m}$ (noise)

Conclusions

Past

- Rigorous theory of compressed sensing for subsampled isometries (e.g. MRI)
- Empirical evidence for compressed sensing Radon transform

Conclusions

Past

- Rigorous theory of compressed sensing for subsampled isometries (e.g. MRI)
- Empirical evidence for compressed sensing Radon transform

Present

- Rigorous theory of compressed sensing for the sparse Radon transform
- Abstract theory of sample complexity

Conclusions

Past

- Rigorous theory of compressed sensing for subsampled isometries (e.g. MRI)
- Empirical evidence for compressed sensing Radon transform

Present

- Rigorous theory of compressed sensing for the sparse Radon transform
- Abstract theory of sample complexity

Future

- Fan-beam geometry
- Wavelets \rightarrow shearlets, curvelets, etc.
- Generalisation to other ill-posed problems
- Nonlinear problems
- Compressed sensing with generative models

[^0]: ${ }^{2}$ E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8) (2006), 1207-1223
 D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4) (2006), 1289-1306

[^1]: ${ }^{2}$ E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8) (2006), 1207-1223
 D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4) (2006), 1289-1306

[^2]: UniGe \mid Malga \quad 4. Ebner, M. Haltmeier, Convergence rates for the joint solution of inverse problems with compressed sensing data, 2022

