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Hyperbolic surfaces and moduli spaces

For a compact surface M with genus g ≥ 2 with a given complex
structure, there is a unique hyperbolic metric with finite area
(Uniformization theorem, Gauss–Bonnet)
The moduli spaceMg is the set of all such complex structures
(hence hyperbolic metrics) on a genus g surface up to
diffeomorphism
The surface can also have punctures (corresponding to marked
points)
If 2g + n − 2 > 0, it corresponds to hyperbolic surfaces with cusps
The moduli spaceMg,n is a complex orbifold with dimension
3g − 3 + n
The hyperbolic metrics varies smoothly
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Compact and noncompact surfaces

Cusped surfaces can be obtained as the degenerating limit of
compact surfaces
Take a nontrivial geodesic cycle in M, and let its length go to zero.

Figure: Degenerating surfaces with a geodesic cycle shrinking to a point

Can also be seen from group actions on the universal cover
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Eigenvalues of compact hyperbolic surfaces

We study ∆, the Laplace–Beltrami operator w.r.t. hyperbolic metric
When the surface is compact, there is a sequence of eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .

Varies smoothly on the moduli space [Buser, 1992]
Distribution of eigenvalues are related to

genus
diameter
injectivity radius
. . .
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Spectrum of noncompact hyperbolic surfaces

The spectrum for a hyperbolic surface with cusps are different
Continuous spectrum [1

4 ,∞) + discrete eigenvalues {λi}
Related to eigenvalues of compact surfaces under degeneration
Related works: [Hejhal, 1990] [Ji, 1993] [Ji–Zworski, 1993]
[Wolpert, 1987, 1992] ...
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Small eigenvalues

“Small” eigenvalues of hyperbolic surfaces: λ ∈ (0, 1
4 ]

Question:
Existence
Total number
Multiplicities...

Literature: [McKean, 1972, 1974] [Randol, 1974] [Buser, 1982,
1984] [Brooks–Makover, 2001, 2004] [Otal–Rosas, 2009] [Mondal,
2015] [Ballmann–Mattheiesen–Mondal, 2016–]...
Can have arbitrarily many small eigenvalues [Randol, 1974]
Can have arbitrarily many inside (0, ε) [Buser, 1982]
For genus g surface, λ2g−2 >

1
4 [Otal–Rosas, 2009]

λ1(X0,3) > 1
4 [Otal–Rosas, 2009] [Ballmann–Mattheiesen–Mondal,

2016]
There exists X1,2 such that λ1(X1,2) > 1

4 [Mondal, 2015]
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Why care about the spectrum

Selberg’s 3/16 conjecture regarding size of λ1 [Selberg, 1965]
Recent progress: [Gelbart–Jacquet, 1978] [Luo–Rudnick–Sarnak,
1995] [Kim–Shahidi, 2002] [Kim–Sarnak, 2003]
Arithmetic vs non-arithmetic hyperbolic surfaces

Spectral gap
Embedded eigenvalues

Relation to number theory, representation theory, geometry, etc.
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Large genus limit

Another type of question: what happens to eigenvalues when
genus g →∞?
limg→∞ Prob(λ1(Xg) ≥ 3

16 − ε) = 1 [Wu–Xue, 2021]
[Lipnowski–Wright, 2021]
Related works: [Brooks–Markover, 2004] [Mirzakhani, 2013]
[Hide, 2021] [Monk, 2021]
Random covers of compact and noncompact hyperbolic surfaces
[Magee, Naud, Puder, 2010–]
Random covers of punctured hyperbolic surfaces has λ1 ≥ 1

4 − ε
[Hide-Magee, 2021]
There exists a sequence such that λ1(Xi)→ 1

4 with increasing
genus [Hide–Magee, 2021]
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Statement of the result

Our result concerns the gaps between eigenvalues when genus goes
to infinity:

Theorem (Wu–Zhang–Z, 2022)
For any integer sequence {η(g)}∞g=2 such that η(g) ∈ [1,2g − 2],

lim inf
g→∞

sup
Xg∈Mg

(λη(Xg)− λη−1(Xg)) ≥ 1
4
.
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Related results

There is another bound for η = o(ln(g)):

lim sup
g→∞

sup
Xg∈Mg

(λη(Xg)− λη−1(Xg)) ≤ 1
4
.

Two results combined, for η = o(ln(g))

lim
g→∞

sup
Xg∈Mg

(λη(Xg)− λη−1(Xg)) =
1
4
.

For η = 1, this is the result in [Hide–Magee, 2021]

lim
g→∞

sup
Xg∈Mg

λ1(Xg) =
1
4
.
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Related results

Upper bound of eigenvalues for hyperbolic surfaces [Cheng, 1975]

λi(Xg) ≤ 1
4

+ i2 · 16π2

Diam2(Xg)
.

and Diam(Xg) ≥ C ln(g).

There exists degeneration of compact hyperbolic surfaces into a
connected cusp surface such that

lim sup
t→∞

λ1(Xt ) ≥ 3/16

[Buser–Burger–Dodziuk, 1988]
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Components of the proof

Degeneration of hyperbolic surfaces
Analysis: Min-Max principle for eigenvlaues

A theorem of Schoen–Wolpert–Yau
Finding the correct components of punctured surfaces with large
first eigenvalue

Geometry: decomposition into punctured surfaces
Eigenvalue estimate for each component
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Degenerating hyperbolic surfaces

Locally the geometry near the shrinking cycle is described by the
normal crossing model:

(z,w) ∈ C2, zw = t

t = 1/2 t = 1/4 t = 0

{
√
|t| ≤ |z| ≤ 1} {

√
|t| ≤ |w| ≤ 1} {|z| ≤ 1, w = 0} {|w| ≤ 1, z = 0}

Figure: Local geometry of zw = t , with coordinate patch z and w
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Results on degenerating hyperbolic metrics

Theorem(Melrose–Z, 2018, 2019)
The degenerating hyperbolic metrics are polyhomogeneous on a
space with new variables.
The metric is uniformly bounded on any compact set outside the
degenerating area.

This implies control of eigenfunctions on any compact set outside
the degenerating area.
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A Min-Max principle

Proposition
Take limt→0 Xg(t) = Xg(0) ∈ ∂Mg

Xg(0) has k connected components, i.e., Xg(0) = Y1 t Y2 · · · t Yk
where k ≥ 2.
Let λ1(Yi) be the first non-zero eigenvalue of Yi

denote λ̄1(∗) = min
{
λ1(∗), 1

4

}
for ∗ = Y1, · · · ,Yk .

Then
lim inf

t→0
λk (Xg(t)) ≥ min

1≤i≤k
{λ̄1(Yi)}.

There is a version for degenerating sequence with non-separating
limit in [Buser–Burger–Dodziuk, 1988]
Why need λ̄1 and 1/4: example of X0,3
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Proof of the Min-max principle

Eigenfunctions are uniformly bounded (Sobolev–Gårding
inequality)
There is a subsequence {φk} that converges to ∆φ0 = λ(0)φ0

Uniform bounds⇒ φ0 bounded in H1

(λ(0), φ0) must satisfy one of the two conditions:
1 φ0 is an eigenfunction of ∆Xg(0) and also restricts to at least one of

the components Yk as an eigenfunction; or
2 φ0 = 0 everywhere on Xg(0) and λ(0) = 1

4 .
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A theorem on eigenvalues under degeneration

Theorem (Schoen–Wolpert–Yau ’80)

For any compact hyperbolic surface Xg of genus g and integer
i ∈ (0,2g − 2), the i-th eigenvalue satisfies

αi(g) · `i ≤ λi ≤ βi(g) · `i

and
α(g) ≤ λ2g−2

where `i is the minimal possible sum of the lengths of simple closed
geodesics in Xg which cut Xg into i + 1 connected components.

Intuition: if one cuts a compact hyperbolic surface into n pieces, then
λ1, . . . , λn−1 will go to 0 while λn will stay away from 0.
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Degeneration into “good” pieces

Figure: An example of the degeneration of a genus g surface into i(g) copies
of X0,3’s and j(g) copies of X1,2’s by pinching all the simple geodesics marked
in the picture
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Degeneration into “good” pieces

Figure: An example of decomposing a surface of genus g into i(g) copies of
X0,3’s, j(g) copies of X1,2’s and a copy of Xg1,2
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Sketch of proof for the main theorem

First we show lower bound

Proposition
For all i ≥ 1,

inf
Xg∈Mg

(
λi(Xg)− λi−1(Xg)

)
= 0.

Split into 3 cases:
Example: 1 ≤ i ≤ 2g − 3. Choose a closed hyperbolic surface close to
X0,3 t · · · t X0,3︸ ︷︷ ︸

2g − 2 copies

, then λi(Xg) is close to 0.
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Sketch of proof for the main theorem
Then we show the upper bound (split into 4 cases):
Example: η(g) ∈ [g + 1,2g − 3]. Choose Xg(t) : (0,1)→Mg be a
family of closed hyperbolic surfaces such that

lim
t→0

Xg(t) = X0,3 t · · · t X0,3︸ ︷︷ ︸
i(g) copies

tZ1,2 t · · · t Z1,2︸ ︷︷ ︸
j(g) copies

∈ ∂Mg

where i(g) and j(g) are two non-negative integers satisfying
i(g) + j(g) = η(g).

Xuwen Zhu (Northeastern University) Spectral gaps on hyperbolic surfaces 22 / 24



More questions

Removal of assumption on the range of η?
Conjecture: For any sequence {η(g)},

lim inf
g→∞

sup
Xg∈Mg

(λη(Xg)− λη−1(Xg)) ≥ 1
4
.

Can one say more precise information about small eigenvalues?
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Thank you for your attention!
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