Inverse fractional conductivity problem University of Cambridge

Jesse Railo RICAM, WS4: GIP, Nov 2022

Outline

- 1 Inverse (fractional) conductivity problem
- 2 Nonlocal Calderón problems
- **3** Global uniqueness
- 4 Counterexamples for disjoint sets of measurements
- **(5)** Stability with full data
- 6 References

Collaborators and acknowledgements

- The talk is mainly based on collaboration with **Philipp Zimmermann** (PhD candidate, ETH Zürich).
- Some parts are joint works **Giovanni Covi** (Heidelberg), **Manas Kar** (IISER Bhopal) and **Teemu Tyni** (Toronto).
- The author is supported by the Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters.

UOMALAINEN TIEDEAKATEMIA INNISH ACADEMY OF SCIENCE AND LETTERS

▲□▶ ▲冊▶ ▲重▶ ▲重▶

Jesse Railo (DPMMS, Cambridge)

Inverse fractional conductivity problem RICAM, WS4: GIP, Nov 2022

Inverse conductivity problem (Calderón, 1980)

• Is it possible to determine the electrical conductivity of a medium by making voltage and current measurements on its boundary?

$$abla \cdot (\gamma \nabla u)|_{\Omega} = 0, \quad u|_{\partial \Omega} = f.$$

- Suppose one knows the DN map $\Lambda_{\gamma}f = \gamma \partial_{\nu}u|_{\partial\Omega}$, can we determine the electrical conductivity $\gamma : \Omega \to \mathbb{R}$ uniquely?
- Mathematical model for the **electrical impedance tomography** (EIT).

Classical Calderón problem $(n \ge 3)$

- Boundary determination (⇒ uniqueness for real-analytic γ) (Kohn–Vogelius, 1984).
- Interior uniqueness when $n \ge 3$ (Sylvester–Uhlmann, 1987).
- A reconstruction method (Nachman, 1988).
- Logarithmic stability (Alessandrini, 1988) and optimality (Mandache, 2001).
- Studied typically via the Liouville transformation:

$$-
abla \cdot \gamma
abla (\gamma^{-1/2}u) = \gamma^{1/2} (-\Delta + q) u, \quad q = \gamma^{-1/2} \Delta(\gamma^{1/2}).$$

 The inverse problem is then solved using the complex geometric optics (CGO) solutions and their behaviour when |ζ| → ∞:

$$u(x) = e^{i\zeta \cdot x}(1 + r_{\zeta}(x)).$$

Jesse Railo (DPMMS, Cambridge)

(日) (同) (三) (三)

Some basic definitions

- We say that an open set Ω_∞ ⊂ ℝⁿ of the form Ω_∞ = ℝ^{n-k} × ω, where n ≥ k > 0 and ω ⊂ ℝ^k is a bounded open set, is a cylindrical domain.
- We say that an open set Ω ⊂ ℝⁿ is **bounded in one direction** if there exists a cylindrical domain Ω_∞ ⊂ ℝⁿ and a rigid Euclidean motion A(x) = Lx + x₀, where L is a linear isometry and x₀ ∈ ℝⁿ, such that Ω ⊂ AΩ_∞.
- The **fractional gradient** is defined for all sufficiently regular functions by the formula

$$\nabla^{s} u(x,y) = \sqrt{\frac{C_{n,s}}{2}} \frac{u(x) - u(y)}{|x - y|^{n/2 + s + 1}} (x - y)$$

and div_s denotes its adjoint operator. In particular, div_s $(\nabla^{s} u) = (-\Delta)^{s} u$ in the weak sense for all $u \in H^{s}(\mathbb{R}^{n})$.

(日) (同) (三) (三)

Fractional conductivity equation

 Let s ∈ (0, 1) and consider the Dirichlet problem for the fractional conductivity equation:

$$div_{s}(\Theta_{\gamma}\nabla^{s}u) = 0 \quad \text{in } \Omega,$$

$$u = f \quad \text{in } \Omega_{e},$$
 (1)

where $\Omega_e := \mathbb{R}^n \setminus \overline{\Omega}$ is the exterior of the domain Ω , $\Theta_{\gamma} = \gamma^{1/2}(x)\gamma^{1/2}(y)$ depends on the global, elliptic, conductivity $\gamma \in L^{\infty}_{+}(\mathbb{R}^n)$.

We say u ∈ H^s(ℝⁿ) is a (weak) solution of (1) if the bilinear form

$$B_{\gamma}(u,\phi) := \frac{C_{n,s}}{2} \int_{\mathbb{R}^{2n}} \frac{\gamma^{1/2}(x)\gamma^{1/2}(y)}{|x-y|^{n+2s}} (u(x) - u(y))(\phi(x) - \phi(y)) \, dx dy$$

vanishes for all $\phi \in C_c^{\infty}(\Omega)$ and $u - f \in \widetilde{H}^s(\Omega) := \overline{C_c^{\infty}(\Omega)}^{H^s(\mathbb{R}^n)}.$

(口) (何) (三) (三)

Inverse fractional conductivity problem

- Let Ω ⊂ ℝⁿ be an open set which is bounded in one direction and 0 < s < min(1, n/2). Assume that γ ∈ L[∞](ℝⁿ) satisfy γ ≥ γ₀ > 0.
- For all f ∈ X := H^s(ℝⁿ)/H̃^s(Ω) there are unique weak solutions u_f ∈ H^s(ℝⁿ) of the fractional conductivity equation

$$div_s(\Theta \nabla^s u) = 0 \quad \text{in} \quad \Omega,$$
$$u = f \quad \text{in} \quad \Omega_e.$$

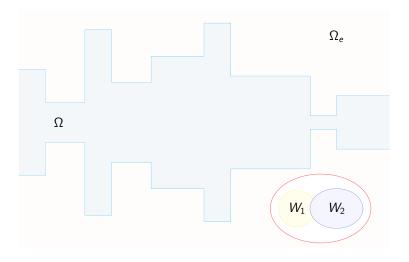
• The exterior DN maps $\Lambda_{\gamma} \colon X \to X^*$ given by

$$\langle \Lambda_{\gamma} f, g \rangle := B_{\gamma}(u_f, g),$$

where $u_f \in H^s(\mathbb{R}^n)$ is the unique solution to the fractional conductivity equation, is a well-defined bounded linear map.

• The inverse fractional conductivity problem asks (Covi, 2020): Suppose that $\Lambda_{\gamma_1} = \Lambda_{\gamma_2}$, does it imply that $\gamma_1 = \gamma_2$?

Geometric illustration of related domains



Jesse Railo (DPMMS, Cambridge)

Inverse fractional conductivity problem RICAM, WS4: GIP, Nov 2022 9,

/ 33

Terminology for abstract nonlocal Calderón's problems

Let $s \in \mathbb{R}$ and $B \colon H^{s}(\mathbb{R}^{n}) \times H^{s}(\mathbb{R}^{n}) \to \mathbb{R}$ be a bounded bilinear form:

- We say that *B* has the **left UCP** on an open nonempty set $W \subset \mathbb{R}^n$ when the following holds: If $u \in H^s(\mathbb{R}^n)$, $u|_W = 0$ and $B(u, \phi) = 0$ for all $\phi \in C_c^{\infty}(W)$, then $u \equiv 0$.
- **(1)** We say that *B* has the **right UCP** on an open nonempty set $W \subset \mathbb{R}^n$ when the following holds: If $u \in H^s(\mathbb{R}^n)$, $u|_W = 0$ and $B(\phi, u) = 0$ for all $\phi \in C_c^{\infty}(W)$, then $u \equiv 0$.
- (1) We say that B is **local** when the following holds: If $u, v \in H^{s}(\mathbb{R}^{n})$ and $\operatorname{supp}(u) \cap \operatorname{supp}(v) = \emptyset$, then B(u, v) = 0.

Abstract nonlocal Calderón problems

Lemma

Let $s \in \mathbb{R}$, and $\Omega \subset \mathbb{R}^n$ be open set such that $\Omega_e \neq \emptyset$. Let B: $H^s(\mathbb{R}^n) \times H^s(\mathbb{R}^n) \to \mathbb{R}$ be a bounded bilinear form that is (strongly) coercive in $\tilde{H}^s(\Omega)$, that is, there exists some c > 0 such that $B(u, u) \ge c ||u||^2_{H^s(\mathbb{R}^n)}$ for all $u \in \tilde{H}^s(\Omega)$. Then the following hold:

- Existence of solutions: For any $f \in H^{s}(\mathbb{R}^{n})$ and $F \in (\tilde{H}^{s}(\Omega))^{*}$ there exists a unique $u \in H^{s}(\mathbb{R}^{n})$ such that $u - f \in \tilde{H}^{s}(\Omega)$ and $B(u, \phi) = F(\phi)$ for all $\phi \in \tilde{H}^{s}(\Omega)$. When $F \equiv 0$, we denote this unique solution by u_{f} .
- e Let X := H^s(ℝⁿ)/H̃^s(Ω) be the abstract trace space. Then the exterior DN map Λ_B: X → X^{*} defined by Λ_B[f][g] := B(u_f, g) for [f], [g] ∈ X is a well-defined bounded linear map.

Runge approximation property

One may prove the following functional analytic theorem using the ideas of Ghosh–Salo–Uhlmann (2020), Cekić–Lin–Rüland (2020), Covi–Mönkkönen–R.–Uhlmann (2022):

Theorem (R.-Zimmermann, 2022)

Let $s \in \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$ be an open set such that $\Omega_e \neq \emptyset$. Let $L, q: H^s(\mathbb{R}^n) \times H^s(\mathbb{R}^n) \to \mathbb{R}$ be bounded bilinear forms and assume that q is local and that $B_{L,q} := L + q$ is (strongly) coercive in $\tilde{H}^s(\Omega)$.

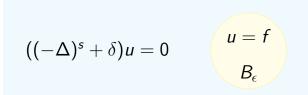
(1) If L has the right UCP on a nonempty open set $W \subset \Omega_e$, then $\mathcal{R}(W) := \{ u_f - f ; f \in C_c^{\infty}(W) \} \subset \tilde{H}^s(\Omega)$ is dense.

(1) If L has the left UCP on a nonempty open set $W \subset \Omega_e$, then $\mathcal{R}^*(W) := \{ u_g^* - g ; g \in C_c^{\infty}(W) \} \subset \tilde{H}^s(\Omega)$ is dense.

Jesse Railo (DPMMS, Cambridge)

Example (R.–Zimmermann, 2022)

Let us denote $B_{\epsilon} = B(0; \epsilon) \subset \mathbb{R}^n$ for any $\epsilon > 0$ and $n \ge 1$. For any $\epsilon, \delta > 0$, $s \in \mathbb{R}_+ \setminus \mathbb{Z}$ and $\Omega := \mathbb{R}^n \setminus \overline{B_{\epsilon}}$, the restriction to $\mathbb{R}^n \setminus \overline{B_{\epsilon}}$ of the unique solutions u_f to the equation $((-\Delta)^s + \delta)u = 0$ in $\mathbb{R}^n \setminus \overline{B_{\epsilon}}$ are dense in $\tilde{H}^s(\mathbb{R}^n \setminus \overline{B_{\epsilon}})$ with exterior conditions $f \in C_c^{\infty}(B_{\epsilon})$.



Generalized Ghosh–Salo–Uhlmann theorem

Theorem (R.-Zimmermann, 2022)

Let $s \in \mathbb{R}$, and $\Omega \subset \mathbb{R}^n$ be open such that $\Omega_e \neq \emptyset$. Let L: $H^s(\mathbb{R}^n) \times H^s(\mathbb{R}^n) \to \mathbb{R}$ be a bounded bilinear form with the following properties:

- There exists a nonempty open set $W_1 \subset \Omega_e$ such that L has the right UCP on W_1 .
- Output: Provide the set W₂ ⊂ Ω_e such that L has the left UCP on W₂.

Let $q_j: H^s(\mathbb{R}^n) \times H^s(\mathbb{R}^n) \to \mathbb{R}$, j = 1, 2, be local and bounded bilinear forms. Suppose that $B_{L,q_j} = L + q_j$ are (strongly) coercive in $\tilde{H}^s(\Omega)$. If the exterior data $\Lambda_{L,q_1}[f][g] = \Lambda_{L,q_2}[f][g]$ agree for all $f \in C_c^{\infty}(W_1)$ and $g \in C_c^{\infty}(W_2)$, then $q_1 = q_2$ in $\tilde{H}^s(\Omega) \times \tilde{H}^s(\Omega)$.

・ロト ・何ト ・ミト ・ミト

Examples from the literature

- $(-\Delta)^s + w$ where $w \in L^{\infty}(\Omega)$ and Ω is bounded where $L(u, v) = ((-\Delta)^{s/2}u, (-\Delta)^{s/2}v)$ and $q(u, v) = \int_{\mathbb{R}^n} wuvdx$ (Ghosh–Salo–Uhlmann, 2016). An extension to certain Sobolev multiplier perturbations w (Rüland–Salo, 2017).
- L^s + w where L^s is a fractional power of an elliptic 2nd order operator L and w ∈ L[∞](Ω) and Ω is bounded (Ghosh-Lin-Xiao, 2017).
- (-Δ)^s + w + c · ∇, c a vector field, has 0th and 1st order terms (Cekić–Lin–Rüland, 2018).
- Extension for general local linear lower order perturbations $(-\Delta)^s + P$, $s \in \mathbb{R}_+ \setminus \mathbb{Z}$, $m \in \mathbb{N}$ such that 2s > m, by $P = \sum_{|\alpha| \le m} a_\alpha D^\alpha$ in $\alpha_\alpha \in M_0(H^{s-|\alpha|} \to H^{-s})$ (Covi-Mönkkönen-R.-Uhlmann, 2021).
- ...and much more

New examples (R.–Zimmermann, 2022)

- (Domains without Poincaré inequalities) For (-Δ)^s + q in Ω where s ∈ ℝ₊ \ Z and the potential q is uniformly positive and bounded, i.e. q ∈ L[∞]₊(ℝⁿ).
- (Higher order perturbations) For $(-\Delta)^t + (-\Delta)^{s/2}(\gamma(-\Delta)^{s/2}\cdot) + q \text{ in } \Omega \text{ where } t \in \mathbb{R}_+ \setminus \mathbb{Z},$ $s \in 2\mathbb{Z} \text{ and } t < s, \text{ and } \gamma, q \in L^{\infty}_+(\mathbb{R}^n).$
- (A small fractional perturbation of the conductivity equation with exterior data) λ(-Δ)^t + div(γ∇·) where λ, t ∈ (0,1), γ ∈ L[∞]₊(ℝⁿ), Ω bounded in one direction. (One can plug in an elliptic L[∞](Ω; ℝ^{n×n}) anisotropic conductivity as well.)
- Solutions to the related exterior value problems are dense in the corresponding spaces H
 ^s(Ω), H
 ^s(Ω) and H
 ¹(Ω), respectively.
- ...many other results extend to domains bounded in one direction.

Solving the inverse fractional conductivity problem

Define $m_{\gamma} := \gamma^{1/2} - 1$ and call it the *background deviation* of γ .

Theorem (R.–Zimmermann, 2022)

Let $\Omega \subset \mathbb{R}^n$ be an open set which is bounded in one direction and $0 < s < \min(1, n/2)$. Assume that $\gamma_1, \gamma_2 \in L^{\infty}(\mathbb{R}^n)$ are uniformly elliptic with $m_1, m_2 \in H^{s,n/s}(\mathbb{R}^n)$. Suppose that $W \subset \Omega_e$ is a nonempty open set such that γ_1, γ_2 are continuous a.e. in W. Then $\Lambda_{\gamma_1} f|_W = \Lambda_{\gamma_2} f|_W$ for all $f \in C_c^{\infty}(W)$ if and only if $\gamma_1 = \gamma_2$ in \mathbb{R}^n .

- When m ∈ H^{2s,n/2s}(ℝⁿ) ∩ H^s(ℝⁿ) earlier by Covi–R.–Zimmermann (2022).
- Brown conjectured (2003) that the classical Calderón problem is solvable for W^{1,p}(Ω) conductivities when p > n and Haberman proved (2014) uniqueness when γ ∈ W^{1,n}(Ω), n = 3, 4.

Two fundamental properties of DN maps

Theorem (Covi–R.–Zimmermann, R.–Zimmermann, 2022)

Let $\Omega \subset \mathbb{R}^n$ be an open set which is bounded in one direction and $0 < s < \min(1, n/2)$. Assume that $\gamma_1, \gamma_2 \in L^{\infty}(\mathbb{R}^n)$ are uniformly elliptic with $m_1, m_2 \in H^{s,n/s}(\mathbb{R}^n)$. Assume that $W_1, W_2 \subset \Omega_e$ are nonempty open sets and that $\gamma_1|_{W_1\cup W_2} = \gamma_2|_{W_1\cup W_2}$ holds. If $W_1 \cap W_2 \neq \emptyset$, then $\Lambda_{\gamma_1} f|_{W_2} = \Lambda_{\gamma_2} f|_{W_2}$ for all $f \in C_c^{\infty}(W_1)$ if and only if $\gamma_1 = \gamma_2$ in \mathbb{R}^n .

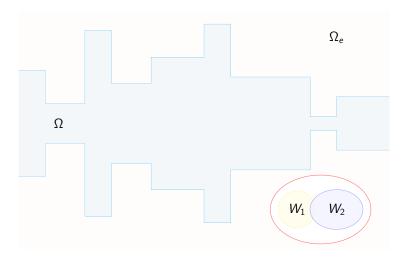
Theorem (Covi–R.–Zimmermann, R.–Zimmermann, 2022)

Let $\Omega \subset \mathbb{R}^n$ be an open set which is bounded in one direction and 0 < s < 1. Assume that $\gamma_1, \gamma_2 \in L^{\infty}(\mathbb{R}^n)$ satisfy $\gamma_1(x), \gamma_2(x) \ge \gamma_0 > 0$. Suppose that $W \subset \Omega_e$ is a nonempty open set such that γ_1, γ_2 are continuous a.e. in W. If $\Lambda_{\gamma_1} f|_W = \Lambda_{\gamma_2} f|_W$ for all $f \in C_c^{\infty}(W)$, then $\gamma_1 = \gamma_2$ a.e. in W.

Jesse Railo (DPMMS, Cambridge)

(二)、

Recall the picture:



lesse Railo (DPMMS, Cambridge)

Inverse fractional conductivity problem RICAM, WS4: GIP, Nov 2022 19 /

UCP of the DN maps 1/2

• Low regularity fractional Liouville reduction when $\gamma \in L^{\infty}_{+}(\mathbb{R}^{n}), m \in H^{s,n/s}(\mathbb{R}^{n}):$ $\langle \Theta_{\gamma} \nabla^{s} u, \nabla^{s} \phi \rangle_{L^{2}(\mathbb{R}^{2n})} = \langle (-\Delta)^{s/2} (\gamma^{1/2} u), (-\Delta)^{s/2} (\gamma^{1/2} \phi)) \rangle_{L^{2}(\mathbb{R}^{n})}$ $+ \langle q_{\gamma}(\gamma^{1/2} u), (\gamma^{1/2} \phi) \rangle, \quad u, \phi \in H^{s}(\mathbb{R}^{n})$

where

$$\langle q_{\gamma} u, \phi \rangle = - \langle (-\Delta)^{s/2} m, (-\Delta)^{s/2} (\gamma^{-1/2} u \phi) \rangle_{L^{2}(\mathbb{R}^{n})}$$

is a suitable Sobolev multiplier in $M(H^s \to H^{-s})$. (1) Reduction of DN maps: If $\gamma_1|_{W_1 \cup W_2} = \gamma_2|_{W_1 \cup W_2}$ and $\Lambda_{\gamma_1} f|_{W_2} = \Lambda_{\gamma_2} f|_{W_2}$ for all $f \in C_c^{\infty}(W_1)$, then $\Lambda_{q_1} f|_{W_2} = \Lambda_{q_2} f|_{W_2}$. (1) Fractional Calderón problem for globally defined singular potentials (Ghosh–Salo–Uhlmann, Rüland–Salo): If

 $\Lambda_{q_1}f|_{W_2}=\Lambda_{q_2}f|_{W_2} \text{ for all } f\in C^\infty_c(W_1)\text{, then } q_1=q_2 \text{ in } \Omega.$

UCP of the DN maps 2/2

- Exterior determination for the fractional Schrödinger equation: $\Lambda_{q_1} f|_{W_2} = \Lambda_{q_2} f|_{W_2}$ for all $f \in C_c^{\infty}(W_1)$ and $W = W_1 \cap W_2 \neq \emptyset$, then $q_1 = q_2$ in W. This uses the earlier interior determination step, which already guarantees that $q_1 = q_2$ in Ω .
- **(1)** We may then use the assumption that $\gamma_1|_W = \gamma_2|_W$ and the knowledge (in the sense of distributions/as Sobolev multipliers)

$$-\frac{(-\Delta)^{s}(\gamma_{1}^{1/2}-1)}{\gamma_{1}^{1/2}} = q_{1} = q_{2} = -\frac{(-\Delta)^{s}(\gamma_{2}^{1/2}-1)}{\gamma_{2}^{1/2}} \quad \text{in } W$$

and a **UCP of the fractional Laplacians**: If $u \in H^{r,p}(\mathbb{R}^n)$ for $r \in \mathbb{R}, p \in [1, \infty)$ and $(-\Delta)^t u = u = 0$ in a nonempty open $V \subset \mathbb{R}^n$, $t \in \mathbb{R}_+ \setminus \mathbb{N}$, then $u \equiv 0$ in \mathbb{R}^n (Kar–R.–Zimmermann, 2022 + based on several other works). Here p = n/s > 2.

(日) (同) (三) (三)

Exterior determination 1/2

() Define the **Dirichlet energy** first as

$$E_{\gamma}(u) := B_{\gamma}(u, u) = \int_{\mathbb{R}^{2n}} \Theta_{\gamma} \nabla^{s} u \cdot \nabla^{s} u \, dx dy.$$

Notice that $E_{\gamma}(u_f) = \langle \Lambda_{\gamma} f, f \rangle_{X^* \times X}$ where u_f is the unique solution of the fractional conductivity equation with the exterior condition f.

(1) Elliptic estimate: Let $W \subset \Omega_e$, dist $(W, \Omega) > 0$, $|W| < \infty$. If $f \in C^{\infty}_c(W)$ and $u_f \in H^s(\mathbb{R}^n)$ is the unique solution of

$$((-\Delta)^s + q)u = 0$$
 in Ω ,
 $u = f$ in Ω_e ,

then

$$\|u_f|_{\Omega}\|_{\tilde{H}^s(\Omega)} = \|u_f - f\|_{H^s(\mathbb{R}^n)} \le C \|f\|_{L^2(W)}$$

for some $C(n, s, |W|, \Omega, \operatorname{dist}(W, \Omega)) > 0$.

Exterior determination 2/2

D This uses the quadratic definition of the fractional Laplacian

$$\langle (-\Delta)^s f, \phi \rangle = \frac{C_{n,s}}{2} \int_{\mathbb{R}^{2n}} \frac{(f(x) - f(y))(\phi(x) - \phi(y))}{|x - y|^{n + 2s}} dx dy.$$

Similar argument can be made for the conductivity equation. **Construction of special solutions:** $\phi_N \in C_c^{\infty}(W)$ such that $\|\phi_N\|_{L^2(W)} \to 0$ as $N \to \infty$ and $\|\phi_N\|_{H^s(\mathbb{R}^n)} = 1$ for all $N \in \mathbb{N}$. Let $u_N \in H^s(\mathbb{R}^n)$ be the unique solutions to the conductivity equation with $u_N|_{\Omega_e} = \phi_N$. The elliptic energy estimate and the given properties of the exterior conditions give that $E_{\gamma}(u_N)$ and $E_{\gamma}(\phi_N)$ are equal as $N \to \infty$. These exterior conditions are similar to the boundary conditions considered by Kohn and Vogelius (1984).

(**b** Energy concentration property: Given any $x_0 \in W$, one may show that there exists such sequences ϕ_N so that $E_{\gamma}(\phi_N) \to \gamma(x_0)$ as $N \to \infty$.

(日) (同) (三) (三)

Counterexamples

Our uniqueness result for the partial data problem is complemented with the following general counterexamples:

Theorem (R.–Zimmermann, 2022)

Let $\Omega \subset \mathbb{R}^n$ be an open set which is bounded in one direction, $0 < s < \min(1, n/2)$. For **any** nonempty open **disjoint sets** $W_1, W_2 \subset \Omega_e$ with dist $(W_1 \cup W_2, \Omega) > 0$ there exist two different conductivities $\gamma_1, \gamma_2 \in L^{\infty}(\mathbb{R}^n) \cap C^{\infty}(\mathbb{R}^n)$ such that $\gamma_1(x), \gamma_2(x) \ge \gamma_0 > 0$, $m_1, m_2 \in H^{s,n/s}(\mathbb{R}^n) \cap H^s(\mathbb{R}^n)$, and $\Lambda_{\gamma_1}f|_{W_2} = \Lambda_{\gamma_2}f|_{W_2}$ for all $f \in C_c^{\infty}(W_1)$.

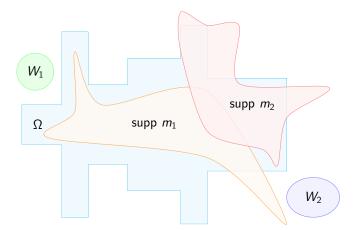
The problem remains open for any nonempty open disjoint sets $W_1, W_2 \subset \Omega_e$ with dist $(W_1 \cup W_2, \Omega) = 0$.

Jesse Railo (DPMMS, Cambridge)

Inverse fractional conductivity problem 👘 RICAM, WS4: GIP, Nov 2022 👘 24 / 3

(二)、

Graphical illustration



Sketch of the proof 1/2

Using the fractional Liouville reduction one can **characterize** the **invariance of data**, for **any** disjoint data the following holds:

Lemma (R.–Zimmermann, 2022)

Let $\Omega \subset \mathbb{R}^n$ be an open set which is bounded in one direction and $0 < s < \min(1, n/2)$. Assume that $\gamma_1, \gamma_2 \in L^{\infty}(\mathbb{R}^n)$ with background deviations m_1, m_2 satisfy $\gamma_1(x), \gamma_2(x) \ge \gamma_0 > 0$ and $m_1, m_2 \in H^{s,n/s}(\mathbb{R}^n) \cap H^s(\mathbb{R}^n)$. Finally, assume that $W_1, W_2 \subset \Omega_e$ are nonempty disjoint open sets and that $\gamma_1|_{W_1\cup W_2} = \gamma_2|_{W_1\cup W_2}$ holds. Then there holds $\Lambda_{\gamma_1}f|_{W_2} = \Lambda_{\gamma_2}f|_{W_2}$ for all $f \in C_c^{\infty}(W_1)$ if and only if $m_0 := m_1 - m_2 \in H^s(\mathbb{R}^n)$ is the unique solution of

$$(-\Delta)^s m + q_{\gamma_2} m = 0$$
 in Ω ,
 $m = m_0$ in Ω_e .

Jesse Railo (DPMMS, Cambridge)

(日) (同) (三) (三)

Sketch of the proof 2/2

• Take $\gamma_2 \equiv 1$. Now, by the invariance of data and searching for $\gamma_1 = (m_1 + 1)^2$, the problem reduces to finding a *s*-harmonic function in Ω , i.e. $m_1 \in H^{s,n/s}(\mathbb{R}^n) \cap H^s(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$ which solves

$$(-\Delta)^s m_1 = 0$$
 in Ω , $m_1 = m_0$ in Ω_e , (2)

with the "positivity" condition $m_1 \ge \gamma_0^{1/2} - 1$ and any suitable exterior condition m_0 vanishing in $\overline{W_1 \cup W_2}$.

- One may first look for a H^s(ℝⁿ) function which is s-harmonic in a slightly larger domain Ω' and vanishes near W₁ ∪ W₂. Using a mollification argument one finds a smooth s-harmonic function solving (2) with the right regularity properties, as n/s > 2.
- Finally, using the linearity of the equation and a scaling argument, the positivity condition can be made to hold.

Sets in the proof

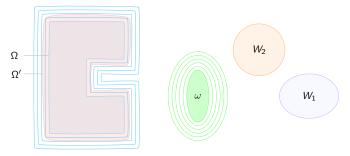


Figure: We construct in the first step a nonzero *s*-harmonic background deviation $\tilde{m}_1 \in H^s(\mathbb{R}^n)$ in the set Ω' , which has a smooth boundary and lies in the deformed annulus $\Omega_{3\epsilon} \setminus \overline{\Omega}_{2\epsilon}$, and then obtain by mollification a nonzero smooth *s*-harmonic function $m_1 := \tilde{m}_1 * \rho_{\epsilon}$ in the set Ω . The set $\omega \in \Omega_e \setminus \overline{W_1 \cup W_2}$ is used to construct a cutoff function $\eta \in C_c^{\infty}(\omega_{3\epsilon})$ with $\eta|_{\overline{\omega}} = 1$, which \tilde{m}_1 has as an exterior value and its support contained in $\Omega_{5\epsilon} \cup \omega_{5\epsilon}$. Next scale so that $\|cm_1\|_{L^{\infty}(\mathbb{R}^n)} \leq 1/2$ and set $\gamma_0 = 1/4$.

Jesse Railo (DPMMS, Cambridge)

Stability estimate in the exterior

Write $||A||_* := ||A||_{H^s(\Omega_e) \to (H^s(\Omega_e))^*}$. The exterior determination argument is constructive and leads to the following stability estimate:

Theorem (Covi-R.-Zimmermann, R.-Zimmermann, 2022)

Let $\Omega \subset \mathbb{R}^n$ be a domain bounded in one direction and 0 < s < 1. Assume that $\gamma_1, \gamma_2 \in L^{\infty}(\mathbb{R}^n)$ satisfy $\gamma_1(x), \gamma_2(x) \ge \gamma_0 > 0$, and are continuous a.e. in Ω_e . There exists a constant C > 0 depending only on s such that

$$\|\gamma_1 - \gamma_2\|_{L^\infty(\Omega_e)} \leq C \|\Lambda_{\gamma_1} - \Lambda_{\gamma_2}\|_*.$$

The argument is "local" in the exterior. Therefore, similar holds with the partial data in $W \subset \Omega_e$.

(二)、

Stability estimate in the interior

Theorem (Covi–R.–Tyni–Zimmermann, 2022)

Let $0 < s < \min(1, n/2)$, $\epsilon > 0$ and assume that $\Omega \subset \mathbb{R}^n$ is a smooth bounded domain. Suppose that the the conductivities $\gamma_1, \gamma_2 \in L^{\infty}(\mathbb{R}^n)$ with background deviations m_1, m_2 fulfill the following conditions:

)
$$\gamma_0 \leq \gamma_1(x), \gamma_2(x) \leq \gamma_0^{-1}$$
 for some $0 < \gamma_0 < 1$

 $m_1 - m_2 \in H^s(\mathbb{R}^n)$ and there exist $C_1, C_2 > 0$ such that

$$\|m_i\|_{H^{4s+2\epsilon},\frac{n}{2s}(\mathbb{R}^n)} \leq C_1, \quad \|(-\Delta)^s m_i\|_{L^1(\Omega_e)} \leq C_2$$

for i = 1, 2.

If $\theta_0 \in (\max(1/2, 2s/n), 1)$ and there holds $\|\Lambda_{\gamma_1} - \Lambda_{\gamma_2}\|_* \leq 3^{-1/\delta}$ for some $0 < \delta < \frac{1-\theta_0}{2}$, then we have

$$\|\gamma_1^{1/2} - \gamma_2^{1/2}\|_{L^q(\Omega)} \le \omega(\|\Lambda_{\gamma_1} - \Lambda_{\gamma_2}\|_*)$$

for all $1 \le q \le \frac{2n}{n-2s}$, where $\omega(x)$ is a logarithmic modulus of continuity satisfying

$$\omega(x) \le C |\log x|^{-\sigma}, \quad \text{for} \quad 0 < x \le 1,$$

for some constants σ , C > 0 depending only on s, ϵ , n, Ω , C_1 , C_2 , θ_0 and γ_0 .

About the proof

- The proof is based on one of the possible uniqueness proofs with full data.
- The proof uses the stability estimate for the corresponding Schrödinger problem by Rüland–Salo (2020).
- The proof uses the earlier **exterior stability estimate**, which also is related to having $L^1 \subset (L^{\infty})^*$ a priori bound in the exterior.
- Other **key properties** to show (resembling Alessandrini's work) are " $\|\Lambda_{q_1} \Lambda_{q_2}\|_* \le C \|\Lambda_{\gamma_1} \Lambda_{\gamma_2}\|_*$ " up to a constant depending of the a priori bounds (the real estimate looks a bit different), and the **identity**

$$\operatorname{div}_{s}(\Theta_{\gamma_{1}} \nabla^{s} \widetilde{m}) = \gamma_{1}^{1/2} \gamma_{2}^{1/2} (q_{2} - q_{1}) \quad \text{in} \quad \mathbb{R}^{n},$$

where
$$\widetilde{m} := (\gamma_1^{1/2} - \gamma_2^{1/2}) / \gamma_1^{1/2}$$
.

(日) (同) (三) (三)

References

- (with G. Covi, T. Tyni and P.Z.) Stability estimates for the inverse fractional conductivity problem, arXiv:2210.01875.
- (with P.Z.) Low regularity theory for the inverse fractional conductivity problem, arXiv:2208.11465.
- (with M. Kar and P.Z.) The fractional p-biharmonic systems: optimal Poincaré constants, unique continuation and inverse problems, arXiv:2208.09528.
- (with G. Covi and P.Z.) The global inverse fractional conductivity problem, arXiv:2204.04325.
- (with P.Z.) Counterexamples to uniqueness in the inverse fractional conductivity problem with partial data, *Inverse Probl. Imaging* (to appear).
- (with P.Z.) Fractional Calderón problems and Poincaré inequalities on unbounded domains, *J. Spectr. Theory (to appear)*.

Thank you for your attention!

Inverse fractional conductivity problem RICAM, WS4: GIP, Nov 2022 33 /

≣⇒