# Surfaces of section for geodesic flows of closed surfaces

Marco Mazzucchelli (CNRS and École normale supérieure de Lyon)

Joint work with:

- Gonzalo Contreras
- Gonzalo Contreras, Gerhard Knieper, Benjamin Schulz

N closed 3-manifold, X nowhere vanishing vector field,  $\phi_t: N \to N$  flow of X

*N* closed 3-manifold, *X* nowhere vanishing vector field,  $\phi_t : N \to N$  flow of *X* 

A surface of section is a compact immersed surface  $\Sigma \hookrightarrow N$  such that:

- $\triangleright \partial \Sigma$  is tangent to X,
- $int(\Sigma)$  is embedded in  $N \setminus \partial \Sigma$  and transverse to X,



*N* closed 3-manifold, *X* nowhere vanishing vector field,  $\phi_t: N \to N$  flow of *X* 

A global surface of section is a compact immersed surface  $\Sigma \hookrightarrow N$  such that:

- $\triangleright \partial \Sigma$  is tangent to X,
- $int(\Sigma)$  is embedded in  $N \setminus \partial \Sigma$  and transverse to X,
- for some T > 0, any orbit segment  $\phi_{[0,T]}(z)$  intersects Σ.



N closed 3-manifold, X nowhere vanishing vector field,  $\phi_t: N \to N$  flow of X

A global surface of section is a compact immersed surface  $\Sigma \hookrightarrow N$  such that:

- $\triangleright \partial \Sigma$  is tangent to X,
- $int(\Sigma)$  is embedded in  $N \setminus \partial \Sigma$  and transverse to X,
- for some T > 0, any orbit segment  $\phi_{[0,T]}(z)$  intersects Σ.

First return map:  $\psi$  : int( $\Sigma$ )  $\rightarrow$  int( $\Sigma$ )



Notion was introduced by Poincaré in celestial mechanics

- Notion was introduced by Poincaré in celestial mechanics
- (Birkhoff, ~ 1917) Existence of global surfaces of sections for Riemannian geodesic flows of
  - Positively curved 2-spheres
  - Negatively curved closed surfaces

- Notion was introduced by Poincaré in celestial mechanics
- (Birkhoff, ~ 1917) Existence of global surfaces of sections for Riemannian geodesic flows of
  - Positively curved 2-spheres
  - Negatively curved closed surfaces
- (Fried, 1981) Existence of global surfaces of sections for transitive Anosov flows

Notion was introduced by Poincaré in celestial mechanics

- (Birkhoff, ~ 1917) Existence of global surfaces of sections for Riemannian geodesic flows of
  - Positively curved 2-spheres
  - Negatively curved closed surfaces
- (Fried, 1981) Existence of global surfaces of sections for transitive Anosov flows
- (Hofer-Wysocky-Zehnder, 1998) Contact hypersurfaces N ⊂ C<sup>2</sup> admit a global surface of section Σ ≃ B<sup>2</sup> for their Reeb flow

Notion was introduced by Poincaré in celestial mechanics

- (Birkhoff, ~ 1917) Existence of global surfaces of sections for Riemannian geodesic flows of
  - Positively curved 2-spheres
  - Negatively curved closed surfaces
- (Fried, 1981) Existence of global surfaces of sections for transitive Anosov flows
- (Hofer-Wysocky-Zehnder, 1998) Contact hypersurfaces N ⊂ C<sup>2</sup> admit a global surface of section Σ ≃ B<sup>2</sup> for their Reeb flow



( $N, \lambda$ ) closed contact 3-manifold, X Reeb vector field

•  $(N, \lambda)$  closed contact 3-manifold, X Reeb vector field

$$\begin{split} \lambda \ 1\text{-form on } N \\ \lambda \wedge d\lambda \ \text{volume form} \\ \lambda(X) \equiv 1, \ \ d\lambda(X, \cdot) \equiv 0 \end{split}$$

•  $(N, \lambda)$  closed contact 3-manifold, X Reeb vector field

$$\begin{split} \lambda \ 1\text{-form on } N \\ \lambda \wedge d\lambda \ \text{volume form} \\ \lambda(X) \equiv 1, \ \ d\lambda(X, \cdot) \equiv 0 \end{split}$$

▶ (*M*, *g*) closed Riemannian surface

•  $(N, \lambda)$  closed contact 3-manifold, X Reeb vector field

$$\begin{split} \lambda \ 1\text{-form on } & N \\ \lambda \wedge d\lambda \ \text{volume form} \\ \lambda(X) \equiv 1, \ d\lambda(X, \cdot) \equiv 0 \end{split}$$

 $\triangleright$  (*M*, *g*) closed Riemannian surface

N = SM unit tangent bundle  $\lambda =$  Liouville contact form, X is the geodesic vector field

•  $(N, \lambda)$  closed contact 3-manifold, X Reeb vector field

$$\begin{split} \lambda \ 1\text{-form on } & N \\ \lambda \wedge d\lambda \ \text{volume form} \\ \lambda(X) \equiv 1, \ d\lambda(X, \cdot) \equiv 0 \end{split}$$

▶ (*M*, *g*) closed Riemannian surface

N = SM unit tangent bundle  $\lambda =$  Liouville contact form, X is the geodesic vector field

 $\phi^t_X(\dot{\gamma}(0)) = \dot{\gamma}(t)$ , where  $\gamma$  is a geodesic with  $\|\dot{\gamma}\|_g \equiv 1$ 

X Reeb vector field of a closed 3-manifold ( $N, \lambda$ )

X Reeb vector field of a closed 3-manifold  $(N, \lambda)$ 

There always exists a closed orbit (Taubes 2007), indeed even two (Cristofaro G., Hutchings 2016)

X Reeb vector field of a closed 3-manifold  $(N, \lambda)$ 

There always exists a closed orbit (Taubes 2007), indeed even two (Cristofaro G., Hutchings 2016)

Theorem (Contreras, Mazzucchelli) If X satisfies the Kupka-Smale condition, then it has a global surface of section.

X Reeb vector field of a closed 3-manifold  $(N, \lambda)$ 

There always exists a closed orbit (Taubes 2007), indeed even two (Cristofaro G., Hutchings 2016)

Theorem (Contreras, Mazzucchelli) If X satisfies the Kupka-Smale condition, then it has a global surface of section.

Theorem (Colin, Dehornoy, Hryniewicz, Rechtman) *If X has* equidistributed closed orbits, then it has a global surface of section.

X Reeb vector field of a closed 3-manifold  $(N, \lambda)$ 

There always exists a closed orbit (Taubes 2007), and indeed even two (Cristofaro G., Hutchings 2016)

## Theorem (Contreras, Mazzucchelli) If X satisfies the Kupka-Smale condition, then it has a global surface of section.

Theorem (Colin, Dehornoy, Hryniewicz, Rechtman) *If X has* equidistributed closed orbits, then it has a global surface of section.

(M, g) closed orientable surface of genus  $G \phi_t : SM \to SM$  geodesic flow

(M,g) closed orientable surface of genus  $G \phi_t : SM \to SM$  geodesic flow

Theorem (Contreras-Mazzucchelli-Knieper-Schulz) If (M,g) has no contractible simple closed geodesics without conjugate points, there there exists a global surface of section of genus one and 8G - 4 boundary components



(M,g) closed orientable surface of genus  $G \phi_t : SM \to SM$  geodesic flow

Theorem (Contreras-Mazzucchelli-Knieper-Schulz) If (M,g) has no contractible simple closed geodesics without conjugate points, there there exists a global surface of section of genus one and 8G - 4 boundary components



Remark. There are no contractible simple closed geodesics provided

$$\max K_g \leq \frac{2\pi}{\operatorname{area}(M,g)}$$

Theorem (Contreras-Knieper-Mazzucchelli-Schulz) If (M,g) has no contractible simple closed geodesics without conjugate points, there there exists a global surface of section of genus 1 and 8G - 4 boundary components

Proof

Theorem (Contreras-Knieper-Mazzucchelli-Schulz) If (M,g) has no contractible simple closed geodesics without conjugate points, there there exists a global surface of section of genus 1 and 8G - 4 boundary components

#### Proof

$$\blacktriangleright \ \ \Gamma = \gamma_1 \cup \ldots \cup \gamma_{2G}$$



Theorem (Contreras-Knieper-Mazzucchelli-Schulz) If (M,g) has no contractible simple closed geodesics without conjugate points, there there exists a global surface of section of genus 1 and 8G - 4 boundary components

#### Proof

$$\blacktriangleright \ \ \Gamma = \gamma_1 \cup \ldots \cup \gamma_{2G}$$



► No geodesic ray is trapped in  $M \setminus \Gamma$ 

(otherwise  $M \setminus \Gamma$  would contain a simple closed geodesic without conjugate points)

• Birkhoff annuli of a simple closed geodesic  $\gamma$ :

 $A_+(\gamma) := \left\{ v \in SM|_{\gamma} \mid v \text{ points inside } M_+ 
ight\}$ 



• Birkhoff annuli of a simple closed geodesic  $\gamma$ :

 $A_{-}(\gamma) := \left\{ v \in SM|_{\gamma} \mid v \text{ points inside } M_{-} 
ight\}$ 



**b** Birkhoff annuli of a simple closed geodesic  $\gamma$ :

$$A_{\pm}(\gamma) := \left\{ v \in SM|_{\gamma} \mid v \text{ points inside } M_{\pm} 
ight\}$$

• Birkhoff annuli of a simple closed geodesic  $\gamma$ :

$$A_{\pm}(\gamma) := \left\{ v \in SM|_{\gamma} \mid v \text{ points inside } M_{\pm} 
ight\}$$



• Birkhoff annuli of a simple closed geodesic  $\gamma$ :

$$egin{array}{ll} A_{\pm}(\gamma) := ig\{ v \in SM|_{\gamma} ig| v ext{ points inside } M_{\pm} ig\} \end{array}$$



 $\boldsymbol{\Sigma}$  is almost global surface of section, except that is has self-intersections.

• (Fried) Resolve self-intersections of  $\Sigma$  with surgery:



#### A weak Kupka-Smale condition

We require all the contractible simple closed geodesics without conjugate points  $\gamma, \zeta$  to be hyperbolic, and  $W^{s}(\dot{\gamma}) \pitchfork W^{u}(\dot{\zeta})$ :



## A weak Kupka-Smale condition

We require all the contractible simple closed geodesics without conjugate points  $\gamma, \zeta$  to be hyperbolic, and  $W^{s}(\dot{\gamma}) \pitchfork W^{u}(\dot{\zeta})$ :



Theorem (Contreras-Paternain) Weak Kupka-Smale holds for a  $C^{\infty}$ -generic Riemannian metric.

Theorem (Contreras-Knieper-Mazzucchelli-Schulz). Any weak Kupka-Smale geodesic flow admits a global surface of section.

Theorem (Contreras-Knieper-Mazzucchelli-Schulz). Any weak Kupka-Smale geodesic flow admits a global surface of section.

Proof.

▶  $\Gamma = \gamma_1 \cup ... \cup \gamma_{2G}$  simple closed geodesics considered before



Theorem (Contreras-Knieper-Mazzucchelli-Schulz). Any weak Kupka-Smale geodesic flow admits a global surface of section.

Proof.

- ▶  $\Gamma = \gamma_1 \cup ... \cup \gamma_{2G}$  simple closed geodesics considered before
- Assume some geodesic ray is trapped in  $M \setminus \Gamma$

Theorem (Contreras-Knieper-Mazzucchelli-Schulz). Any weak Kupka-Smale geodesic flow admits a global surface of section.

#### Proof.

▶  $\Gamma = \gamma_1 \cup ... \cup \gamma_{2G}$  simple closed geodesics considered before

• Assume some geodesic ray is trapped in  $M \setminus \Gamma$ 



Theorem (Contreras-Knieper-Mazzucchelli-Schulz). Any weak Kupka-Smale geodesic flow admits a global surface of section.

#### Proof.

▶  $\Gamma = \gamma_1 \cup ... \cup \gamma_{2G}$  simple closed geodesics considered before

• Assume some geodesic ray is trapped in  $M \setminus \Gamma$ 



 $A = \alpha_1 \cup \ldots \cup \alpha_k, \quad B = \beta_1 \cup \ldots \cup \beta_k$ 

No complete geodesic is contained in  $M \setminus (\Gamma \cup A \cup B)$ 

Theorem (Contreras-Knieper-Mazzucchelli-Schulz). Any weak Kupka-Smale geodesic flow admits a global surface of section.

#### Proof.

▶  $\Gamma = \gamma_1 \cup ... \cup \gamma_{2G}$  simple closed geodesics considered before

• Assume some geodesic ray is trapped in  $M \setminus \Gamma$ 



 $A = \alpha_1 \cup \ldots \cup \alpha_k, \quad B = \beta_1 \cup \ldots \cup \beta_k$ 

No complete geodesic is contained in  $M \setminus (\Gamma \cup A \cup B)$ Geodesic rays in  $M \setminus (\Gamma \cup A \cup B)$  are asymptotic to some  $\alpha_i$ 

Some  $\alpha_i$  has homoclinics on both sides:



Some  $\alpha_i$  has homoclinics on both sides:





Some  $\alpha_i$  has homoclinics on both sides:





No geodesic ray in  $M \setminus (\Gamma \cup A \cup B \cup \zeta)$  is asymptotic to  $\alpha_i$ .

• Repeat if needed for the other  $\alpha_j$ 's.

- Repeat if needed for the other  $\alpha_j$ 's.
- We obtained a finite collection of closed geodesics Z such that M \ (Γ ∪ A ∪ B ∪ Z) does not contain geodesic rays.

• Repeat if needed for the other  $\alpha_j$ 's.

- We obtained a finite collection of closed geodesics Z such that M \ (Γ ∪ A ∪ B ∪ Z) does not contain geodesic rays.
- Build a global surface of section by doing surgery on the Birkhoff annuli of Γ ∪ A ∪ B ∪ Z.

Theorem (Contreras-Mazzucchelli). Let X be the Reeb vector field of a closed contact 3-manifold such that:

▶  $\overline{\operatorname{Per}(X)}$  is hyperbolic,

•  $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$  for all closed Reeb orbits  $\gamma_{1}, \gamma_{2} \subset Per(X)$ . Then the Reeb flow is Anosov.

Theorem (Contreras-Mazzucchelli). Let X be the Reeb vector field of a closed contact 3-manifold such that:

 $\blacktriangleright \overline{\operatorname{Per}(X)} \text{ is hyperbolic,}$ 

•  $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$  for all closed Reeb orbits  $\gamma_{1}, \gamma_{2} \subset Per(X)$ . Then the Reeb flow is Anosov.

Corollary. On any closed surface, there exists an  $C^2$ -open dense subset  $\mathcal{U}$  of the space of Riemannian metrics such that any  $g \in \mathcal{U}$ is Anosov or has an elliptic closed geodesic.

Theorem (Contreras-Mazzucchelli). Let X be the Reeb vector field of a closed contact 3-manifold such that:

 $\blacktriangleright \overline{\operatorname{Per}(X)} \text{ is hyperbolic,}$ 

•  $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$  for all closed Reeb orbits  $\gamma_{1}, \gamma_{2} \subset Per(X)$ . Then the Reeb flow is Anosov.

Corollary. On any closed surface, there exists an  $C^2$ -open dense subset  $\mathcal{U}$  of the space of Riemannian metrics such that any  $g \in \mathcal{U}$ is Anosov or has an elliptic closed geodesic.

This corollary extends a theorem of Contreras-Oliveira for  $S^2$ , which extended a theorem of Herman for positively curved  $S^2$ , which in turn was first claimed (with a slightly wrong statement and an incomplete proof) by Poincaré in 1905.

Theorem (Contreras-Mazzucchelli). Let X be the Reeb vector field of a closed contact 3-manifold such that:

 $\blacktriangleright \overline{\operatorname{Per}(X)} \text{ is hyperbolic,}$ 

•  $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$  for all closed Reeb orbits  $\gamma_{1}, \gamma_{2} \subset Per(X)$ . Then the Reeb flow is Anosov.

Corollary. On any closed surface, there exists an  $C^2$ -open dense subset  $\mathcal{U}$  of the space of Riemannian metrics such that any  $g \in \mathcal{U}$ is Anosov or has an elliptic closed geodesic.

Corollary<sup>2</sup>. The geodesic flow of a closed Riemannian surface is  $C^2$ -structurally stable if and only if it is Anosov.

Thank you for your attention!

Theorem (Contreras-Mazzucchelli). Let X be the Reeb vector field of a closed contact 3-manifold  $(N, \lambda)$  such that:

▶  $\overline{\operatorname{Per}(X)}$  is hyperbolic,

•  $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$  for all closed Reeb orbits  $\gamma_{1}, \gamma_{2} \subset Per(X)$ . Then the Reeb flow  $\phi_{t}$  is Anosov.

Theorem (Contreras-Mazzucchelli). Let X be the Reeb vector field of a closed contact 3-manifold  $(N, \lambda)$  such that:

▶  $\overline{\operatorname{Per}(X)}$  is hyperbolic,

•  $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$  for all closed Reeb orbits  $\gamma_{1}, \gamma_{2} \subset Per(X)$ . Then the Reeb flow  $\phi_{t}$  is Anosov.

#### Sketch of proof.

(Taubes) There are infinitely many closed Reeb orbits.

Theorem (Contreras-Mazzucchelli). Let X be the Reeb vector field of a closed contact 3-manifold  $(N, \lambda)$  such that:

 $\blacktriangleright \overline{\operatorname{Per}(X)} \text{ is hyperbolic,}$ 

•  $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$  for all closed Reeb orbits  $\gamma_{1}, \gamma_{2} \subset Per(X)$ . Then the Reeb flow  $\phi_{t}$  is Anosov.

#### Sketch of proof.

(Taubes) There are infinitely many closed Reeb orbits.

Smale's spectral decomposition:

$$\overline{\operatorname{Per}(X)} = \Lambda_1 \cup \ldots \cup \Lambda_n,$$

where each  $\Lambda_i$  is a basic set (compact, locally maximal, invariant subset containing a dense orbit and a dense subset of periodic orbits).

Theorem (Contreras-Mazzucchelli). Let X be the Reeb vector field of a closed contact 3-manifold  $(N, \lambda)$  such that:

 $\blacktriangleright \overline{\operatorname{Per}(X)} \text{ is hyperbolic,}$ 

•  $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$  for all closed Reeb orbits  $\gamma_{1}, \gamma_{2} \subset Per(X)$ . Then the Reeb flow  $\phi_{t}$  is Anosov.

#### Sketch of proof.

- (Taubes) There are infinitely many closed Reeb orbits.
- Smale's spectral decomposition:

$$\overline{\operatorname{Per}(X)} = \Lambda_1 \cup \ldots \cup \Lambda_n,$$

where each  $\Lambda_i$  is a basic set (compact, locally maximal, invariant subset containing a dense orbit and a dense subset of periodic orbits).

• One such  $\Lambda = \Lambda_i$  contains infinitely many closed Reeb orbits.

► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore  $\Lambda \subsetneq N$ .

- ► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore  $\Lambda \subsetneq N$ .
- Λ has measure zero (Bowen-Ruelle)

- ► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore  $\Lambda \subsetneq N$ .
- Λ has measure zero (Bowen-Ruelle)
- W<sup>s</sup>(Λ) ∪ W<sup>u</sup>(Λ) has measure zero (Poincaré recurrence)

- ► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore  $\Lambda \subsetneq N$ .
- Λ has measure zero (Bowen-Ruelle)
- W<sup>s</sup>(Λ) ∪ W<sup>u</sup>(Λ) has measure zero (Poincaré recurrence)

• 
$$W^{s}(\Lambda) \cap W^{u}(\Lambda) = \Lambda$$

- ► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore  $\Lambda \subsetneq N$ .
- Λ has measure zero (Bowen-Ruelle)
- $W^{s}(\Lambda) \cup W^{u}(\Lambda)$  has measure zero (Poincaré recurrence)

• 
$$W^{s}(\Lambda) \cap W^{u}(\Lambda) = \Lambda$$

We consider a global surface of section Σ ⊂ N. Notice that Λ ∩ int(Σ) ≠ Ø.

- ▶ We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore  $\Lambda \subsetneq N$ .
- Λ has measure zero (Bowen-Ruelle)
- $W^{s}(\Lambda) \cup W^{u}(\Lambda)$  has measure zero (Poincaré recurrence)

• 
$$W^{s}(\Lambda) \cap W^{u}(\Lambda) = \Lambda$$

- We consider a global surface of section Σ ⊂ N. Notice that Λ ∩ int(Σ) ≠ Ø.
- We fix a small heteroclinic rectangle  $R \subset int(\Sigma)$ :



•  $R \cap (W^{s}(\Lambda) \cup W^{u}(\Lambda))$  is compact and connected



•  $R \cap (W^{s}(\Lambda) \cup W^{u}(\Lambda))$  is compact and connected



▶  $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$  connected component

•  $R \cap (W^{s}(\Lambda) \cup W^{u}(\Lambda))$  is compact and connected



►  $D \subset R \setminus (W^s(\Lambda) \cup W^u(\Lambda))$  connected component

▶ (Poincaré recurrence)  $\exists z_0 \in D$ ,  $t_0 > 0$  such that  $z_1 := \phi_{t_0}(z_0) \in D$ .



•  $R \cap (W^{s}(\Lambda) \cup W^{u}(\Lambda))$  is compact and connected



•  $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$  connected component

• (Poincaré recurrence)  $\exists z_0 \in D$ ,  $t_0 > 0$  such that  $z_1 := \phi_{t_0}(z_0) \in D$ .



• We extend the map  $z_0 \mapsto z_1$  to a smooth return map  $\psi : int(\Sigma) \to int(\Sigma)$ .

▶  $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$  connected component Return map  $\psi$  : int( $\Sigma$ )  $\rightarrow$  int( $\Sigma$ ) extending  $z_0 \mapsto z_1$ .



►  $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$  connected component Return map  $\psi : int(\Sigma) \to int(\Sigma)$  extending  $z_0 \mapsto z_1$ .



Since ∂D ⊂ (W<sup>s</sup>(Λ) ∪ W<sup>u</sup>(Λ)), D ∩ (W<sup>s</sup>(Λ) ∪ W<sup>u</sup>(Λ)) = Ø, we must have ψ(D) ⊂ D.

►  $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$  connected component Return map  $\psi : int(\Sigma) \to int(\Sigma)$  extending  $z_0 \mapsto z_1$ .



- Since ∂D ⊂ (W<sup>s</sup>(Λ) ∪ W<sup>u</sup>(Λ)), D ∩ (W<sup>s</sup>(Λ) ∪ W<sup>u</sup>(Λ)) = Ø, we must have ψ(D) ⊂ D.
- $\psi|_D: D \to D$  preserves the area form  $d\lambda|_D$ .

►  $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$  connected component Return map  $\psi : int(\Sigma) \to int(\Sigma)$  extending  $z_0 \mapsto z_1$ .



- Since ∂D ⊂ (W<sup>s</sup>(Λ) ∪ W<sup>u</sup>(Λ)), D ∩ (W<sup>s</sup>(Λ) ∪ W<sup>u</sup>(Λ)) = Ø, we must have ψ(D) ⊂ D.
- $\psi|_D: D \to D$  preserves the area form  $d\lambda|_D$ .
- (Brower translation theorem)  $\psi$  has a fixed point z.

►  $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$  connected component Return map  $\psi : int(\Sigma) \to int(\Sigma)$  extending  $z_0 \mapsto z_1$ .



- Since ∂D ⊂ (W<sup>s</sup>(Λ) ∪ W<sup>u</sup>(Λ)), D ∩ (W<sup>s</sup>(Λ) ∪ W<sup>u</sup>(Λ)) = Ø, we must have ψ(D) ⊂ D.
- $\psi|_D : D \to D$  preserves the area form  $d\lambda|_D$ .
- (Brower translation theorem)  $\psi$  has a fixed point z.
- ▶ Thus  $z \in D \cap \operatorname{Per}(X)$ . But  $D \cap \operatorname{Per}(X) \subset D \cap \Lambda = \emptyset$ .