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N closed 3-manifold,
X nowhere vanishing vector field,
ϕt : N → N flow of X

A surface of section is a compact immersed surface Σ ↬ N
such that:

▶ ∂Σ is tangent to X ,

▶ int(Σ) is embedded in N \ ∂Σ and transverse to X ,
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Global surfaces of section – some history

▶ Notion was introduced by Poincaré in celestial mechanics

▶ (Birkhoff, ∼ 1917) Existence of global surfaces of sections for
Riemannian geodesic flows of

- Positively curved 2-spheres
- Negatively curved closed surfaces

▶ (Fried, 1981) Existence of global surfaces of sections for
transitive Anosov flows

▶ (Hofer-Wysocky-Zehnder, 1998) Contact hypersurfaces N ⊂ C2

admit a global surface of section Σ ∼= B2 for their Reeb flow

▶ ....
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Reeb flows and Geodesic flows

▶ (N, λ) closed contact 3-manifold, X Reeb vector field

λ 1-form on N
λ ∧ dλ volume form
λ(X ) ≡ 1, dλ(X , ·) ≡ 0

▶ (M, g) closed Riemannian surface

N = SM unit tangent bundle
λ = Liouville contact form,
X is the geodesic vector field

ϕtX (γ̇(0)) = γ̇(t), where γ is a geodesic with ∥γ̇∥g ≡ 1
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Reeb flows

X Reeb vector field of a closed 3-manifold (N, λ)

There always exists a closed orbit (Taubes 2007),
indeed even two (Cristofaro G., Hutchings 2016)

Theorem (Contreras, Mazzucchelli) If X satisfies the Kupka-Smale
condition, then it has a global surface of section.

Theorem (Colin, Dehornoy, Hryniewicz, Rechtman) If X has
equidistributed closed orbits, then it has a global surface of section.
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Global surfaces of section of geodesic flows
(M, g) closed orientable surface of genus G
ϕt : SM → SM geodesic flow

Theorem (Contreras-Mazzucchelli-Knieper-Schulz)
If (M, g) has no contractible simple closed geodesics without
conjugate points, there there exists a global surface of section of
genus one and 8G − 4 boundary components

Remark. There are no contractible simple closed geodesics provided

maxKg ≤ 2π

area(M, g)
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If (M, g) has no contractible simple closed geodesics without
conjugate points, there there exists a global surface of section of
genus 1 and 8G − 4 boundary components

Proof

▶ Γ = γ1 ∪ ... ∪ γ2G
M

γ1 γ3 γ2G−1

γ2 γ4 γ2G

▶ No geodesic ray is trapped in M \ Γ
(otherwise M \ Γ would contain a simple closed geodesic without
conjugate points)
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Global surfaces of section of geodesic flows
▶ Birkhoff annuli of a simple closed geodesic γ:

A+(γ) :=
{
v ∈ SM|γ

∣∣ v points inside M+

}

γ
M+M−

A±(γ) :=
{
v ∈ SM|γ

∣∣ v points inside M±
}

▶ Σ =
2G⋃
i=1

A+(γi ) ∪ A−(γi )

M

γ1 γ3 γ2G−1

γ2 γ4 γ2G

Σ is almost global surface of section, except that is has
self-intersections.
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Global surfaces of section of geodesic flows

▶ (Fried) Resolve self-intersections of Σ with surgery:

⇒

⇒

⇒



A weak Kupka-Smale condition

We require all the contractible simple closed geodesics without
conjugate points γ, ζ to be hyperbolic, and W s(γ̇) ⋔ W u(ζ̇):

γ̇

ζ̇

W s (γ̇)

W u(ζ̇)

W s (ζ̇)

W u(γ̇)

Theorem (Contreras-Paternain)

Weak Kupka-Smale holds for a C∞-generic Riemannian metric.
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Main theorem
Theorem (Contreras-Knieper-Mazzucchelli-Schulz). Any weak
Kupka-Smale geodesic flow admits a global surface of section.

Proof.

▶ Γ = γ1 ∪ ... ∪ γ2G simple closed geodesics considered before

▶ Assume some geodesic ray is trapped in M \ Γ

M
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γ3

γ2G−1
γ2

γ4

γ2G

α1

α2
β2β1 βk

A = α1 ∪ ... ∪ αk , B = β1 ∪ ... ∪ βk
No complete geodesic is contained in M \ (Γ ∪ A ∪ B)

Geodesic rays in M \ (Γ ∪ A ∪ B) are asymptotic to some αi
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Main theorem

▶ Some αi has homoclinics on both sides:

αi

▶ The shadowing lemma provides a closed geodesic ζ close to
the homoclinics.

αi

ζ

No geodesic ray in M \ (Γ ∪ A ∪ B ∪ ζ) is asymptotic to αi .
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Main theorem

▶ Repeat if needed for the other αj ’s.

▶ We obtained a finite collection of closed geodesics Z such
that M \ (Γ ∪ A ∪ B ∪ Z ) does not contain geodesic rays.

▶ Build a global surface of section by doing surgery on the
Birkhoff annuli of Γ ∪ A ∪ B ∪ Z .
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Application: characterization of Anosov Reeb flows

Theorem (Contreras-Mazzucchelli). Let X be the Reeb vector field
of a closed contact 3-manifold such that:

▶ Per(X ) is hyperbolic,

▶ W u(γ1) ⋔ W s(γ2) for all closed Reeb orbits γ1, γ2 ⊂ Per(X ).

Then the Reeb flow is Anosov.

Corollary. On any closed surface, there exists an C 2-open dense
subset U of the space of Riemannian metrics such that any g ∈ U
is Anosov or has an elliptic closed geodesic.

This corollary extends a theorem of Contreras-Oliveira for S2,
which extended a theorem of Herman for positively curved S2,
which in turn was first claimed (with a slightly wrong statement
and an incomplete proof) by Poincaré in 1905.
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Application: characterization of Anosov Reeb flows

Theorem (Contreras-Mazzucchelli). Let X be the Reeb vector field
of a closed contact 3-manifold such that:

▶ Per(X ) is hyperbolic,

▶ W u(γ1) ⋔ W s(γ2) for all closed Reeb orbits γ1, γ2 ⊂ Per(X ).

Then the Reeb flow is Anosov.

Corollary. On any closed surface, there exists an C 2-open dense
subset U of the space of Riemannian metrics such that any g ∈ U
is Anosov or has an elliptic closed geodesic.

Corollary2. The geodesic flow of a closed Riemannian surface is
C 2-structurally stable if and only if it is Anosov.



Thank you for your attention!



A characterization of Anosov Reeb flows

Theorem (Contreras-Mazzucchelli). Let X be the Reeb vector field
of a closed contact 3-manifold (N, λ) such that:

▶ Per(X ) is hyperbolic,

▶ W u(γ1) ⋔ W s(γ2) for all closed Reeb orbits γ1, γ2 ⊂ Per(X ).

Then the Reeb flow ϕt is Anosov.

Sketch of proof.

▶ (Taubes) There are infinitely many closed Reeb orbits.

▶ Smale’s spectral decomposition:

Per(X ) = Λ1 ∪ ... ∪ Λn,

where each Λi is a basic set (compact, locally maximal,
invariant subset containing a dense orbit and a dense subset
of periodic orbits).

▶ One such Λ = Λi contains infinitely many closed Reeb orbits.
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A characterization of Anosov Reeb flows

▶ We proceed by contradiction, assuming that the Reeb flow is
not Anosov, and therefore Λ ⊊ N.

▶ Λ has measure zero (Bowen-Ruelle)

▶ W s(Λ) ∪W u(Λ) has measure zero (Poincaré recurrence)

▶ W s(Λ) ∩W u(Λ) = Λ

▶ We consider a global surface of section Σ ⊂ N.
Notice that Λ ∩ int(Σ) ̸= ∅.

▶ We fix a small heteroclinic rectangle R ⊂ int(Σ):

z , z ′ ∈ Λ ∩ Per(X )

Σ

R

W s(Λ)

W u(Λ)
z

z ′
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A characterization of Anosov Reeb flows
▶ R ∩

(
W s(Λ) ∪W u(Λ)

)
is compact and connected

▶ D ⊂ R \
(
W s(Λ) ∪W u(Λ)

)
connected component

▶ (Poincaré recurrence) ∃z0 ∈ D, t0 > 0 such that
z1 := ϕt0(z0) ∈ D.

z0
ϕt(z0)

z1

▶ We extend the map z0 7→ z1 to a smooth return map
ψ : int(Σ) → int(Σ).
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▶ Since ∂D ⊂ (W s(Λ) ∪W u(Λ)), D ∩ (W s(Λ) ∪W u(Λ)) = ∅,
we must have ψ(D) ⊂ D.

▶ ψ|D : D → D preserves the area form dλ|D .
▶ (Brower translation theorem) ψ has a fixed point z .

▶ Thus z ∈ D ∩ Per(X ). But D ∩ Per(X ) ⊂ D ∩ Λ = ∅.
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