
Boundary Recovery of Anisotropic Electromagnetic
Parameters for the Time-Harmonic Maxwell’s

Equations

Sean Holman, joint work with Vasiliki Torega
University of Manchester

RICAM 2022



Introduction: Time-harmonic Maxwell’s equations
Time-harmonic Maxwell’s equations

∇× H = −iωεE , ∇ · (εE) = 0,
∇× E = iωµH, ∇ · (µH) = 0.

These equations model time-harmonic electrical and magnetic fields in
the absence of any current or electrical source.

Specifically,
E is the complex-valued electrical field;
H is the complex-valued magnetic field;
ε is the permittivity;
µ is the permeability;
ω is the angular frequency.

We call ε and µ together the electrical parameters.

Our goal is to determine the electrical parameters.
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Introduction: Time-harmonic Maxwell’s equations

Time-harmonic Maxwell’s equations

∇× H = −iωεE , ∇ · (εE) = 0,
∇× E = iωµH, ∇ · (µH) = 0.

We put these equations into an invariant form.

E and H are differential 1-forms.
g is the Euclidean metric (could be more general).
∗g is the Hodge star operator.
δg = ∗gd∗g is the divergence for the metric g.

Goal
Infer the electrical parameters in a region M from measurements of the
tangential components of E and H on the boundary of the region ∂M.
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Introduction: The inverse problem

Goal
Infer the electrical parameters in a region M from measurements of the
tangential components of E and H on the boundary of the region ∂M.

The tangential component of one field is controlled at the
boundary.
The tangential component of the other field is measured at the
boundary. If ι : ∂M 7→ M is the inclusion map:

I Λε : ι∗H → ι∗E is the impedance map;
I Λµ : ι∗E → ι∗H is the admittance map.

Note Λε and Λµ are inverses of each other.
The electrical parameters are anisotropic (see next slide).
We will assume that ω is fixed at a positive value such that the
boundary value problems are well-posed.
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Introduction: The anisotropic parameters

Geometric time-harmonic Maxwell’s equations

∗gdH = −iωεE , δg(εE) = 0,
∗gdE = iωµH, δg(µH) = 0.

If ε and µ are scalars, the equations are isotropic.
If ε and µ are (1,1) tensor fields, the equations are anisotropic.

Assumptions
We assume that ε and µ are real-valued, smooth and anisotropic. We
also assume that they are both symmetric in the sense that

〈a, εb〉g = 〈εa,b〉g , 〈a, µb〉g = 〈µa,b〉g

for any covectors (or vectors) a and b.
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Introduction: Independence from g
Geometric time-harmonic Maxwell’s equations

∗gdH = −iωεE , δg(εE) = 0,
∗gdE = iωµH, δg(µH) = 0.

These equations apparently depend on three parameters aside from
ω: g, ε and µ. Actually, g can be eliminated.

Define new Riemannian
metrics ε̂−1 and µ̂−1 by the conformal relations

ε̂−1√
|ε̂−1|

=
(ε−1)[√
|g|

,
µ̂−1√
|µ̂−1|

=
(µ−1)[√
|g|

.

g independent equations

∗ε̂dH = −iωE , δε̂E = 0,
∗µ̂dE = iωH, δµ̂H = 0.
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Pause for notation!
We finally introduce coordinates and indexed expressions!

We use standard notation for the components

g = gijdx idx j , g ij ∂

∂x i
∂

∂x j .

|g| = det(gij) and similarly for other tensors with two indices.
Same notation for components of ε̂ and µ̂ which are naturally
metrics on covectors.
We use real inner products and norms despite the fact that
vectors can be complex valued. For example:

〈a,b〉g = gijaibj , |a|2g = 〈a,a〉g = gijaiaj .

Note: since a can be complex, |a|2g can be zero for non-zero a.

We use indices with a tilde, e.g. ĩ , to indicate the index can only
take values ĩ = 1 or 2.
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S. Holman (U. of Manchester) Anisotropic Maxwell 7 / 26



Pause for notation!
We finally introduce coordinates and indexed expressions!

We use standard notation for the components

g = gijdx idx j , g ij ∂

∂x i
∂

∂x j .

|g| = det(gij) and similarly for other tensors with two indices.
Same notation for components of ε̂ and µ̂ which are naturally
metrics on covectors.
We use real inner products and norms despite the fact that
vectors can be complex valued. For example:

〈a,b〉g = gijaibj , |a|2g = 〈a,a〉g = gijaiaj .

Note: since a can be complex, |a|2g can be zero for non-zero a.

We use indices with a tilde, e.g. ĩ , to indicate the index can only
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Pause! Summary of tensors

(M,g) a Riemannian manifold with boundary.
Electrical parameter ε

Tensor Order Coordinate expression

ε (1,1) εi
j

ε] (2,0) εij = εi
kgkj

(ε−1)[ (0,2) (ε−1)ij = (ε−1)k
j gki

ε̂ (2,0) εij/det(εk
l )

ε̂−1 (0,2) (ε−1)ijdet(εk
l )

Same for µ.
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Result summary

Well-posedness
Maxwell’s system (solution for E and H with specified ι∗E) is
well-posed for anisotropic parameters except for on a discrete set of ω.

Non-uniqueness
Transformation of the parameters ε̂ and µ̂ by a diffeomorphism
that fixes the boundary ∂M does not change Λε.
The determinant of g in boundary normal coordinates for either
(ε−1)[ or (µ−1)[ cannot be determined from Λε in a neighbourhood
of ∂M.

Tangential components
The tangential components of ε̂ and µ̂ are uniquely determined by the
principal symbols of Λε and Λµ.
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Result summary

Non-tangential components
Under some hypotheses (details later), if the boundary maps are the
same for two sets of electrical parameters then the hat metrics are the
same at the boundary in boundary normal coordinates for ε̂.

Full jet
If in boundary normal coordinates for ε the determinant of g is known
and two sets of electrical parameters are the same at the boundary,
then all derivatives of the parameters also agree at the boundary.
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Brief literature review: Maxwell’s equations
Corresponding time dependent problems in the isotropic case, as
well as for other systems of equations, have been considered and
solved using the boundary control method [Belishev, Kurylev,
Lassas, Oksanen, Paternain ... others].

For the isotropic case, the linearised problem has been
considered [Somersalo et al 1992] and a layer stripping method
has been applied [Somersalo 1994].
The boundary problem for the isotropic case has been analysed
from the same point of view as ours [McDowall 1997], including for
cases with complex electrical parameters [McDowall 2000] and for
the full boundary jet [Joshi, McDowall 2000].
To our knowledge, closest to our results is [Kenig, Salo, Uhlmann
2011] which does boundary recovery, and more, for the
anisotropic problem when ε and µ are conformally related.
Numerical work for the anisotropic case has been done [Costabel
1991 ... others].
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Brief literature review: Methods

Our method analyses the forward operator as a pseudodifferential
operator including determination of the principal symbol. This method
can be traced back:

Boundary recovery for anisotropic Calderón problem [Lee,
Uhlmann 1989].
Elastic system [Nakamura, Uhlmann 1997].
Isotropic Maxwell’s system [McDowall 1997], with complex
parameter [McDowall 2000] and for the full boundary jet [Joshi,
McDowall 2000].
Harmonic differential forms [Lionheart, Joshi 2005].

Many others have contributed and have related work!
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Well-posedness

Natural system
Maxwell’s equations can be written in a matrix form as

0 δµ̂
iω ∗ε̂d
− ∗µ̂ d iω
δε̂ 0

(E
H

)
=


0
0
0
0



Key point: This system is not elliptic.

Augmented elliptic system

−i


iω 0 δµ̂ 0
0 iω ∗ε̂d d
d − ∗µ̂ d iω 0
0 δε̂ 0 iω




uE
E
H
uH

 =


0
0
0
0



S. Holman (U. of Manchester) Anisotropic Maxwell 13 / 26



Well-posedness

Natural system
Maxwell’s equations can be written in a matrix form as

0 δµ̂
iω ∗ε̂d
− ∗µ̂ d iω
δε̂ 0

(E
H

)
=


0
0
0
0


Key point: This system is not elliptic.

Augmented elliptic system

−i


iω 0 δµ̂ 0
0 iω ∗ε̂d d
d − ∗µ̂ d iω 0
0 δε̂ 0 iω




uE
E
H
uH

 =


0
0
0
0



S. Holman (U. of Manchester) Anisotropic Maxwell 13 / 26



Well-posedness

Natural system
Maxwell’s equations can be written in a matrix form as

0 δµ̂
iω ∗ε̂d
− ∗µ̂ d iω
δε̂ 0

(E
H

)
=


0
0
0
0


Key point: This system is not elliptic.

Augmented elliptic system

−i


iω 0 δµ̂ 0
0 iω ∗ε̂d d
d − ∗µ̂ d iω 0
0 δε̂ 0 iω




uE
E
H
uH

 =


0
0
0
0


S. Holman (U. of Manchester) Anisotropic Maxwell 13 / 26



Well-posedness

Augmented elliptic system

−i


iω 0 δµ̂ 0
0 iω ∗ε̂d d
d − ∗µ̂ d iω 0
0 δε̂ 0 iω




uE
E
H
uH

 =


0
0
0
0


The operator here is also symmetric with the correct inner product.

We can apply standard methods for elliptic systems to prove
operator with appropriate boundary conditions is self-adjoint.
This allows us to prove the well-posedness result.
The method requires finding the singular values and vectors of the
principal symbol, which is also related to our later analysis.
Somersalo uses a similar augmented system.
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Non-uniqueness

Diffeomorphism invariance
This type of invariance is common in geometric inverse problems
following from:

Maxwell’s equations can be written invariantly with respect to ε̂
and µ̂;
Diffeomorphism which fix the boundary do not affect ι∗E or ι∗H.

Determinant of g in boundary normal coordinates
Follows from diffeomorphism invariance since:

Maxwell’s equations can be made independent from g;
We can choose diffeomorphisms which fix the boundary and
change the determinant of g arbitrarily in a neighbourhood of the
boundary.
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Boundary normal coordinates and tangential
components
Boundary normal coordinates

Boundary normal coordinates for a metric are found by taking a
coordinate chart on ∂M and then distance to the boundary as the
third coordinate.
This construction provides coordinates in a neighbourhood of ∂M.

Tangential components
In boundary normal coordinates for g, the covector metric has a
matrix of the form (

g̃ ĩ j̃ 0
0 1

)
.

g̃ is the tangential component of g, a covector metric on ∂M. It is
invariantly defined on ∂M.

S. Holman (U. of Manchester) Anisotropic Maxwell 16 / 26



Boundary normal coordinates and tangential
components
Boundary normal coordinates

Boundary normal coordinates for a metric are found by taking a
coordinate chart on ∂M and then distance to the boundary as the
third coordinate.
This construction provides coordinates in a neighbourhood of ∂M.

Tangential components
In boundary normal coordinates for g, the covector metric has a
matrix of the form (
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Principal symbols: Outline of method
Working in a set of boundary coordinates (i.e. ∂M = {x3 = 0}):

1 Note that for solutions of Maxwell’s system Dx3 is a
pseudodifferential operator acting on H and E restricted to
constant x3. This follows [Nakamura, Uhlmann 1997].

2 Compute the principal symbol of Dx3 acting on E and H as in the
previous step.

3 Use the previous part to compute the principal symbol of Λε and
Λµ. Tangential components of ε̂ and µ̂ are determined from these.

4 Use equality of tangential components to show that if boundary
maps are the same, then E is determined in boundary normal
coordinates for ε and the same for H and µ.

5 Use equality of H3 components to derive show full parameters are
the same at the boundary in some cases.

6 Use inductive method to recover full-jet. This uses method from
[Joshi, McDowall 2000].
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Principal symbol of Dx3

From Maxwell’s equations, H satisfies

LHH =
(
− ∗ε̂ ∗µ̂ dδµ̂ + ∗ε̂d ∗ε̂ d

)
H − ω2 ∗ε̂ ∗µ̂H = 0.

If the principal symbol of LH is σp(LH) = MH which we consider as
a function of ξ3, then the principal symbol of Dx3 acting on H is

B(1) =

∫
Γ+

ξ3MH(ξ3)−1 dξ3

(∫
Γ+

MH(ξ3)−1 dξ3

)−1

where Γ+ is a contour in C enclosing all solutions of
det(MH)(ξ3) = 0 with positive real part.
This formula can also be used to show that B(1) is a smooth
function of position x and ξ̃ = (ξ1, ξ2).
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Principal symbol of Dx3

Using singular vectors of the principal symbol from the
well-posedness proof, B(1) can be written explicitly except in a few
exceptional cases.

We have
det(MH(ξ3)) = 0⇔ |ξ|4µ̂|ξ|2ε̂ = 0.

Thus, there at most two solutions which we write ξε̂ and ξµ̂.
Indeed, consider the covectors

ξ, ζ = ε̂−1µ̂ξ, χ = ∗ε̂(ξ ∧ ζ),

which form a basis when ξε̂ 6= ξµ̂. We also write χε̂ and χµ̂ when
that covector is evaluated at the corresponding solution from the
last part.
We have

B(1)χε̂ = ξε̂3χε̂, B(1)ξµ̂ = ξµ̂3ξµ̂.
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Principal symbols of boundary maps

Using B(1) and the corresponding expression applied to E , we can find
from Maxwell’s equations the principal symbols of Λε and Λµ:

σp(Λε)(F ) = −∗ι
∗ε̂(ξ̃ ∧ F )

ω〈νε̂, ξε̂〉ε̂
ξ̃,

σp(Λµ)(G) =
∗ι∗µ̂(ξ̃ ∧G)

ω〈νµ̂, ξµ̂〉µ̂
ξ̃.

Here νε̂ is the inner unit conormal to the boundary in the ε̂ metric.
It is possible to determine the tangential components of ε̂ and µ̂
from these which proves the tangential result.
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Non-tangential recovery
For the next steps, we carefully analyse components in each set of
boundary normal coordinates and the relationship between them.

Covectors BNCs for µ̂ BNCs for ε̂
ξµ̂ ξµ̂,µ̃ ξµ̂,ε̃
χµ̂ χµ̂,µ̃ χµ̂,ε̃
ξε̂ ξε̂,µ̃ ξε̂,ε̃
χε̂ χε̂,µ̃ χε̂,ε̃

Based on the equivalence of the third component of E or H fields in
appropriate boundary normal coordinates we get the lemma.

Lemma
If (ε̂, µ̂) and (ε̂′, µ̂′) are electrical parameters with the same boundary
mappings, then at the boundary(

ξµ̂′,ε̃3 + ξε̂,ε̃3

)
χµ̂,ε̃3 =

(
ξµ̂,ε̃3 + ξε̂,ε̃3

)
χµ̂′,ε̃3,(

ξε̂′,µ̃3 + ξµ̂,µ̃3

)
χε̂,µ̃3 =

(
ξε̂,µ̃3 + ξµ̂,µ̃3

)
χε̂′,µ̃3.
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Non-tangential recovery

Lemma
If (ε̂, µ̂) and (ε̂′, µ̂′) are electrical parameters with the same boundary
mappings, then at the boundary(
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)
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)
χε̂′,µ̃3.

Based the lemma, we have a result about boundary recovery of
non-tangential parts.

Theorem
If Λε̂ = Λε̂′ , then in boundary normal coordinates for ε̂/ε̂′ at ∂M at least
one of the following cases holds:

1 The metrics µ̃ and ε̃ are multiples and µ̂′3̃j = cµ̂3̃j for some c ∈ R.
2 ε̂ = ε̂′ and µ̂ = µ̂′.
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Non-tangential recovery

Theorem
If Λε̂ = Λε̂′ , then in boundary normal coordinates for ε̂/ε̂′ at ∂M at least
one of the following cases holds:

1 The metrics µ̃ and ε̃ are multiples and µ̂′3̃j = cµ̂3̃j for some c ∈ R.
2 ε̂ = ε̂′ and µ̂ = µ̂′.

Comments on theorem:
The proof is based on explicit expressions of the components from
the previous lemma.
We do not believe that a stronger result is possible from further
analysis of the lemma or indeed the principal part of the E or H
fields.
Looking at lower order symbols could be beneficial.
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Determination of boundary jet

Theorem
Take two sets of electromagnetic parameters (ε, µ) and (ε′, µ′).
Suppose that in boundary normal coordinates for ε]/ε′], |g| = |g′|. If
the boundary mappings are the same and the parameters agree at the
boundary, then, also in boundary normal coordinates for ε]/ε′],

∂κx3
ε] = ∂κx3

ε′], ∂κx3
µ] = ∂κx3

µ′] at x3 = 0,

for any κ ≥ 1.

Comments:
Proof is based on the method from [Joshi, McDowall 2000].
A special class of pseudodifferential operators vanishing to
different orders at the boundary is introduced.
Based on this, the proof proceeds inductively in κ.
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Conclusion

We have explicit formulas for the principal symbols of Λε and Λµ
and found that they imply tangential recovery of the parameters ε̂
and µ̂.

We also have explicit formulas for the principal symbols of the
maps from boundary data to the normal component of E and H
fields in appropriate boundary normal coordinates. This is used
for the non-tangential results.
We do not believe a stronger result can be found based only on
principal symbols but analysis of lower order symbols could help.
We successfully applied the inductive method introduced in [Joshi,
McDowall 2000] to this case.
To do:

1 Fill in gap in non-tangential recovery.
2 Look at recovery in the interior ... .
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fields in appropriate boundary normal coordinates. This is used
for the non-tangential results.
We do not believe a stronger result can be found based only on
principal symbols but analysis of lower order symbols could help.

We successfully applied the inductive method introduced in [Joshi,
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The end

Thank you for your attention!

S. Holman (U. of Manchester) Anisotropic Maxwell 26 / 26


	Introduction

