Ruelle zeta at zero for nearly hyperbolic 3-manifolds

Semyon Dyatlov (MIT)

Nov 8, 2022

Overview

- Studying $m_{\mathrm{R}}(0)$: order of vanishing at 0 of the Ruelle zeta function for the geodesic flow on a negatively curved 3-manifold (Σ, g)
- $g=g_{H}$ hyperbolic $\Longrightarrow \quad m_{R}(0)=4-2 b_{1}(\Sigma) \quad$ [Fried '86]
- $g=$ generic perturbation of g_{H}
 [Cekić-Delarue-D-Paternain '20]
- This is in contrast with the case $\operatorname{dim} \Sigma=2$ where $m_{R}(0)=b_{1}(\Sigma)-2$ for all negatively curved (Σ, g) [D-Zworski '17]
- Motivated by Fried's conjecture ' 87 relating the values at 0 of twisted dynamical zeta functions to analytic torsion

Overview

- Studying $m_{R}(0)$: order of vanishing at 0 of the Ruelle zeta function for the geodesic flow on a negatively curved 3-manifold (Σ, g)
- $g=g_{H}$ hyperbolic $\Longrightarrow \quad m_{R}(0)=4-2 b_{1}(\Sigma) \quad$ [Fried '86]
- $g=$ generic perturbation of $g_{H} \quad \Longrightarrow \quad m_{R}(0)=4-b_{1}(\Sigma)$ [Cekić-Delarue-D-Paternain '20]
- This is in contrast with the case $\operatorname{dim} \Sigma=2$ where $m_{\mathrm{R}}(0)=b_{1}(\Sigma)-2$ for all negatively curved $(\Sigma, g) \quad[\mathrm{D}-Z$ worski '17]
- Motivated by Fried's conjecture '87 relating the values at 0 of twisted dynamical zeta functions to analytic torsion

Overview

- Studying $m_{R}(0)$: order of vanishing at 0 of the Ruelle zeta function for the geodesic flow on a negatively curved 3-manifold (Σ, g)
- $g=g_{H}$ hyperbolic $\Longrightarrow m_{R}(0)=4-2 b_{1}(\Sigma) \quad$ [Fried '86]
- $g=$ generic perturbation of $g_{H} \quad \Longrightarrow \quad m_{R}(0)=4-b_{1}(\Sigma)$ [Cekić-Delarue-D-Paternain '20]
- This is in contrast with the case $\operatorname{dim} \Sigma=2$ where $m_{\mathrm{R}}(0)=b_{1}(\Sigma)-2$ for all negatively curved (Σ, g) [D-Zworski '17]
- Motivated by Fried's conjecture ' 87 relating the values at 0 of twisted dynamical zeta functions to analytic torsion

Overview

- Studying $m_{R}(0)$: order of vanishing at 0 of the Ruelle zeta function for the geodesic flow on a negatively curved 3-manifold (Σ, g)
- $g=g_{H}$ hyperbolic $\Longrightarrow m_{R}(0)=4-2 b_{1}(\Sigma) \quad$ [Fried '86]
- $g=$ generic perturbation of $g_{H} \quad \Longrightarrow \quad m_{R}(0)=4-b_{1}(\Sigma)$ [Cekić-Delarue-D-Paternain '20]
- This is in contrast with the case $\operatorname{dim} \Sigma=2$ where $m_{\mathrm{R}}(0)=b_{1}(\Sigma)-2$ for all negatively curved (Σ, g) [D-Zworski '17]
- Motivated by Fried's conjecture ' 87 relating the values at 0 of twisted dynamical zeta functions to analytic torsion

Geodesic and contact flows

- (Σ, g) a compact connected oriented Riemannian n-dim manifold
- $M=S \Sigma$ the sphere bundle of $(\Sigma, g), \pi_{\Sigma}: M \rightarrow \Sigma$ projection map
- $\alpha_{(x, v)}(\xi)=\left\langle v, d \pi_{\Sigma}(x, v) \xi\right\rangle_{g}$ canonical 1-form on M
- α is a contact form: $d \operatorname{vol}_{\alpha}:=\alpha \wedge(d \alpha)^{n-1}$ is nonvanishing
- Geodesic flow: $\varphi_{t}=e^{t X}: M \rightarrow M$ where $X \in C^{\infty}(M ; T M)$ given by

$$
\iota_{X} \alpha=1, \quad \iota_{X} d \alpha=0
$$

- g has negative sectional curvature

Geodesic and contact flows

- (Σ, g) a compact connected oriented Riemannian n-dim manifold
- $M=S \Sigma$ the sphere bundle of $(\Sigma, g), \pi_{\Sigma}: M \rightarrow \Sigma$ projection map
- $\alpha_{(x, v)}(\xi)=\left\langle v, d \pi_{\Sigma}(x, v) \xi\right\rangle_{g}$ canonical 1-form on M
- α is a contact form: $d \operatorname{vol}_{\alpha}:=\alpha \wedge(d \alpha)^{n-1}$ is nonvanishing
- Geodesic flow: $\varphi_{t}=e^{t X}: M \rightarrow M$ where $X \in C^{\infty}(M ; T M)$ given by

$$
\iota_{X} \alpha=1, \quad \iota_{X} d \alpha=0
$$

- g has negative sectional curvature $\Longrightarrow \varphi_{t}$ is Anosov:

$$
\begin{gathered}
T M=E_{0} \oplus E_{u} \oplus E_{s}, \quad E_{0}=\mathbb{R} X, \\
\exists C, \theta>0: \quad\left\|d \varphi_{-t}\left|E_{u}\|,\| d \varphi_{t}\right| E_{s}\right\| \leq C e^{-\theta t}, \quad t \geq 0
\end{gathered}
$$

Geodesic and contact flows

- (Σ, g) a compact connected oriented Riemannian n-dim manifold
- $M=S \Sigma$ the sphere bundle of $(\Sigma, g), \pi_{\Sigma}: M \rightarrow \Sigma$ projection map
- $\alpha_{(x, v)}(\xi)=\left\langle v, d \pi_{\Sigma}(x, v) \xi\right\rangle_{g}$ canonical 1-form on M
- α is a contact form: $d \operatorname{vol}_{\alpha}:=\alpha \wedge(d \alpha)^{n-1}$ is nonvanishing
- Geodesic flow: $\varphi_{t}=e^{t X}: M \rightarrow M$ where $X \in C^{\infty}(M ; T M)$ given by

$$
\iota_{X} \alpha=1, \quad \iota_{X} d \alpha=0
$$

- g has negative sectional curvature $\Longrightarrow \varphi_{t}$ is Anosov:

$$
\begin{gathered}
T M=E_{0} \oplus E_{u} \oplus E_{s}, \quad E_{0}=\mathbb{R} X, \\
\exists C, \theta>0: \quad\left\|d \varphi_{-t}\left|E_{u}\|,\| d \varphi_{t}\right| E_{s}\right\| \leq C e^{-\theta t}, \quad t \geq 0
\end{gathered}
$$

- Define $E_{u}^{*}:=\left(E_{0} \oplus E_{u}\right)^{\perp}, \quad E_{s}^{*}:=\left(E_{0} \oplus E_{s}\right)^{\perp}$ subsets of $T^{*} M$

Ruelle zeta function

Define the Ruelle zeta function

$$
\zeta_{\mathrm{R}}(\lambda)=\prod\left(1-e^{-\lambda T_{\gamma}}\right), \quad \operatorname{Re} \lambda \gg 1
$$

where the product is over all primitive closed geodesics γ of periods T_{γ}
[Giulietti-Liverani-Pollicott '13, D-Zworski '16]
Conjectured by Smale '67; partial progress by
Ruelle '76, Parry-Pollicott '90, Rugh '96, Fried '95

- Define the vanishing order $m_{R}(0) \in \mathbb{Z}$:

$$
\lambda^{-m_{\mathrm{R}}(0)} \zeta_{\mathrm{R}}(\lambda) \text { holomorphic and nonvanishing at } \lambda=0
$$

\square
Question
Can we describe $m_{\mathrm{R}}(0)$ in terms of topological invariants of Σ, such as the Betti numbers $b_{k}(\Sigma)=\operatorname{dim} H^{k}(\Sigma ; \mathbb{R})$?

Ruelle zeta function

Define the Ruelle zeta function

$$
\zeta_{\mathrm{R}}(\lambda)=\prod\left(1-e^{-\lambda T_{\gamma}}\right), \quad \operatorname{Re} \lambda \gg 1
$$

where the product is over all primitive closed geodesics γ of periods T_{γ}

- The function $\zeta_{\mathrm{R}}(\lambda)$ continues meromorphically to $\lambda \in \mathbb{C}$ [Giulietti-Liverani-Pollicott '13, D-Zworski '16]
Conjectured by Smale '67; partial progress by Ruelle '76, Parry-Pollicott '90, Rugh '96, Fried '95
- Define the vanishing order $m_{R}(0) \in \mathbb{Z}$:

Ruelle zeta function

Define the Ruelle zeta function

$$
\zeta_{\mathrm{R}}(\lambda)=\prod\left(1-e^{-\lambda T_{\gamma}}\right), \quad \operatorname{Re} \lambda \gg 1
$$

where the product is over all primitive closed geodesics γ of periods T_{γ}

- The function $\zeta_{\mathrm{R}}(\lambda)$ continues meromorphically to $\lambda \in \mathbb{C}$ [Giulietti-Liverani-Pollicott '13, D-Zworski '16]
Conjectured by Smale '67; partial progress by Ruelle '76, Parry-Pollicott '90, Rugh '96, Fried '95
- Define the vanishing order $m_{R}(0) \in \mathbb{Z}$:

$$
\lambda^{-m_{\mathrm{R}}(0)} \zeta_{\mathrm{R}}(\lambda) \text { holomorphic and nonvanishing at } \lambda=0
$$

Question

Can we describe $m_{\mathrm{R}}(0)$ in terms of topological invariants of Σ, such as the Betti numbers $b_{k}(\Sigma)=\operatorname{dim} H^{k}(\Sigma ; \mathbb{R})$?

Previous work I

- More general zeta functions $\zeta_{\rho}(\lambda)$ twisted by a representation $\rho: \pi_{1}(\Sigma) \rightarrow \mathrm{U}(m) ; \zeta_{\mathrm{R}}$ corresponds to the trivial $\rho: \pi_{1}(\Sigma) \rightarrow \mathrm{U}(1)$
- ρ is called acyclic if $H_{\rho}^{k}(\Sigma ; \mathbb{R})=0$ for all k
- Fried '86 studied the hyperbolic case (curvature $=-1$):

For ρ acyclic, he computed $m_{\rho}(0)=0$ and $\zeta_{\rho}(0)=T_{\rho}^{2}$ where T_{ρ} is the analytic torsion. Fried's conjecture: same formula for $\zeta_{\rho}(0)$ holds for general locally homogeneous (Σ, g)

- Fried's conjecture proved for locally symmetric spaces by Shen '16, following Moscovici-Stanton '91, Bismut '11
- All the above use Selberg trace formulas + representation theory

Previous work I

- More general zeta functions $\zeta_{\rho}(\lambda)$ twisted by a representation $\rho: \pi_{1}(\Sigma) \rightarrow \mathrm{U}(m) ; \zeta_{\mathrm{R}}$ corresponds to the trivial $\rho: \pi_{1}(\Sigma) \rightarrow \mathrm{U}(1)$
- ρ is called acyclic if $H_{\rho}^{k}(\Sigma ; \mathbb{R})=0$ for all k
- Fried '86 studied the hyperbolic case (curvature $=-1$):

$$
m_{\mathrm{R}}(0)= \begin{cases}b_{1}(\Sigma)-2, & \operatorname{dim} \Sigma=2 \\ 4-2 b_{1}(\Sigma), & \operatorname{dim} \Sigma=3\end{cases}
$$

For ρ acyclic, he computed $m_{\rho}(0)=0$ and $\zeta_{\rho}(0)=T_{\rho}^{2}$ where T_{ρ} is the analytic torsion. Fried's conjecture: same formula for $\zeta_{\rho}(0)$ holds for general locally homogeneous (Σ, g)
following Moscovici-Stanton '91, Bismut '11

- All the above use Selberg trace formulas + representation theory

Previous work I

- More general zeta functions $\zeta_{\rho}(\lambda)$ twisted by a representation $\rho: \pi_{1}(\Sigma) \rightarrow \mathrm{U}(m) ; \zeta_{\mathrm{R}}$ corresponds to the trivial $\rho: \pi_{1}(\Sigma) \rightarrow \mathrm{U}(1)$
- ρ is called acyclic if $H_{\rho}^{k}(\Sigma ; \mathbb{R})=0$ for all k
- Fried '86 studied the hyperbolic case (curvature $=-1$):

$$
m_{\mathrm{R}}(0)= \begin{cases}b_{1}(\Sigma)-2, & \operatorname{dim} \Sigma=2 \\ 4-2 b_{1}(\Sigma), & \operatorname{dim} \Sigma=3\end{cases}
$$

For ρ acyclic, he computed $m_{\rho}(0)=0$ and $\zeta_{\rho}(0)=T_{\rho}^{2}$ where T_{ρ} is the analytic torsion. Fried's conjecture: same formula for $\zeta_{\rho}(0)$ holds for general locally homogeneous (Σ, g)

- Fried's conjecture proved for locally symmetric spaces by Shen '16, following Moscovici-Stanton '91, Bismut '11
- All the above use Selberg trace formulas + representation theory

Previous work II

What happens for general (not locally symmetric) negatively curved Σ ?

- D-Zworski '17: $m_{\mathrm{R}}(0)=b_{1}(\Sigma)-2$ when $\operatorname{dim} \Sigma=2$; applies to general contact Anosov flows in dimension 3
- Extended to surfaces with boundary by Hadfield '18, to the nonorientable case by Borns-Weil-Shen '20
- Cekić-Daternain '19: studied $m_{R}(0)$ for general volume preserving Anosov flows on a 3-manifold M and showed it depends on the properties of the flow, not just on the topology of M
- Dang-Guillarmou-Rivière-Shen '20 proved Fried's conjecture on $\zeta_{\rho}(0)$ when Σ is any nearly hyperbolic 3 -manifold
- Related works: Dang-Rivière '17, Chaubet-Dang '19, Küster-Weich '20

Previous work II

What happens for general (not locally symmetric) negatively curved Σ ?

- D-Zworski '17: $m_{\mathrm{R}}(0)=b_{1}(\Sigma)-2$ when $\operatorname{dim} \Sigma=2$; applies to general contact Anosov flows in dimension 3
- Extended to surfaces with boundary by Hadfield '18, to the nonorientable case by Borns-Weil-Shen '20
- Cekić-Paternain '19: studied $m_{\mathrm{R}}(0)$ for general volume preserving Anosov flows on a 3-manifold M and showed it depends on the properties of the flow, not just on the topology of M
- Dang-Guillarmou-Rivière-Shen '20 proved Fried's conjecture on $\zeta_{\rho}(0)$ when Σ is any nearly hyperbolic 3-manifold
- Related works: Dang-Rivière '17, Chaubet-Dang '19, Küster-Weich '20

Previous work II

What happens for general (not locally symmetric) negatively curved Σ ?

- D-Zworski '17: $m_{\mathrm{R}}(0)=b_{1}(\Sigma)-2$ when $\operatorname{dim} \Sigma=2$; applies to general contact Anosov flows in dimension 3
- Extended to surfaces with boundary by Hadfield '18, to the nonorientable case by Borns-Weil-Shen '20
- Cekić-Paternain '19: studied $m_{\mathrm{R}}(0)$ for general volume preserving Anosov flows on a 3-manifold M and showed it depends on the properties of the flow, not just on the topology of M
- Dang-Guillarmou-Rivière-Shen '20 proved Fried's conjecture on $\zeta_{\rho}(0)$ when Σ is any nearly hyperbolic 3 -manifold
- Related works: Dang-Rivière '17, Chaubet-Dang '19, Küster-Weich '20

Previous work II

What happens for general (not locally symmetric) negatively curved Σ ?

- D-Zworski '17: $m_{\mathrm{R}}(0)=b_{1}(\Sigma)-2$ when $\operatorname{dim} \Sigma=2$; applies to general contact Anosov flows in dimension 3
- Extended to surfaces with boundary by Hadfield '18, to the nonorientable case by Borns-Weil-Shen '20
- Cekić-Paternain '19: studied $m_{\mathrm{R}}(0)$ for general volume preserving Anosov flows on a 3-manifold M and showed it depends on the properties of the flow, not just on the topology of M
- Dang-Guillarmou-Rivière-Shen '20 proved Fried's conjecture on $\zeta_{\rho}(0)$ when Σ is any nearly hyperbolic 3 -manifold
- Related works: Dang-Rivière '17, Chaubet-Dang '19, Küster-Weich '20

Statement of the result

Theorem 1 [Cekić-Delarue-D-Paternain '20]
Let $\left(\Sigma, g_{H}\right)$ be a compact connected oriented hyperbolic 3-manifold. Then: 1. If $g=g_{H}$ then $m_{R}(0)=4-2 b_{1}(\Sigma)$
2. If g is a generic conformal perturbation of g_{H} then $m_{R}(0)=4-b_{1}(\Sigma)$

Here generic conformal perturbation is understood as follows:
there exists an open dense $\mathscr{O} \subset C^{\infty}(\Sigma ; \mathbb{R})$ such that for any $a \in \mathscr{O}$ there exists $\varepsilon>0$ such that for all $\tau \in(-\varepsilon, \varepsilon) \backslash\{0\}$ the metric $g=e^{\tau a} g_{H}$ has $m_{R}(0)=4-b_{1}(\Sigma)$

- First result on instability of $m_{\mathrm{R}}(0)$ under metric perturbations
- Our proof of part 1 is different from [Fried '86] using geometric rather than algebraic techniques

Statement of the result

Theorem 1 [Cekić-Delarue-D-Paternain '20]
Let $\left(\Sigma, g_{H}\right)$ be a compact connected oriented hyperbolic 3-manifold. Then: 1. If $g=g_{H}$ then $m_{R}(0)=4-2 b_{1}(\Sigma)$
2. If g is a generic conformal perturbation of g_{H} then $m_{R}(0)=4-b_{1}(\Sigma)$

Here generic conformal perturbation is understood as follows:
there exists an open dense $\mathscr{O} \subset C^{\infty}(\Sigma ; \mathbb{R})$ such that for any $a \in \mathscr{O}$ there exists $\varepsilon>0$ such that for all $\tau \in(-\varepsilon, \varepsilon) \backslash\{0\}$ the metric $g=e^{\tau a} g_{H}$ has $m_{\mathrm{R}}(0)=4-b_{1}(\Sigma)$

- First result on instability of $m_{R}(0)$ under metric perturbations
- Our proof of part 1 is different from [Fried '86], using geometric rather than algebraic techniques

Spectral interpretation of zeta functions I

- General idea: " $\zeta(\lambda)=\operatorname{det}(\lambda-P)$ " for some operator P
- This should be understood as $\partial_{\lambda} \log \zeta(\lambda)=\operatorname{tr}(\lambda-P)^{-1}$ with the right definition of trace
- Vanishing order of ζ at $0=$ dimension of the space of generalized eigenstates at $0\left\{u \mid \exists \ell: P^{\ell} u=0\right\}$
- One can write the vanishing order $m_{\mathrm{R}}(0)$ of ζ_{n} using the dimensions of certain spaces of Pollicott-Ruelle generalized resonant forms Res ${ }_{0}^{k .}$
- Our strategy is to describe $\operatorname{Res}_{0}^{k, \infty}$ in terms of the de Rham cohomology of Σ
- In this talk we will focus on the case $k=1$

Spectral interpretation of zeta functions I

- General idea: " $\zeta(\lambda)=\operatorname{det}(\lambda-P)$ " for some operator P
- This should be understood as $\partial_{\lambda} \log \zeta(\lambda)=\operatorname{tr}(\lambda-P)^{-1}$ with the right definition of trace
- Vanishing order of ζ at $0=$ dimension of the space of generalized eigenstates at $0\left\{u \mid \exists \ell: P^{\ell} u=0\right\}$
- One can write the vanishing order $m_{\mathrm{R}}(0)$ of ζ_{R} using the dimensions of certain spaces of Pollicott-Ruelle generalized resonant forms $\operatorname{Res}_{0}^{k, \infty}$
- Our strategy is to describe $\operatorname{Res}_{0}^{k \infty}$ in terms of the de Rham cohomology of Σ
- In this talk we will focus on the case $k=1$

Spectral interpretation of zeta functions I

- General idea: " $\zeta(\lambda)=\operatorname{det}(\lambda-P)$ " for some operator P
- This should be understood as $\partial_{\lambda} \log \zeta(\lambda)=\operatorname{tr}(\lambda-P)^{-1}$ with the right definition of trace
- Vanishing order of ζ at $0=$ dimension of the space of generalized eigenstates at $0\left\{u \mid \exists \ell: P^{\ell} u=0\right\}$
- One can write the vanishing order $m_{R}(0)$ of ζ_{R} using the dimensions of certain spaces of Pollicott-Ruelle generalized resonant forms $\operatorname{Res}_{0}^{k, \infty}$
- Our strategy is to describe $\operatorname{Res}_{0}^{k, \infty}$ in terms of the de Rham cohomology of Σ
- In this talk we will focus on the case $k=1$

Spectral interpretation of zeta functions I

- General idea: " $\zeta(\lambda)=\operatorname{det}(\lambda-P)$ " for some operator P
- This should be understood as $\partial_{\lambda} \log \zeta(\lambda)=\operatorname{tr}(\lambda-P)^{-1}$ with the right definition of trace
- Vanishing order of ζ at $0=$ dimension of the space of generalized eigenstates at $0\left\{u \mid \exists \ell: P^{\ell} u=0\right\}$
- One can write the vanishing order $m_{R}(0)$ of ζ_{R} using the dimensions of certain spaces of Pollicott-Ruelle generalized resonant forms $\operatorname{Res}_{0}^{k, \infty}$
- Our strategy is to describe Res ${ }_{0}^{k, \infty}$ in terms of the de Rham cohomology of Σ
- In this talk we will focus on the case $k=1$

Spectral interpretation of zeta functions II

- $M=S \Sigma, \operatorname{dim} \Sigma=3, X \in C^{\infty}(M ; T M)$ generates the geodesic flow
- Our operators: $P_{k, 0}=\mathcal{L}_{X}$ acting on $\Omega_{0}^{k}:=\left\{\omega \in \wedge^{k} T^{*} M \mid \iota X \omega=0\right\}$
- For certain anisotropic Sobolev spaces $\mathscr{H}, \mathscr{D}_{P}$ the operator $P_{k, 0}-\lambda: \mathscr{D}_{P}\left(M ; \Omega_{0}^{k}\right) \rightarrow \mathscr{H}\left(M ; \Omega_{0}^{k}\right)$ is Fredholm of index 0

Spectral interpretation of zeta functions II

- $M=S \Sigma, \operatorname{dim} \Sigma=3, X \in C^{\infty}(M ; T M)$ generates the geodesic flow
- Our operators: $P_{k, 0}=\mathcal{L}_{X}$ acting on $\Omega_{0}^{k}:=\left\{\omega \in \wedge^{k} T^{*} M \mid \iota X \omega=0\right\}$
- For certain anisotropic Sobolev spaces $\mathscr{H}, \mathscr{D}_{P}$ the operator $P_{k, 0}-\lambda: \mathscr{D}_{P}\left(M ; \Omega_{0}^{k}\right) \rightarrow \mathscr{H}\left(M ; \Omega_{0}^{k}\right)$ is Fredholm of index 0 Blank-Keller-Liverani '02, Liverani '04,'05, Baladi '05, Gouëzel-Liverani '06, Baladi-Tsujii '07, Butterley-Liverani '07
- We will use the microlocal/scattering theory approach: Faure-Roy-Sjöstrand '08, Faure-Sjöstrand '11, D-Zworski '16

Spectral interpretation of zeta functions II

- $M=S \Sigma, \operatorname{dim} \Sigma=3, X \in C^{\infty}(M ; T M)$ generates the geodesic flow
- Our operators: $P_{k, 0}=\mathcal{L}_{X}$ acting on $\Omega_{0}^{k}:=\left\{\omega \in \wedge^{k} T^{*} M \mid \iota X \omega=0\right\}$
- For certain anisotropic Sobolev spaces $\mathscr{H}, \mathscr{D}_{P}$ the operator $P_{k, 0}-\lambda: \mathscr{D}_{P}\left(M ; \Omega_{0}^{k}\right) \rightarrow \mathscr{H}\left(M ; \Omega_{0}^{k}\right)$ is Fredholm of index 0 Blank-Keller-Liverani '02, Liverani '04,'05, Baladi '05, Gouëzel-Liverani '06, Baladi-Tsujii '07, Butterley-Liverani '07
- We will use the microlocal/scattering theory approach: Faure-Roy-Sjöstrand '08, Faure-Sjöstrand '11, D-Zworski '16

Spectral interpretation of zeta functions II

- $M=S \Sigma, \operatorname{dim} \Sigma=3, X \in C^{\infty}(M ; T M)$ generates the geodesic flow
- Our operators: $P_{k, 0}=\mathcal{L}_{X}$ acting on $\Omega_{0}^{k}:=\left\{\omega \in \wedge^{k} T^{*} M \mid \iota X \omega=0\right\}$
- For certain anisotropic Sobolev spaces $\mathscr{H}, \mathscr{D}_{P}$ the operator $P_{k, 0}-\lambda: \mathscr{D}_{P}\left(M ; \Omega_{0}^{k}\right) \rightarrow \mathscr{H}\left(M ; \Omega_{0}^{k}\right)$ is Fredholm of index 0
- The poles of $\left(P_{k, 0}-\lambda\right)^{-1}$ are called Pollicott-Ruelle resonances
- Generalized resonant states at $\lambda=0$:

$$
\operatorname{Res}_{0}^{k, \infty}=\left\{u \in \mathscr{D}_{P}\left(M ; \Omega_{0}^{k}\right) \mid \exists \ell: \mathcal{L}_{X}^{\ell} u=0\right\}
$$

- D-Zworski '16, using Hörmander's propagation of singularities, Melrose's radial estimates, and Atiyah-Bott-Guillemin trace formula:

Spectral interpretation of zeta functions II

- $M=S \Sigma, \operatorname{dim} \Sigma=3, X \in C^{\infty}(M ; T M)$ generates the geodesic flow
- Our operators: $P_{k, 0}=\mathcal{L}_{X}$ acting on $\Omega_{0}^{k}:=\left\{\omega \in \wedge^{k} T^{*} M \mid \iota X \omega=0\right\}$
- For certain anisotropic Sobolev spaces $\mathscr{H}, \mathscr{D}_{P}$ the operator $P_{k, 0}-\lambda: \mathscr{D}_{P}\left(M ; \Omega_{0}^{k}\right) \rightarrow \mathscr{H}\left(M ; \Omega_{0}^{k}\right)$ is Fredholm of index 0
- The poles of $\left(P_{k, 0}-\lambda\right)^{-1}$ are called Pollicott-Ruelle resonances
- Generalized resonant states at $\lambda=0$:

$$
\operatorname{Res}_{0}^{k, \infty}=\left\{u \in \mathscr{D}_{P}\left(M ; \Omega_{0}^{k}\right) \mid \exists \ell: \mathcal{L}_{X}^{\ell} u=0\right\}
$$

- D-Zworski '16, using Hörmander's propagation of singularities, Melrose's radial estimates, and Atiyah-Bott-Guillemin trace formula:

$$
m_{\mathrm{R}}(0)=\sum_{k=0}^{4}(-1)^{k} \operatorname{dim} \operatorname{Res}_{0}^{k, \infty}
$$

Resonance multiplicities

Theorem 1 follows from $m_{\mathrm{R}}(0)=\sum_{k=0}^{4}(-1)^{k} \operatorname{dim} \operatorname{Res}_{0}^{k, \infty}$ and
Theorem 2 [Cekić-Delarue-D-Paternain '20]
Let $\left(\Sigma, g_{H}\right)$ be a compact connected oriented hyperbolic 3-manifold. Then the dimensions of $\operatorname{Res}_{0}^{k, \infty}$ are:

k	Hyperbolic	Perturbation
0	1	1
1	$2 b_{1}(\Sigma)$	$b_{1}(\Sigma)$
2	$2 b_{1}(\Sigma)+2$	$b_{1}(\Sigma)+2$
3	$2 b_{1}(\Sigma)$	$b_{1}(\Sigma)$
4	1	1

Resonance multiplicities

Theorem 1 follows from $m_{\mathrm{R}}(0)=\sum_{k=0}^{4}(-1)^{k} \operatorname{dim} \operatorname{Res}_{0}^{k, \infty}$ and
Theorem 2 [Cekić-Delarue-D-Paternain '20]
Let $\left(\Sigma, g_{H}\right)$ be a compact connected oriented hyperbolic 3-manifold. Then the dimensions of $\operatorname{Res}_{0}^{k, \infty}$ are:

k	Hyperbolic	Perturbation
0	1	1
1	$2 b_{1}(\Sigma)$	$b_{1}(\Sigma)$
2	$2 b_{1}(\Sigma)+2$	$b_{1}(\Sigma)+2$
3	$2 b_{1}(\Sigma)$	$b_{1}(\Sigma)$
4	1	1

$(d \alpha)^{j} \wedge: \operatorname{Res}_{0}^{2-j, \infty} \rightarrow \operatorname{Res}_{0}^{2+j, \infty}$ isomorphisms \Rightarrow study $k=0,1,2$

Resonant and coresonant states

- Generalized resonant states:
$\operatorname{Res}_{0}^{k, \infty}=\left\{u \in \mathscr{D}_{P}\left(M ; \Omega_{0}^{k}\right) \mid \exists \ell: \mathcal{L}_{X}^{\ell} u=0\right\}$
- $\mathcal{D}_{E_{\|}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right)=\left\{u \in \mathcal{D}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \operatorname{WF}(u) \subset E_{u}^{*}\right\}$ defined using wavefront set $\mathrm{WF}(u) \subset T^{*} M \backslash 0$
- Resonant states: $\operatorname{Res}_{0}^{k}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \mathcal{L} X u=0\right\}$
- Coresonant states: $\operatorname{Res}_{0 *}^{k}=\left\{u_{*} \in \mathcal{D}_{E_{s}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \mathcal{L}_{X} u_{*}=0\right\}$ $\operatorname{Res}_{0 *}^{k}=\mathcal{J}^{*} \operatorname{Res}_{0}^{k}$ where $\mathcal{J}: M \rightarrow M, \mathcal{J}(x, v)=(x,-v)$
- Pairing: $u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right), u_{*} \in \mathcal{D}_{E_{s}^{*}}^{\prime}\left(M ; \Omega_{0}^{4-k}\right) \mapsto \int_{M} \alpha \wedge u \wedge u_{*}$
- Semisimplicity: $\operatorname{Res}_{0}^{k, \infty}=\operatorname{Res}_{0}^{k}$, equivalent to the pairing being nondegenerate on $\operatorname{Res}_{0}^{k} \times \operatorname{Res}_{0 *}^{4-k}$
- The case $k=0$ is simple: $\operatorname{Res}_{0}^{0, \infty}=\operatorname{Res}_{0}^{0}=\mathbb{R} 1$

Resonant and coresonant states

- Generalized resonant states:
$\operatorname{Res}_{0}^{k, \infty}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \exists \ell: \mathcal{L}_{X}^{\ell} u=0\right\}$
- $\mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right)=\left\{u \in \mathcal{D}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \operatorname{WF}(u) \subset E_{u}^{*}\right\}$ defined using wavefront set $\operatorname{WF}(u) \subset T^{*} M \backslash 0$
- Resonant states: $\operatorname{Res}_{0}^{k}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \mathcal{L} X u=0\right\}$
- Coresonant states: $\operatorname{Res}_{0 *}^{k}=\left\{u_{*} \in \mathcal{D}_{E_{s}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \mathcal{L}_{X} u_{*}=0\right\}$ $\operatorname{Res}_{0 *}^{k}=\mathcal{J}^{*} \operatorname{Res}_{0}^{k}$ where $\mathcal{J}: M \rightarrow M, \mathcal{J}(x, v)=(x,-v)$
- Pairing: $u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right), u_{*} \in \mathcal{D}_{E_{s}^{*}}^{\prime}\left(M ; \Omega_{0}^{4-k}\right) \mapsto \int_{M} \alpha \wedge u \wedge u_{*}$
- Semisimplicity: $\operatorname{Res}_{0}^{k, \infty}=\operatorname{Res}_{0}^{k}$, equivalent to the pairing being nondegenerate on $\operatorname{Res}_{0}^{k} \times \operatorname{Res}_{0 *}^{4-k}$
- The case $k=0$ is simple: $\operatorname{Res}_{0}^{0, \infty}=\operatorname{Res}_{0}^{0}=\mathbb{R} 1$

Resonant and coresonant states

- Generalized resonant states: $\operatorname{Res}_{0}^{k, \infty}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \exists \ell: \mathcal{L}_{X}^{\ell} u=0\right\}$
- $\mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right)=\left\{u \in \mathcal{D}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \operatorname{WF}(u) \subset E_{u}^{*}\right\}$ defined using wavefront set $\mathrm{WF}(u) \subset T^{*} M \backslash 0$
- Resonant states: $\operatorname{Res}_{0}^{k}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \mathcal{L}_{X} u=0\right\}$
- Coresonant states: $\operatorname{Res}_{0 *}^{k}=\mathcal{J}^{*} \operatorname{Res}_{0}^{k}$ where $\mathcal{J}: M \rightarrow M, \mathcal{J}(x, v)=(x,-v)$ - Pairing: $u \in \mathcal{D}_{E_{u}^{\prime}}^{\prime}\left(M \cdot \Omega_{0}^{k}\right)$,
- Semisimplicity: $\operatorname{Res}_{0}^{k, \infty}=\operatorname{Res}_{0}^{k}$, equivalent to the pairing being nondegenerate on $\operatorname{Res}_{0}^{k} \times \operatorname{Res}_{0 *}^{4-k}$
- The case $k=0$ is simple: $\operatorname{Res}_{0}^{0, \infty}=\operatorname{Res}_{0}^{0}=\mathbb{R} 1$

Resonant and coresonant states

- Generalized resonant states:
$\operatorname{Res}_{0}^{k, \infty}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \exists \ell: \mathcal{L}_{X}^{\ell} u=0\right\}$
- $\mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right)=\left\{u \in \mathcal{D}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \operatorname{WF}(u) \subset E_{u}^{*}\right\}$ defined using wavefront set $\operatorname{WF}(u) \subset T^{*} M \backslash 0$
- Resonant states: $\operatorname{Res}_{0}^{k}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \mathcal{L}_{X} u=0\right\}$
- Coresonant states: $\operatorname{Res}_{0 *}^{k}=\left\{u_{*} \in \mathcal{D}_{E_{s}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \mathcal{L}_{X} u_{*}=0\right\}$ $\operatorname{Res}_{0 *}^{k}=\mathcal{J}^{*} \operatorname{Res}_{0}^{k}$ where $\mathcal{J}: M \rightarrow M, \mathcal{J}(x, v)=(x,-v)$
- Semisimplicity: $\operatorname{Res}_{0}^{k, \infty}=\operatorname{Res}_{0}^{k}$, equivalent to the pairing being nondegenerate on $\operatorname{Res}_{0}^{k} \times \operatorname{Res}_{0 *}^{4-k}$
- The case $k=0$ is simple: $\operatorname{Res}_{0}^{0, \infty}=\operatorname{Res}_{0}^{0}=\mathbb{R} 1$

Resonant and coresonant states

- Generalized resonant states:

$$
\operatorname{Res}_{0}^{k, \infty}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \exists \ell: \mathcal{L}_{X}^{\ell} u=0\right\}
$$

- $\mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right)=\left\{u \in \mathcal{D}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \operatorname{WF}(u) \subset E_{u}^{*}\right\}$ defined using wavefront set $\operatorname{WF}(u) \subset T^{*} M \backslash 0$
- Resonant states: $\operatorname{Res}_{0}^{k}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \mathcal{L}_{X} u=0\right\}$
- Coresonant states: $\operatorname{Res}_{0 *}^{k}=\left\{u_{*} \in \mathcal{D}_{E_{s}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \mathcal{L}_{X} u_{*}=0\right\}$ $\operatorname{Res}_{0 *}^{k}=\mathcal{J}^{*} \operatorname{Res}_{0}^{k}$ where $\mathcal{J}: M \rightarrow M, \mathcal{J}(x, v)=(x,-v)$
- Pairing: $u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right), u_{*} \in \mathcal{D}_{E_{s}^{*}}^{\prime}\left(M ; \Omega_{0}^{4-k}\right) \mapsto \int_{M} \alpha \wedge u \wedge u_{*}$
- Semisimplicity: $\operatorname{Res}_{0}^{k, \infty}=\operatorname{Res}_{0}^{k}$, equivalent to the pairing being nondegenerate on $\operatorname{Res}_{0}^{k} \times \operatorname{Res}_{0 *}^{4-k}$

Resonant and coresonant states

- Generalized resonant states:

$$
\operatorname{Res}_{0}^{k, \infty}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \exists \ell: \mathcal{L}_{X}^{\ell} u=0\right\}
$$

- $\mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right)=\left\{u \in \mathcal{D}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \operatorname{WF}(u) \subset E_{u}^{*}\right\}$ defined using wavefront set $\operatorname{WF}(u) \subset T^{*} M \backslash 0$
- Resonant states: $\operatorname{Res}_{0}^{k}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \mathcal{L}_{X} u=0\right\}$
- Coresonant states: $\operatorname{Res}_{0 *}^{k}=\left\{u_{*} \in \mathcal{D}_{E_{s}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \mathcal{L}_{X} u_{*}=0\right\}$ $\operatorname{Res}_{0 *}^{k}=\mathcal{J}^{*} \operatorname{Res}_{0}^{k}$ where $\mathcal{J}: M \rightarrow M, \mathcal{J}(x, v)=(x,-v)$
- Pairing: $u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right), u_{*} \in \mathcal{D}_{E_{s}^{*}}^{\prime}\left(M ; \Omega_{0}^{4-k}\right) \mapsto \int_{M} \alpha \wedge u \wedge u_{*}$
- Semisimplicity: $\operatorname{Res}_{0}^{k, \infty}=\operatorname{Res}_{0}^{k}$, equivalent to the pairing being nondegenerate on $\operatorname{Res}_{0}^{k} \times \operatorname{Res}_{0 *}^{4-k}$

Resonant and coresonant states

- Generalized resonant states:

$$
\operatorname{Res}_{0}^{k, \infty}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \exists \ell: \mathcal{L}_{X}^{\ell} u=0\right\}
$$

- $\mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right)=\left\{u \in \mathcal{D}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \operatorname{WF}(u) \subset E_{u}^{*}\right\}$ defined using wavefront set $\operatorname{WF}(u) \subset T^{*} M \backslash 0$
- Resonant states: $\operatorname{Res}_{0}^{k}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \mathcal{L}_{X} u=0\right\}$
- Coresonant states: $\operatorname{Res}_{0 *}^{k}=\left\{u_{*} \in \mathcal{D}_{E_{s}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \mathcal{L}_{X} u_{*}=0\right\}$ $\operatorname{Res}_{0 *}^{k}=\mathcal{J}^{*} \operatorname{Res}_{0}^{k}$ where $\mathcal{J}: M \rightarrow M, \mathcal{J}(x, v)=(x,-v)$
- Pairing: $u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right), u_{*} \in \mathcal{D}_{E_{s}^{*}}^{\prime}\left(M ; \Omega_{0}^{4-k}\right) \mapsto \int_{M} \alpha \wedge u \wedge u_{*}$
- Semisimplicity: $\operatorname{Res}_{0}^{k, \infty}=\operatorname{Res}_{0}^{k}$, equivalent to the pairing being nondegenerate on $\operatorname{Res}_{0}^{k} \times \operatorname{Res}_{0 *}^{4-k}$
- The case $k=0$ is simple: $\operatorname{Res}_{0}^{0, \infty}=\operatorname{Res}_{0}^{0}=\mathbb{R} 1$

Closed resonant 1-forms

- $\operatorname{Res}_{0}^{k}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{k}\right) \mid \mathcal{L}_{X} u=0\right\}, \quad \mathcal{L}_{X}=d \iota X+\iota_{X} d$
- Closed forms: Res ${ }_{0}^{k} \cap \operatorname{ker} d=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega^{k}\right) \mid \iota x u=0, d u=0\right\}$
- Cohomology map: $\pi_{k}: \operatorname{Res}_{0}^{k} \cap \operatorname{ker} d \rightarrow H^{k}(M ; \mathbb{R}), \quad \pi_{k}(u)=[u]_{H^{k}}$
- π_{k} can be defined because $\mathcal{D}_{E_{*}}^{\prime}$ is closed under $(d \delta+\delta d+1)^{-1}$ $u \in \mathcal{D}_{E_{u}^{*}}^{\prime}, d u \in C^{\infty} \quad \Longrightarrow u=v+d w$ for some $v \in C^{\infty}, w \in \mathcal{D}_{E_{u}^{*}}^{\prime}$

Lemma: π_{1} is an isomorphism

Injectivity: if $u \in \operatorname{Res}_{0}^{1}$ and $u=d f, f \in D_{E_{u}^{*}}^{\prime}(M ; \mathbb{R})$, then
$X f=\iota x u=0$, so $f \in \operatorname{Res}_{0}^{0}=\mathbb{R} 1$ and $u=d f=0$
Surjectivity: if $v \in C^{\infty}\left(M ; \Omega^{1}\right)$ and $d v=0$, then $\int_{M}(\iota X v) d$ vol ${ }_{\alpha}=0$,
so by the Fredholm property there exists $f \in \mathcal{D}_{E_{i, *}^{*}}^{\prime}(M ; \mathbb{R})$ with $X f=\iota_{X} v$ Take $u:=v-d f \in \operatorname{Res}_{0}^{1} \cap \operatorname{ker} d$, then $\pi_{1}(u)=[v]_{H^{1}}$

Closed resonant 1-forms

- $\operatorname{Res}_{0}^{k}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega^{k}\right) \mid \iota_{X} u=0, \iota_{X} d u=0\right\}, \quad \Omega^{k}=\wedge^{k} T^{*} M$
- Closed forms: $\operatorname{Res}_{0}^{k} \cap \operatorname{ker} d=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega^{k}\right) \mid \iota x u=0, d u=0\right\}$
- Cohomology map: $\pi_{k}: \operatorname{Res}_{0}^{k} \cap \operatorname{ker} d \rightarrow H^{k}(M ; \mathbb{R}), \quad \pi_{k}(u)=[u]_{H^{k}}$
- π_{k} can be defined because $\mathcal{D}_{E_{u}}^{\prime}$ is closed under $(d \delta+\delta d+1)^{-1}$ $u \in \mathcal{D}_{E_{u}^{*}}^{\prime}, d u \in C^{\infty} \quad \Longrightarrow u=v+d w$ for some $v \in C^{\infty}, w \in \mathcal{D}_{E_{u *}^{*}}^{\prime}$

Lemma: π_{1} is an isomorphism

Injectivity: if $u \in \operatorname{Res}_{0}^{1}$ and $u=d f, f \in D_{E_{u}^{*}}^{\prime}(M ; \mathbb{R})$, then
$X f=\iota x u=0$, so $f \in \operatorname{Res}_{0}^{0}=\mathbb{R} 1$ and $u=d f=0$
Surjectivity: if $v \in C^{\infty}\left(M ; \Omega^{1}\right)$ and $d v=0$, then $\int_{M}(\iota \times v) d$ vol ${ }_{\alpha}=0$,
so by the Fredholm property there exists $f \in \mathcal{D}_{E_{i,(}^{*}}^{\prime}(M ; \mathbb{R})$ with $X f=\iota_{X} v$ Take $u:=v-d f \in \operatorname{Res}_{0}^{1} \cap \operatorname{ker} d$, then $\pi_{1}(u)=[v]_{H^{1}}$

Closed resonant 1-forms

- $\operatorname{Res}_{0}^{k}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega^{k}\right) \mid \iota_{X} u=0, \iota_{X} d u=0\right\}, \quad \Omega^{k}=\wedge^{k} T^{*} M$
- Closed forms: $\operatorname{Res}_{0}^{k} \cap \operatorname{ker} d=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega^{k}\right) \mid \iota_{X} u=0, d u=0\right\}$
\square $\operatorname{Res}_{0}^{k} \cap \operatorname{ker} d \rightarrow H^{k}(M ; \mathbb{R})$, $\pi_{k}(u)=[u]_{H^{k}}$ - π_{k} can be defined because $\mathcal{D}_{E_{u}^{*}}^{\prime}$ is closed under $(d \delta+\delta d+1)^{-1}$ $u \in \mathcal{D}_{E_{i}^{*}}^{\prime}, d u \in C^{\infty} \quad \Longrightarrow u=v+d w$ for some $v \in C^{\infty}, w \in \mathcal{D}_{E_{u}}$ Lemma: π_{1} is an isomorphism Injectivity: if $u \in \operatorname{Res}_{0}^{1}$ and $u=d f, f \in D_{E_{\|}^{*}}^{\prime}(M ; \mathbb{R})$, then $X f=\iota x u=0$, so $f \in \operatorname{Res}_{0}^{0}=\mathbb{R} 1$ and $u=d f=0$
\square so by the Fredholm property there exists $f \in \mathcal{D}_{E_{*}^{*}}^{\prime}(M ; \mathbb{R})$ with $X f=\iota_{X} v$ Take $u:=v-d f \in \operatorname{Res}_{0}^{1} \cap \operatorname{ker} d$, then $\pi_{1}(u)=[v]_{H^{1}}$

Closed resonant 1-forms

- $\operatorname{Res}_{0}^{k}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega^{k}\right) \mid \iota_{X} u=0, \iota_{X} d u=0\right\}, \quad \Omega^{k}=\wedge^{k} T^{*} M$
- Closed forms: $\operatorname{Res}_{0}^{k} \cap \operatorname{ker} d=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega^{k}\right) \mid \iota X u=0, d u=0\right\}$
- Cohomology map: $\pi_{k}: \operatorname{Res}_{0}^{k} \cap \operatorname{ker} d \rightarrow H^{k}(M ; \mathbb{R}), \quad \pi_{k}(u)=[u]_{H^{k}}$
- π_{k} can be defined because $\mathcal{D}_{E_{u}^{*}}^{\prime}$ is closed under $(d \delta+\delta d+1)^{-1}$: $u \in \mathcal{D}_{E_{u}^{*}}^{\prime}, d u \in C^{\infty} \quad \Longrightarrow u=v+d w$ for some $v \in C^{\infty}, w \in \mathcal{D}_{E_{u}^{*}}^{\prime}$

Closed resonant 1-forms

- $\operatorname{Res}_{0}^{k}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega^{k}\right) \mid \iota x u=0, \iota_{X} d u=0\right\}, \quad \Omega^{k}=\wedge^{k} T^{*} M$
- Closed forms: $\operatorname{Res}_{0}^{k} \cap \operatorname{ker} d=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega^{k}\right) \mid \iota X u=0\right.$, $\left.d u=0\right\}$
- Cohomology map: $\pi_{k}: \operatorname{Res}_{0}^{k} \cap \operatorname{ker} d \rightarrow H^{k}(M ; \mathbb{R}), \quad \pi_{k}(u)=[u]_{H^{k}}$
- π_{k} can be defined because $\mathcal{D}_{E_{u}^{*}}^{\prime}$ is closed under $(d \delta+\delta d+1)^{-1}$: $u \in \mathcal{D}_{E_{u}^{*}}^{\prime}, d u \in C^{\infty} \quad \Longrightarrow u=v+d w$ for some $v \in C^{\infty}, w \in \mathcal{D}_{E_{u}^{*}}^{\prime}$

Lemma: π_{1} is an isomorphism

Injectivity: if $u \in \operatorname{Res}_{0}^{1}$ and $u=d f, f \in \mathcal{D}_{E_{u}^{*}}^{\prime}(M ; \mathbb{R})$, then
$X f=\iota_{X} u=0$, so $f \in \operatorname{Res}_{0}^{0}=\mathbb{R} 1$ and $u=d f=0$

Closed resonant 1-forms

- $\operatorname{Res}_{0}^{k}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega^{k}\right) \mid \iota_{X} u=0, \iota_{X} d u=0\right\}, \quad \Omega^{k}=\wedge^{k} T^{*} M$
- Closed forms: $\operatorname{Res}_{0}^{k} \cap \operatorname{ker} d=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega^{k}\right) \mid \iota_{X} u=0, d u=0\right\}$
- Cohomology map: $\pi_{k}: \operatorname{Res}_{0}^{k} \cap \operatorname{ker} d \rightarrow H^{k}(M ; \mathbb{R}), \quad \pi_{k}(u)=[u]_{H^{k}}$
- π_{k} can be defined because $\mathcal{D}_{E_{u}^{*}}^{\prime}$ is closed under $(d \delta+\delta d+1)^{-1}$: $u \in \mathcal{D}_{E_{u}^{*}}^{\prime}, d u \in C^{\infty} \quad \Longrightarrow \quad u=v+d w$ for some $v \in C^{\infty}, w \in \mathcal{D}_{E_{u}^{*}}^{\prime}$

Lemma: π_{1} is an isomorphism

Injectivity: if $u \in \operatorname{Res}_{0}^{1}$ and $u=d f, f \in \mathcal{D}_{E_{u}^{*}}^{\prime}(M ; \mathbb{R})$, then
$X f=\iota_{X} u=0$, so $f \in \operatorname{Res}_{0}^{0}=\mathbb{R} 1$ and $u=d f=0$
Surjectivity: if $v \in C^{\infty}\left(M ; \Omega^{1}\right)$ and $d v=0$, then $\int_{M}\left(\iota_{X} v\right) d \mathrm{vol}_{\alpha}=0$, so by the Fredholm property there exists $f \in \mathcal{D}_{E_{u}^{*}}^{\prime}(M ; \mathbb{R})$ with $X f=\iota_{X} v$.
Take $u:=v-d f \in \operatorname{Res}_{0}^{1} \cap \operatorname{ker} d$, then $\pi_{1}(u)=[v]_{H^{1}}$

Resonant forms, hyperbolic case

- We know that $\mathcal{C}:=\operatorname{Res}{ }_{0}^{1} \cap$ ker d has dimension $b_{1}(M)=b_{1}(\Sigma)$
- We show every $u \in \operatorname{Res}_{0}^{1}$ is a section of $E_{u}^{*}=\left(E_{0} \oplus E_{u}\right)^{\perp} \subset \Omega_{0}^{1}$
- The $\frac{\pi}{2}$-rotation $\mathcal{I}: E_{u}^{*} \rightarrow E_{u}^{*}$ commutes with \mathcal{L}_{X} because the flow $\varphi_{t}=e^{t X}$ is conformal on $E_{u}^{*}: \quad\left|d \varphi_{t}(\rho)^{-T} \xi\right|=e^{t}|\xi|, \xi \in E_{u}^{*}(\rho)$
- Thus I acts on $\operatorname{Res}_{0}^{1}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{1}\right) \mid \mathcal{L}_{X} u=0\right\}$
- If $u \in \mathcal{C} \backslash\{0\}$ then $d \mathcal{I}(u) \neq 0$: express $[d \alpha \wedge \mathcal{I}(u)]_{H^{3}}$ via $\pi_{1}(u)$
- We show that $\operatorname{Res}_{0}^{1}=C \oplus \mathcal{I}(C)$ is $2 b_{1}(\Sigma)$-dimensional and semisimplicity holds for $k=1$, so $\operatorname{dim} \operatorname{Res}_{0}^{1, \infty}=2 b_{1}(\Sigma)$
- We also show that $\operatorname{Res}_{0}^{2}=\operatorname{Res}_{0}^{2} \cap \operatorname{ker} d=\mathbb{R} d \alpha \oplus \mathbb{R} \psi \oplus d \operatorname{Res}_{0}^{1}$ is ($\left.b_{1}(\Sigma)+2\right)$-dimensional where ψ is an explicit smooth 2-form
- We finally show $\operatorname{dim} \operatorname{Res}_{0}^{2, \infty}=2 b_{1}(\Sigma)+2$: get $b_{1}(\Sigma)$ Jordan blocks

Resonant forms, hyperbolic case

- We know that $\mathcal{C}:=\operatorname{Res}{ }_{0}^{1} \cap \operatorname{ker} d$ has dimension $b_{1}(M)=b_{1}(\Sigma)$
- We show every $u \in \operatorname{Res}_{0}^{1}$ is a section of $E_{u}^{*}=\left(E_{0} \oplus E_{u}\right)^{\perp} \subset \Omega_{0}^{1}$
- The $\frac{\pi}{2}$-rotation $\mathcal{I}: E_{u}^{*} \rightarrow E_{u}^{*}$ commutes with \mathcal{L}_{X} because the flow $\varphi_{t}=e^{t X}$ is conformal on $E_{u}^{*}: \quad\left|d \varphi_{t}(\rho)^{-T} \xi\right|=e^{t}|\xi|, \xi \in E_{u}^{*}(\rho)$
- Thus \mathcal{I} acts on $\operatorname{Res}_{0}^{1}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{1}\right) \mid \mathcal{L}_{X} u=0\right\}$
- We show that $\operatorname{Res}_{0}^{1}=\mathcal{C} \oplus \mathcal{I}(\mathcal{C})$ is $2 b_{1}(\Sigma)$-dimensional and semisimplicity holds for $k=1$, so $\operatorname{dim} \operatorname{Res}_{0}^{1, \infty}=2 b_{1}(\Sigma)$
- We also show that $\operatorname{Res}_{0}^{2}=\operatorname{Res}_{0}^{2} \cap \operatorname{ker} d=\mathbb{R} d \alpha \oplus \mathbb{R} \psi \oplus d \operatorname{Res}_{0}^{1}$ is ($\left.b_{1}(\Sigma)+2\right)$-dimensional where ψ is an explicit smooth 2-form
\square

Resonant forms, hyperbolic case

- We know that $\mathcal{C}:=\operatorname{Res}{ }_{0}^{1} \cap \operatorname{ker} d$ has dimension $b_{1}(M)=b_{1}(\Sigma)$
- We show every $u \in \operatorname{Res}_{0}^{1}$ is a section of $E_{u}^{*}=\left(E_{0} \oplus E_{u}\right)^{\perp} \subset \Omega_{0}^{1}$
- The $\frac{\pi}{2}$-rotation $\mathcal{I}: E_{u}^{*} \rightarrow E_{u}^{*}$ commutes with \mathcal{L}_{X} because the flow $\varphi_{t}=e^{t X}$ is conformal on $E_{u}^{*}: \quad\left|d \varphi_{t}(\rho)^{-T} \xi\right|=e^{t}|\xi|, \xi \in E_{u}^{*}(\rho)$
- Thus \mathcal{I} acts on $\operatorname{Res}_{0}^{1}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{1}\right) \mid \mathcal{L}_{X} u=0\right\}$
- If $u \in \mathcal{C} \backslash\{0\}$ then $d \mathcal{I}(u) \neq 0$: express $[d \alpha \wedge \mathcal{I}(u)]_{H^{3}}$ via $\pi_{1}(u)$
- We show that $\operatorname{Res}_{0}^{1}=\mathcal{C} \oplus \mathcal{I}(\mathcal{C})$ is $2 b_{1}(\Sigma)$-dimensional and semisimplicity holds for $k=1$, so $\operatorname{dim} \operatorname{Res}_{0}^{1, \infty}=2 b_{1}(\Sigma)$
- We also show that $\operatorname{Res}_{0}^{2}=\operatorname{Res}_{0}^{2} \cap \operatorname{ker} d=\mathbb{R} d a \oplus \mathbb{R} \psi \oplus d \operatorname{Res}_{0}^{1}$ is $\left(b_{1}(\Sigma)+2\right)$-dimensional where ψ is an explicit smooth 2 -form
\square

Resonant forms, hyperbolic case

- We know that $\mathcal{C}:=\operatorname{Res}{ }_{0}^{1} \cap$ ker d has dimension $b_{1}(M)=b_{1}(\Sigma)$
- We show every $u \in \operatorname{Res}{ }_{0}^{1}$ is a section of $E_{u}^{*}=\left(E_{0} \oplus E_{u}\right)^{\perp} \subset \Omega_{0}^{1}$
- The $\frac{\pi}{2}$-rotation $\mathcal{I}: E_{u}^{*} \rightarrow E_{u}^{*}$ commutes with \mathcal{L}_{X} because the flow $\varphi_{t}=e^{t X}$ is conformal on $E_{u}^{*}: \quad\left|d \varphi_{t}(\rho)^{-T} \xi\right|=e^{t}|\xi|, \xi \in E_{u}^{*}(\rho)$
- Thus \mathcal{I} acts on $\operatorname{Res}_{0}^{1}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{1}\right) \mid \mathcal{L}_{X} u=0\right\}$
- If $u \in \mathcal{C} \backslash\{0\}$ then $d \mathcal{I}(u) \neq 0$: express $[d \alpha \wedge \mathcal{I}(u)]_{H^{3}}$ via $\pi_{1}(u)$
- We show that $\operatorname{Res}^{1}=\mathcal{C} \oplus \mathcal{I}(\mathcal{C})$ is $2 b_{1}(\Sigma)$-dimensional and semisimplicity holds for $k=1$, so $\operatorname{dim} \operatorname{Res}_{0}^{1, \infty}=2 b_{1}(\Sigma)$
$\left(b_{1}(\Sigma)+2\right)$-dimensional where ψ is an explicit smooth 2-form

Resonant forms, hyperbolic case

- We know that $\mathcal{C}:=\operatorname{Res}{ }_{0}^{1} \cap$ ker d has dimension $b_{1}(M)=b_{1}(\Sigma)$
- We show every $u \in \operatorname{Res}_{0}^{1}$ is a section of $E_{u}^{*}=\left(E_{0} \oplus E_{u}\right)^{\perp} \subset \Omega_{0}^{1}$
- The $\frac{\pi}{2}$-rotation $\mathcal{I}: E_{u}^{*} \rightarrow E_{u}^{*}$ commutes with \mathcal{L}_{X} because the flow $\varphi_{t}=e^{t X}$ is conformal on $E_{u}^{*}: \quad\left|d \varphi_{t}(\rho)^{-T} \xi\right|=e^{t}|\xi|, \xi \in E_{u}^{*}(\rho)$
- Thus \mathcal{I} acts on $\operatorname{Res}_{0}^{1}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{1}\right) \mid \mathcal{L}_{X} u=0\right\}$
- If $u \in \mathcal{C} \backslash\{0\}$ then $d \mathcal{I}(u) \neq 0$: express $[d \alpha \wedge \mathcal{I}(u)]_{H^{3}}$ via $\pi_{1}(u)$
- We show that $\operatorname{Res}^{1}=\mathcal{C} \oplus \mathcal{I}(\mathcal{C})$ is $2 b_{1}(\Sigma)$-dimensional and semisimplicity holds for $k=1$, so $\operatorname{dim} \operatorname{Res}_{0}^{1, \infty}=2 b_{1}(\Sigma)$
- We also show that $\operatorname{Res}_{0}^{2}=\operatorname{Res}_{0}^{2} \cap \operatorname{ker} d=\mathbb{R} d \alpha \oplus \mathbb{R} \psi \oplus d \operatorname{Res}{ }_{0}^{1}$ is ($\left.b_{1}(\Sigma)+2\right)$-dimensional where ψ is an explicit smooth 2 -form

Resonant forms, hyperbolic case

- We know that $\mathcal{C}:=\operatorname{Res}{ }_{0}^{1} \cap$ ker d has dimension $b_{1}(M)=b_{1}(\Sigma)$
- We show every $u \in \operatorname{Res}_{0}^{1}$ is a section of $E_{u}^{*}=\left(E_{0} \oplus E_{u}\right)^{\perp} \subset \Omega_{0}^{1}$
- The $\frac{\pi}{2}$-rotation $\mathcal{I}: E_{u}^{*} \rightarrow E_{u}^{*}$ commutes with \mathcal{L}_{X} because the flow $\varphi_{t}=e^{t X}$ is conformal on $E_{u}^{*}: \quad\left|d \varphi_{t}(\rho)^{-T} \xi\right|=e^{t}|\xi|, \xi \in E_{u}^{*}(\rho)$
- Thus \mathcal{I} acts on $\operatorname{Res}_{0}^{1}=\left\{u \in \mathcal{D}_{E_{u}^{*}}^{\prime}\left(M ; \Omega_{0}^{1}\right) \mid \mathcal{L}_{X} u=0\right\}$
- If $u \in \mathcal{C} \backslash\{0\}$ then $d \mathcal{I}(u) \neq 0$: express $[d \alpha \wedge \mathcal{I}(u)]_{H^{3}}$ via $\pi_{1}(u)$
- We show that $\operatorname{Res}^{1}=\mathcal{C} \oplus \mathcal{I}(\mathcal{C})$ is $2 b_{1}(\Sigma)$-dimensional and semisimplicity holds for $k=1$, so $\operatorname{dim} \operatorname{Res}_{0}^{1, \infty}=2 b_{1}(\Sigma)$
- We also show that $\operatorname{Res}_{0}^{2}=\operatorname{Res}_{0}^{2} \cap \operatorname{ker} d=\mathbb{R} d \alpha \oplus \mathbb{R} \psi \oplus d \operatorname{Res}{ }_{0}^{1}$ is ($b_{1}(\Sigma)+2$)-dimensional where ψ is an explicit smooth 2-form
- We finally show $\operatorname{dim} \operatorname{Res}_{0}^{2, \infty}=2 b_{1}(\Sigma)+2$: get $b_{1}(\Sigma)$ Jordan blocks

Resonant forms for perturbations

- Consider now the perturbed metric $g_{\tau}=e^{\tau a} g_{H}, a \in C^{\infty}(\Sigma ; \mathbb{R})$
- Define $\pi_{\Sigma}: M=S \Sigma \rightarrow \Sigma ; \mathcal{J}: M \rightarrow M, \mathcal{J}(x, v)=(x,-v)$
- We still have $\operatorname{dim}\left(\operatorname{Res}_{0}^{1} \cap \operatorname{ker} d\right)=b_{1}(\Sigma)$, need to show that all non-closed elements of $\operatorname{Res}_{0}^{1}$ are moved by the perturbation
- A first variation calculation shows that we need nondegeneracy of

- Take for simplicity $b_{1}(\Sigma)=1$, then enough to show

Resonant forms for perturbations

- Consider now the perturbed metric $g_{\tau}=e^{\tau a} g_{H}, a \in C^{\infty}(\Sigma ; \mathbb{R})$
- Define $\pi_{\Sigma}: M=S \Sigma \rightarrow \Sigma ; \quad \mathcal{J}: M \rightarrow M, \mathcal{J}(x, v)=(x,-v)$
- We still have $\operatorname{dim}\left(\operatorname{Res}_{0}^{1} \cap \operatorname{ker} d\right)=b_{1}(\Sigma)$, need to show that all non-closed elements of $\operatorname{Res}_{0}^{1}$ are moved by the perturbation
- A first variation calculation shows that we need nondegeneracy of

$$
d u \in d\left(\operatorname{Res}_{0}^{1}\right), \quad d u_{*} \in d\left(\operatorname{Res}_{0 *}^{1}\right) \quad \mapsto \quad \int_{M}\left(\pi_{\Sigma}^{*} a\right) \alpha \wedge d u \wedge d u_{*}
$$

- Take for simplicity $b_{1}(\Sigma)=1$, then enough to show

$$
u \in \operatorname{Res}_{0}^{1}, \quad d u \neq 0 \quad \Longrightarrow \quad \int_{M}\left(\pi_{\Sigma}^{*} a\right) \alpha \wedge d u \wedge \mathcal{J}^{*}(d u) \neq 0
$$

Resonant forms for perturbations

- Consider now the perturbed metric $g_{\tau}=e^{\tau a} g_{H}, a \in C^{\infty}(\Sigma ; \mathbb{R})$
- Define $\pi_{\Sigma}: M=S \Sigma \rightarrow \Sigma ; \quad \mathcal{J}: M \rightarrow M, \mathcal{J}(x, v)=(x,-v)$
- We still have $\operatorname{dim}\left(\operatorname{Res}_{0}^{1} \cap \operatorname{ker} d\right)=b_{1}(\Sigma)$, need to show that all non-closed elements of $\operatorname{Res}_{0}^{1}$ are moved by the perturbation
- A first variation calculation shows that we need nondegeneracy of

$$
d u \in d\left(\operatorname{Res}_{0}^{1}\right), \quad d u_{*} \in d\left(\operatorname{Res}_{0 *}^{1}\right) \quad \mapsto \quad \int_{M}\left(\pi_{\Sigma}^{*} a\right) \alpha \wedge d u \wedge d u_{*}
$$

- Take for simplicity $b_{1}(\Sigma)=1$, then enough to show

$$
u \in \operatorname{Res}_{0}^{1}, \quad d u \neq 0 \quad \Longrightarrow \quad \int_{M}\left(\pi_{\Sigma}^{*} a\right) \alpha \wedge d u \wedge \mathcal{J}^{*}(d u) \neq 0
$$

- That's true for generic a as long as $\pi_{\Sigma *}\left(\alpha \wedge d u \wedge \mathcal{J}^{*}(d u)\right) \neq 0$ where $\pi_{\Sigma *}: \mathcal{D}^{\prime}\left(M ; \Omega^{k}\right) \rightarrow \mathcal{D}^{\prime}\left(\Sigma ; \Omega^{k-2}\right)$ is the pushforward on forms

Nontriviality of first variation

- Working only with the hyperbolic metric now
- Given $u \in \operatorname{Res}_{0}^{1}, d u \neq 0$, need $\pi_{\Sigma *}\left(\alpha \wedge d u \wedge \mathcal{J}^{*}(d u)\right) \neq 0$
- Write $\pi_{\Sigma *}\left(\alpha \wedge d u \wedge \mathcal{J}^{*}(d u)\right)=F d$ vol $_{g}$ for some $F \in \mathcal{D}^{\prime}(\Sigma ; \mathbb{R})$
- Difficult to show that $F \neq 0$ because cannot evaluate F at points

Nontriviality of first variation

- Working only with the hyperbolic metric now
- Given $u \in \operatorname{Res}{ }_{0}^{1}, d u \neq 0$, need $\pi_{\Sigma *}\left(\alpha \wedge d u \wedge \mathcal{J}^{*}(d u)\right) \neq 0$
- Write $\pi_{\Sigma *}\left(\alpha \wedge d u \wedge \mathcal{J}^{*}(d u)\right)=F d$ volg for some $F \in \mathcal{D}^{\prime}(\Sigma ; \mathbb{R})$
- Difficult to show that $F \neq 0$ because cannot evaluate F at points

Main identity

We have $Q_{4} F=-\frac{1}{6} \Delta_{g}|\sigma|_{g}^{2}$ where

- $\sigma=\pi_{\Sigma *}(\alpha \wedge d u)$ is a nonzero harmonic 1-form on Σ
- $Q_{4} f(x)=\int_{\mathbb{H}^{3}} \cosh ^{-4} d_{\mathbb{H}^{3}}(x, y) f(y) d$ vol $_{g}(y)$ descends to $Q_{4}: \mathcal{D}^{\prime}(\Sigma) \rightarrow C^{\infty}(\Sigma)$ where $\Sigma=\Gamma \backslash \mathbb{H}^{3}$

Nontriviality of first variation

- Working only with the hyperbolic metric now
- Given $u \in \operatorname{Res}_{0}^{1}, d u \neq 0$, need $\pi_{\Sigma *}\left(\alpha \wedge d u \wedge \mathcal{J}^{*}(d u)\right) \neq 0$
- Write $\pi_{\Sigma *}\left(\alpha \wedge d u \wedge \mathcal{J}^{*}(d u)\right)=F d$ volg for some $F \in \mathcal{D}^{\prime}(\Sigma ; \mathbb{R})$
- Difficult to show that $F \neq 0$ because cannot evaluate F at points

Main identity

We have $Q_{4} F=-\frac{1}{6} \Delta_{g}|\sigma|_{g}^{2}$ where

- $\sigma=\pi_{\Sigma *}(\alpha \wedge d u)$ is a nonzero harmonic 1-form on Σ
- $Q_{4} f(x)=\int_{\mathbb{H}^{3}} \cosh ^{-4} d_{\mathbb{H}^{3}}(x, y) f(y) d$ vol $_{g}(y)$ descends to $Q_{4}: \mathcal{D}^{\prime}(\Sigma) \rightarrow C^{\infty}(\Sigma)$ where $\Sigma=\Gamma \backslash \mathbb{H}^{3}$
- If $F=0$, then $\Delta_{g}|\sigma|_{g}^{2}=0$, so $|\sigma|_{g}$ is constant, but this is impossible!

Two conjectures

Conjecture 1

Let (Σ, g) be a generic negatively curved compact connected oriented 3 -manifold. Then:

- semisimplicity holds and $d\left(\operatorname{Res}_{0}^{k}\right)=0$ for all $k=0, \ldots, 4$
- $\operatorname{dim} \operatorname{Res}_{0}^{0}=1, \operatorname{dim} \operatorname{Res}_{0}^{1}=b_{1}(\Sigma), \operatorname{dim} \operatorname{Res}_{0}^{2}=b_{1}(\Sigma)+2$
- $m_{\mathrm{R}}(0)=4-b_{1}(\Sigma)$

The set of g satisfying Conjecture 1 is open: $\operatorname{dim} \operatorname{Res}_{0}^{1, \infty} \leq b_{1}(\Sigma), \operatorname{dim} \operatorname{Res}_{0}^{2, \infty} \leq b_{1}(\Sigma)+2 \Longrightarrow$ Conjecture 1 holds Let $\rho: \pi_{1}(\Sigma) \rightarrow \mathrm{U}(m)$ be acyclic: $H_{\rho}^{\circ}(\Sigma ; \mathbb{R})=0$. Then $\operatorname{Res}_{0}^{k}=0$ for all k

DGRS '20 $\Longrightarrow \zeta_{\rho}(0)$ is locally constant under perturbations of ρ, g, which could lead to a solution of Fried's conjecture

Two conjectures

Conjecture 1

Let (Σ, g) be a generic negatively curved compact connected oriented 3 -manifold. Then:

- semisimplicity holds and $d\left(\operatorname{Res}_{0}^{k}\right)=0$ for all $k=0, \ldots, 4$
- $\operatorname{dim} \operatorname{Res}_{0}^{0}=1$, $\operatorname{dim} \operatorname{Res}_{0}^{1}=b_{1}(\Sigma), \operatorname{dim} \operatorname{Res}_{0}^{2}=b_{1}(\Sigma)+2$
- $m_{\mathrm{R}}(0)=4-b_{1}(\Sigma)$

The set of g satisfying Conjecture 1 is open:
$\operatorname{dim} \operatorname{Res}_{0}^{1, \infty} \leq b_{1}(\Sigma), \operatorname{dim} \operatorname{Res}_{0}^{2, \infty} \leq b_{1}(\Sigma)+2 \Longrightarrow$ Conjecture 1 holds

Conjecture 2

Let $\rho: \pi_{1}(\Sigma) \rightarrow \mathrm{U}(m)$ be acyclic: $H_{\rho}^{\bullet}(\Sigma ; \mathbb{R})=0$. Then $\operatorname{Res}_{0}^{k}=0$ for all k
Conjecture $2+$ DGRS '20 $\Longrightarrow \quad \zeta_{\rho}(0)$ is locally constant under perturbations of ρ, g, which could lead to a solution of Fried's conjecture

Thank you for your attention!

