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Overview

e Studying mgr(0): order of vanishing at 0 of the Ruelle zeta function
for the geodesic flow on a negatively curved 3-manifold (X, g)

e g = gy hyperbolic = mp(0) =4 —2b;(X) [Fried '86]
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Overview

e Studying mgr(0): order of vanishing at 0 of the Ruelle zeta function
for the geodesic flow on a negatively curved 3-manifold (X, g)

e g = gy hyperbolic = mp(0) =4 —2b;(X) [Fried '86]

@ g = generic perturbation of gy = mp(0) =4 — bi(X)
[Ceki¢—Delarue-D—Paternain '20]

@ This is in contrast with the case dim¥X = 2 where mp(0) = b1(X) — 2
for all negatively curved (X,g) [D-Zworski '17]

o Motivated by Fried's conjecture '87 relating the values at 0 of twisted
dynamical zeta functions to analytic torsion
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Background

Geodesic and contact flows

e (X, g) a compact connected oriented Riemannian n-dim manifold

@ M = SX the sphere bundle of (¥, g), 7y : M — ¥ projection map

(x,)(§) = (v, dms(x, v)§)g canonical 1-form on M
@ a is a contact form: dvol, := a A (da)"! is nonvanishing

Geodesic flow: ¢; = eX : M — M where X € C>(M; TM) given by

txa =1, txda =0
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@ a is a contact form: dvol, := a A (da)"! is nonvanishing
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@ g has negative sectional curvature = ¢ is Anosov:
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Background

Geodesic and contact flows

e (X, g) a compact connected oriented Riemannian n-dim manifold

@ M = SX the sphere bundle of (¥, g), 7y : M — ¥ projection map

(x,)(§) = (v, dms(x, v)§)g canonical 1-form on M
@ a is a contact form: dvol, := a A (da)"! is nonvanishing

Geodesic flow: ¢; = eX : M — M where X € C>(M; TM) given by

txa =1, txda =0

@ g has negative sectional curvature = ¢ is Anosov:
TM = Ey & E, & Eg, Ey = RX,
3C,0>0:  |[do—lg,ll, |dpele ] < Ce™®, t>0

o Define E} := (Ey® E,)*, E} :=(Ey® Es)* subsets of T*M
AN



Background

Ruelle zeta function

Define the Ruelle zeta function

N =]J1-e?™), Rea>1
gl
where the product is over all primitive closed geodesics « of periods T,
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Background

Ruelle zeta function

Define the Ruelle zeta function
N =]J1-e?™), Rea>1
gl
where the product is over all primitive closed geodesics « of periods T,
@ The function (g(A) continues meromorphically to A € C
[Giulietti-Liverani-Pollicott '13, D-Zworski '16]

Conjectured by Smale '67; partial progress by
Ruelle '76, Parry—Pollicott '90, Rugh '96, Fried '95
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Background

Ruelle zeta function

Define the Ruelle zeta function
N =]J1-e?™), Rea>1
2t
where the product is over all primitive closed geodesics « of periods T,

@ The function (g(A) continues meromorphically to A € C
[Giulietti-Liverani—Pollicott '13, D—Zworski '16]
Conjectured by Smale '67; partial progress by
Ruelle '76, Parry—Pollicott '90, Rugh '96, Fried '95

@ Define the vanishing order mg(0) € Z:

AR ¢R(A)  holomorphic and nonvanishing at A =0
Question

Can we describe mg(0) in terms of topological invariants of X, such as the
Betti numbers by (X) = dim H*(Z; R)?
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Previous work |
@ More general zeta functions (,(\) twisted by a representation

p:m(X) — U(m); (g corresponds to the trivial p : m1(X) — U(1)
e pis called acyclic if HF’,‘(Z;R) =0 for all k
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Background

Previous work |

@ More general zeta functions (,(\) twisted by a representation
p:7m1(X) — U(m); (g corresponds to the trivial p : m1(X) — U(1)

@ pis called acyclic if HZ;(Z;]R) =0 for all k

o Fried '86 studied the hyperbolic case (curvature = —1):

o [BD-2  dimz=2
m =
" 4-2b(X), dim¥=3

For p acyclic, he computed m,(0) = 0 and (,(0) = T/f where T, is

the analytic torsion. Fried's conjecture: same formula for ¢,(0) holds
for general locally homogeneous (¥, g)
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Background

Previous work |

@ More general zeta functions (,(\) twisted by a representation
p:7m1(X) — U(m); (g corresponds to the trivial p : m1(X) — U(1)

@ pis called acyclic if HZ;(Z;]R) =0 for all k

o Fried '86 studied the hyperbolic case (curvature = —1):

o [BD-2  dimz=2
m =
" 4-2b(X), dim¥=3

For p acyclic, he computed m,(0) = 0 and (,(0) = T/f where T, is
the analytic torsion. Fried's conjecture: same formula for ¢,(0) holds
for general locally homogeneous (¥, g)

@ Fried's conjecture proved for locally symmetric spaces by Shen '16,
following Moscovici-Stanton '91, Bismut '11

@ All the above use Selberg trace formulas + representation theory
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Background

Previous work 11

What happens for general (not locally symmetric) negatively curved X7

o D-Zworski '17: mp(0) = b1(X) — 2 when dim X = 2;
applies to general contact Anosov flows in dimension 3
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What happens for general (not locally symmetric) negatively curved X7
e D—Zworski '17: mg(0) = b1(X) — 2 when dim X = 2;
applies to general contact Anosov flows in dimension 3

@ Extended to surfaces with boundary by Hadfield '18,
to the nonorientable case by Borns-Weil-Shen 20

o Ceki¢—Paternain '19: studied mg(0) for general volume preserving
Anosov flows on a 3-manifold M and showed it depends on the
properties of the flow, not just on the topology of M

Semyon Dyatlov Ruelle zeta at 0 in 3D Nov 8, 2022

6/17



Background

Previous work 11

What happens for general (not locally symmetric) negatively curved X7

e D—Zworski '17: mg(0) = b1(X) — 2 when dim X = 2;
applies to general contact Anosov flows in dimension 3

@ Extended to surfaces with boundary by Hadfield '18,
to the nonorientable case by Borns-Weil-Shen 20

o Ceki¢—Paternain '19: studied mg(0) for general volume preserving
Anosov flows on a 3-manifold M and showed it depends on the
properties of the flow, not just on the topology of M

e Dang—Guillarmou—Riviére-Shen "20 proved Fried's conjecture on (,(0)
when X is any nearly hyperbolic 3-manifold

@ Related works: Dang—Riviére '17, Chaubet—-Dang '19,
Kiister-Weich '20
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Statement of the result

Theorem 1 [Ceki¢—Delarue-D—Paternain '20]
Let (X, gn) be a compact connected oriented hyperbolic 3-manifold. Then:
1. If g = gy then mg(0) = 4 — 2b;(X)

2. If g is a generic conformal perturbation of gy then mg(0) =4 — b1(X)

Here generic conformal perturbation is understood as follows:

there exists an open dense & C C*°(X; R) such that
for any a € O there exists £ > 0 such that for all 7 € (—¢,¢) \ {0}
the metric g = e"?gy has mp(0) = 4 — b1(X)
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Statement of the result

Theorem 1 [Ceki¢—Delarue-D—Paternain '20]
Let (X, gn) be a compact connected oriented hyperbolic 3-manifold. Then:
1. If g = gy then mg(0) = 4 — 2b;(X)

2. If g is a generic conformal perturbation of gy then mg(0) =4 — b1(X)

Here generic conformal perturbation is understood as follows:

there exists an open dense & C C*°(X; R) such that
for any a € O there exists £ > 0 such that for all 7 € (—¢,¢) \ {0}
the metric g = e"?gy has mp(0) = 4 — b1(X)

@ First result on instability of mg(0) under metric perturbations

@ Our proof of part 1 is different from [Fried '86],
using geometric rather than algebraic techniques
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Spectral interpretation of zeta functions |

o General idea: “((\) = det(A — P)" for some operator P

e This should be understood as 0y log () = tr(A — P)~!
with the right definition of trace
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o General idea: “((\) = det(A — P)" for some operator P

e This should be understood as 0y log () = tr(A — P)~!
with the right definition of trace

@ Vanishing order of  at 0 = dimension of the space of
generalized eigenstates at 0 {u | 3¢ : P‘u = 0}
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o General idea: “((\) = det(A — P)" for some operator P

e This should be understood as 0y log () = tr(A — P)~!
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Spectral interpretation of zeta functions |

o General idea: “((\) = det(A — P)" for some operator P

e This should be understood as 0y log () = tr(A — P)~!
with the right definition of trace

@ Vanishing order of  at 0 = dimension of the space of
generalized eigenstates at 0 {u | 3¢ : P‘u = 0}

@ One can write the vanishing order mg(0) of (g using the dimensions
of certain spaces of Pollicott—Ruelle generalized resonant forms Resg’C>o

@ Our strategy is to describe Resg’oo in terms of the de Rham
cohomology of

@ In this talk we will focus on the case k =1
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Spectral interpretation of zeta functions |l

e M=S%Y, dimX =3, X € C®°(M; TM) generates the geodesic flow

@ Our operators: P, = Lx acting on Qg = {w € AKT*M | 1xw = 0}
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e M=S%Y, dimX =3, X € C®°(M; TM) generates the geodesic flow
@ Our operators: P, = Lx acting on Qf == {w e AKT*M | 1xw = 0}

@ For certain anisotropic Sobolev spaces .77, Zp the operator
Pro — A : Zp(M; QK) — 5 (M; Qf) is Fredholm of index 0
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Spectral interpretation of zeta functions |l

e M=S%Y, dimX =3, X € C®°(M; TM) generates the geodesic flow
@ Our operators: P, = Lx acting on Qf = {we ANFT*M | 1xw = 0}

@ For certain anisotropic Sobolev spaces .77, Zp the operator
Pro — A : Zp(M; QK) — 5 (M; Qf) is Fredholm of index 0
Blank—Keller-Liverani '02, Liverani '04,'05, Baladi '05,
Gouézel-Liverani '06, Baladi—Tsujii '07, Butterley—Liverani '07

@ We will use the microlocal/scattering theory approach:
Faure—Roy-Sjostrand '08, Faure-Sjdstrand '11, D—Zworski '16
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Spectral interpretation of zeta functions |l

e M=S%Y, dimX =3, X € C®°(M; TM) generates the geodesic flow
@ Our operators: P, = Lx acting on Qf = {we ANFT*M | 1xw = 0}

@ For certain anisotropic Sobolev spaces .77, Zp the operator
Pro — A : Zp(M; QK) — 5 (M; Qf) is Fredholm of index 0

The poles of (Pxo — A)~! are called Pollicott—Ruelle resonances

Generalized resonant states at A = 0:
Resq™ = {u € Zp(M;QE) | 30 : L u =0}
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Spectral interpretation of zeta functions |l

e M=S%Y, dimX =3, X € C®°(M; TM) generates the geodesic flow
@ Our operators: P, = Lx acting on Qf == {w e AKT*M | 1xw = 0}

@ For certain anisotropic Sobolev spaces .77, Zp the operator
Pro — A : Zp(M; QK) — 5 (M; Qf) is Fredholm of index 0

@ The poles of (Pxo— A)~! are called Pollicott—Ruelle resonances

o Generalized resonant states at A = 0:
Resq™ = {u € Zp(M;QE) | 30 : L u =0}

e D—-Zworski '16, using Hérmander's propagation of singularities,
Melrose's radial estimates, and Atiyah—Bott—Guillemin trace formula:
4
mg(0) = Z(—l)k dim Resf™
k=0
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Resonance multiplicities

Theorem 1 follows from mg(0) = Zizo(—l)k dim Resg’oo and

Theorem 2 [Ceki¢—Delarue-D—Paternain '20]

Let (X, gy) be a compact connected oriented hyperbolic 3-manifold.
Then the dimensions of Resg’OO are:

k || Hyperbolic | Perturbation
0|1 1

1| 2b61(Y) bi(¥)

2 [ 2by(X) +2 | bu(Z) +2

3 | 2b1(%) bi(X)

4 11 1
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Resonance multiplicities

Theorem 1 follows from mg(0) = Zizo(—l)k dim Resg’oo and

Theorem 2 [Ceki¢—Delarue-D—Paternain '20]

Let (X, gy) be a compact connected oriented hyperbolic 3-manifold.
Then the dimensions of Resg’OO are:

k || Hyperbolic | Perturbation
0|1 1

1| 2b61(Y) bi(¥)

2 [ 2by(X) +2 | bu(Z) +2

3 | 2b1(%) bi(X)

4 11 1

; 2-j 24,00 ; .
(da)A : Resg ™)™ — Resg > isomorphisms = study k = 0,1,2

Nov 8, 2022
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Resonant and coresonant states

@ Generalized resonant states:
Resg™™ = {u € Zp(M; QE) | 3¢ : L5u =0}
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Resonant and coresonant states

o Generalized resonant states:
Resy™ = {u € D (M; Qf) | 3¢: L5u =0}

o Dp.(M;Qg) = {u e D'(M;Q5) | WF(u) C Ej}
defined using wavefront set WF(u) C T*M\ 0
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Resonant and coresonant states

o Generalized resonant states:
Resy™ = {u € D (M; Qf) | 3¢: L5u =0}

o Dp.(M;Qg) = {u e D'(M;Q5) | WF(u) C Ej}
defined using wavefront set WF(u) C T*M\ 0

o Resonant states: Resk = {u € D.(M;Qf) | Lxu = 0}
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Resonant and coresonant states

o Generalized resonant states:
Resq™ = {u € D (M; Q) | 3¢ : L5u =0}

o Dp.(M;Qg) = {u e D'(M;Q5) | WF(u) C Ej}
defined using wavefront set WF(u) C T*M\ 0

o Resonant states: Resk = {u € D.(M;Qf) | Lxu = 0}

o Coresonant states: Resf, = {u, € D/:(M; QL) | Lxu. =0}
Res§, = J* Res§ where 7 : M — M, J(x,v) = (x, V)
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Resonant and coresonant states

@ Generalized resonant states:
Resq™ = {u € D (M; Q) | 3¢ : L5u =0}
o Dp.(M;Qg) = {u e D'(M;Q5) | WF(u) C Ej}
defined using wavefront set WF(u) C T*M\ 0
o Resonant states: Resk = {u € D.(M;Qf) | Lxu = 0}
o Coresonant states: Resf, = {u, € Di.(M; QL) | Lxu. =0}
Ress, = J*Resl where 7 : M — M, J(x,v) = (x, —v)
e Pairing: u € D (M;QF), u, € D’;(M;Qg_k) =y AU
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Resonant and coresonant states

@ Generalized resonant states:
Resq™ = {u € D (M; Q) | 3¢ : L5u =0}
o Dp.(M;Qg) = {u e D'(M;Q5) | WF(u) C Ej}
defined using wavefront set WF(u) C T*M\ 0
o Resonant states: Resk = {u € D.(M;Qf) | Lxu = 0}
o Coresonant states: Resf, = {u, € D/:(M; QL) | Lxu. =0}
Ress, = J* Res§ where 7 : M — M, J(x,v) = (x, —v)
e Pairing: u € D (M;QF), u, € D’;(M;Qg_k) =y AU

e Semisimplicity: Resé’Oo — Resf, equivalent to
the pairing being nondegenerate on Resé X Resg*_k
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Resonant and coresonant states

Generalized resonant states:
Resq™ = {u € D (M; Q) | 3¢ : L5u =0}

Df.(M; Q) = {u € D'(M; Qg) | WF(u) C Ej}

defined using wavefront set WF(u) C T*M\ 0

Resonant states: Resf = {u € Df.(M;Qf) | Lxu = 0}
Coresonant states: Resk, = {u, € D/:(M; QL) | Lxu. =0}

Ress, = J* Res§ where 7 : M — M, J(x,v) = (x, —v)

Pairing: u € D, *(I\/I;Qg), = D’;(M;Qg_k) — fMoz/\ U A Uy

Semisimplicity: Resé’oo — Resf, equivalent to
the pairing being nondegenerate on Resé X Resg*_k

The case k = 0 is simple: Resg™ = Resd = R1
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Closed resonant 1-forms

o Resf = {u e D’;(M;Q’O‘) | Lxu =0}, Lx=dux+txd
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Closed resonant 1-forms

o Resf = {u e D’;(M;Qk) | ixu =0, txdu=0}, QK=nAKT*M
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Closed resonant 1-forms

o Resf = {u e D’;(M;Qk) | ixu =0, txdu=0}, QK=nAKT*M
o Closed forms: Res§ Nkerd = {u € Dy.(M;Q¥) | txu =0, du =0}
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Closed resonant 1-forms

° Reséz{uGD’;(M;Qk) | ixu =0, txdu=0}, QK=nAKT*M
o Closed forms: Res§ Nkerd = {u € Dy.(M;Q¥) | txu =0, du =0}
o Cohomology map: 7y : Resi Nkerd — HK(M;R), m(u) = [u]

e 74 can be defined because D. is closed under (d6 + dd + 1)~ L:
u€Dg.,duc C* = u=v+dwforsomeve C® we D

v
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Closed resonant 1-forms

o Resf = {u € Dp.(M; Q) | txu =0, txdu=0}, QkK=nAKT*M
o Closed forms: Res§ Nkerd = {u € Dy.(M;Q¥) | txu =0, du =0}
o Cohomology map: 7y : Resi Nkerd — HK(M;R), m(u) = [u]

o 7y can be defined because Df. is closed under (d§ + dd + 1)~
u€Dg.,duc C* = u=v+dwforsomeve C® we D

Lemma: 71 is an isomorphism
Injectivity: if u € Resg and u = df, f € D, (M;R), then
Xf =1xu=0,s0f €Res=RI1and u=df =0

v
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Closed resonant 1-forms

o Resf = {u € Dp.(M; Q) | txu =0, txdu=0}, QkK=nAKT*M
o Closed forms: Res§ Nkerd = {u € Dy.(M;Q¥) | txu =0, du =0}
o Cohomology map: 7y : Resg Nkerd — HX(M;R), 7 (u) = [u]

o 7y can be defined because Df. is closed under (d§ + dd + 1)~
u€Dg.,duc C* = u=v+dwforsomeve C® we D

Lemma: 71 is an isomorphism

Injectivity: if u € Resg and u = df, f € D, (M;R), then

Xf =1xu=0,s0f €Res=RI1and u=df =0

Surjectivity: if v € C*°(M; Q') and dv = 0, then [,,(:xv) dvol, =0,
so by the Fredholm property there exists f € D.(M;R) with Xf = uxv.
Take v := v — df € Res} Nkerd, then m1(u) = [v]

v
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Resonant forms, hyperbolic case

o We know that C := Res} Nker d has dimension b (M) = by (X)
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Resonant forms, hyperbolic case

o We know that C := Res} Nker d has dimension b (M) = by (X)
o We show every u € Res] is a section of E} = (Eo ® E,)* € Q}

e The Z-rotation 7 : E; — E; commutes with Lx because the flow

¢r = eX is conformal on E¥: |dw:(p)~T€| = et|¢], € € E}(p)

o Thus Z acts on Resj = {u € D (M;Q5) | Lxu = 0}
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Resonant forms, hyperbolic case

o We know that C := Res} Nker d has dimension b (M) = by (X)
o We show every u € Res] is a section of E} = (Eo ® E,)* € Q}

e The Z-rotation 7 : E; — E; commutes with Lx because the flow

¢r = eX is conformal on E¥: |dw:(p)~T€| = et|¢], € € E}(p)

o Thus Z acts on Resj = {u € D (M;Q5) | Lxu = 0}
o If ue C\ {0} then dZ(u) # 0: express [daw A Z(u)]ys via m1(u)
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Resonant forms, hyperbolic case

o We know that C := Res} Nker d has dimension b (M) = by (X)
@ We show every u € Res} is a section of EX = (Eg @ E,)* C Q}

@ The J-rotation 7 : E; — E; commutes with £x because the flow
¢r = eX is conformal on E}:  |dp:(p)~T¢&| = et|€], € € EX(p)

Thus Z acts on Resy = {u € D.(M; Q}) | Lxu = 0}
If ue C\ {0} then dZ(u) # 0: express [da A Z(u)]y3 via m1(u)

We show that Resy = C @ Z(C) is 2b1(X)-dimensional and
semisimplicity holds for k = 1, so dim Res(l)’Oo =2b1(X)
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Resonant forms, hyperbolic case

o We know that C := Res} Nker d has dimension b (M) = by (X)
@ We show every u € Res} is a section of EX = (Eg @ E,)* C Q}

@ The J-rotation 7 : E; — E; commutes with £x because the flow
¢r = eX is conformal on E}:  |dp:(p)~T¢&| = et|€], € € EX(p)

Thus Z acts on Resy = {u € D.(M; Q}) | Lxu = 0}
If ue C\ {0} then dZ(u) # 0: express [da A Z(u)]y3 via m1(u)

We show that Resy = C @ Z(C) is 2b1(X)-dimensional and
semisimplicity holds for k = 1, so dim Res(l)’oo =2b1(X)

@ We also show that Res3 = Res3 Nker d = Rda @ Ri) @ d Res} is
(b1(X) + 2)-dimensional where v is an explicit smooth 2-form
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Resonant forms, hyperbolic case

o We know that C := Res} Nker d has dimension b (M) = by (X)
@ We show every u € Res} is a section of EX = (Eg @ E,)* C Q}

@ The J-rotation 7 : E; — E; commutes with £x because the flow
¢r = eX is conformal on E}:  |dp:(p)~T¢&| = et|€], € € EX(p)

Thus Z acts on Resy = {u € D.(M; Q}) | Lxu = 0}
If ue C\ {0} then dZ(u) # 0: express [da A Z(u)]y3 via m1(u)

We show that Resy = C @ Z(C) is 2b1(X)-dimensional and
semisimplicity holds for k = 1, so dim Res(l)’oo =2b1(X)

@ We also show that Res3 = Res3 Nker d = Rda @ Ri) @ d Res} is
(b1(X) + 2)-dimensional where v is an explicit smooth 2-form

e We finally show dim Resg’Oo = 2b1(X) + 2: get bi(X) Jordan blocks
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Resonant forms for perturbations

e Consider now the perturbed metric g = gy, a € C°(%; R)
@ Definenry - M=SY —%;, J:M—>M J(x,v)=(x,—v)

o We still have dim(Resj Nker d) = by(X), need to show that all
non-closed elements of Resy are moved by the perturbation
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Resonant forms for perturbations

o Consider now the perturbed metric g = €"7gy, a € C°(%; R)
@ Definenry - M=SY —%;, J:M—>M J(x,v)=(x,—v)

o We still have dim(Res$ Nker d) = by(X), need to show that all
non-closed elements of Res(l, are moved by the perturbation

@ A first variation calculation shows that we need nondegeneracy of

du € d(Res}), du, € d(Res},) + / (rEa)a A du A dus
M

o Take for simplicity b1(X) = 1, then enough to show

u€Resy, du#0 — /(WEa)a/\du/\j*(du);éo
M
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Resonant forms for perturbations
o Consider now the perturbed metric g = €"7gy, a € C°(%; R)

@ Definenry - M=SY —%;, J:M—>M J(x,v)=(x,—v)

o We still have dim(Res$ Nker d) = by(X), need to show that all
non-closed elements of Res(l, are moved by the perturbation

@ A first variation calculation shows that we need nondegeneracy of
du € d(Res}), du, € d(Res},) + /M (rEa)a A du A dus
o Take for simplicity b1(X) = 1, then enough to show
u€Resy, du#0 — /M(Wga)a/\du/\j*(du);éo
e That's true for generic a as long as 7y, (o A du A T*(du)) # 0

where 75, : D'(M; QK) — D'(Z; Qk=2) is the pushforward on forms
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Nontriviality of first variation

@ Working only with the hyperbolic metric now
o Given u € Res}, du # 0, need s (o A du A T*(du)) # 0
o Write my.(a A du A JT*(du)) = F dvolg for some F € D'(X; R)

@ Difficult to show that F # 0 because cannot evaluate F at points
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Nontriviality of first variation

@ Working only with the hyperbolic metric now
o Given u € Res}, du # 0, need s (o A du A T*(du)) # 0
o Write my.(a A du A JT*(du)) = F dvolg for some F € D'(X; R)

o Difficult to show that F # 0 because cannot evaluate F at points

Main identity
We have Q4F = —¢Ag[0|2 where
e 0 = my.(a A du) is a nonzero harmonic 1-form on X
® Qaf(x) = [ys cosh™* dys(x, y)f(y) dvolg(y) descends to
Qq : D'(X) — C>®(X) where ¥ = IN'\H3
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Nontriviality of first variation

@ Working only with the hyperbolic metric now
o Given u € Res}, du # 0, need s (o A du A T*(du)) # 0
o Write my.(a A du A JT*(du)) = F dvolg for some F € D'(X; R)
o Difficult to show that F # 0 because cannot evaluate F at points
Main identity
We have Q4F = —¢Ag[0|2 where

e 0 = my.(a A du) is a nonzero harmonic 1-form on X

o Quf(x) = [igs cosh™* di(x, y)f(y) d volg(y) descends to
Qq : D'(X) — C>®(X) where ¥ = IN'\H3

o If F=0, then Ag|a|§ =0, so |o|g is constant, but this is impossible!
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Two conjectures

Conjecture 1

Let (X, g) be a generic negatively curved compact connected oriented
3-manifold. Then:

o semisimplicity holds and d(Resk) =0 for all k =0,...,4
o dimRes] = 1, dim Resj = b;(X), dim Res3 = by(X) + 2
4 mR(O) =4 — bl(Z)

The set of g satisfying Conjecture 1 is open:
dim Res(l,’C>O < by (X), dim Resg’Oo < b (X)+2 = Conjecture 1 holds

DGRS 20 = (,(0) is locally constant under
perturbations of p, g, which could lead to a solution of Fried's conjecture
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Two conjectures

Conjecture 1

Let (X, g) be a generic negatively curved compact connected oriented
3-manifold. Then:

o semisimplicity holds and d(Resk) =0 for all k =0,...,4
o dimRes] = 1, dim Resj = b;(X), dim Res3 = by(X) + 2
4 mR(O) =4 — bl(Z)

The set of g satisfying Conjecture 1 is open:
dim Res(l,’C>O < by (X), dim Resg’oo < b (X)+2 = Conjecture 1 holds

Conjecture 2
Let p: m1(X) — U(m) be acyclic: H3(X;R) = 0. Then Ress = 0 for all k J

Conjecture 2 + DGRS 20 = (,(0) is locally constant under
perturbations of p, g, which could lead to a solution of Fried's conjecture
Nov 8, 2022  16/17



Thank you for your attention!
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