Retrieving coupled Yang-Mills-Higgs fields

Chen, Xi Shanghai Centre for Mathematical Sciences Fudan University

Joint work with Matti Lassas (Helsinki), Lauri Oksanen (Helsinki), and Gabriel Paternain (Cambridge)

Workshop 4 "Geometrical Inverse Problems" Special Semester on "Tomography Across the Scales" RICAM, The 8th November 2022

<ロ> <個> < 国> < 国> < 国> < 国> < 国</p>

▶ 4 fundamental interactions (forces):

- ▶ 4 fundamental interactions (forces):
 - **gravitational**: General Relativity (curvature of spacetime)

- ▶ 4 fundamental interactions (forces):
 - **gravitational**: General Relativity (curvature of spacetime)

electromagnetic, strong, weak: Standard Model

- ▶ 4 fundamental interactions (forces):
 - **gravitational**: General Relativity (curvature of spacetime)

- electromagnetic, strong, weak: Standard Model
- Grand Unification Theory

- 4 fundamental interactions (forces):
 - **gravitational**: General Relativity (curvature of spacetime)
 - electromagnetic, strong, weak: Standard Model
 - Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles

- 4 fundamental interactions (forces):
 - **gravitational**: General Relativity (curvature of spacetime)
 - electromagnetic, strong, weak: Standard Model
 - Grand Unification Theory
- ► <u>Standard Model</u>: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles

► Abelian U(1): Maxwell

- 4 fundamental interactions (forces):
 - **gravitational**: General Relativity (curvature of spacetime)
 - electromagnetic, strong, weak: Standard Model
 - Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles

- Abelian U(1): Maxwell
- ▶ Non-Abelian $U(1) \times SU(2) \times SU(3)$: Yang-Mills

- 4 fundamental interactions (forces):
 - **gravitational**: General Relativity (curvature of spacetime)
 - electromagnetic, strong, weak: Standard Model
 - Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles

- ► Abelian U(1): Maxwell
- ▶ Non-Abelian $U(1) \times SU(2) \times SU(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):

- 4 fundamental interactions (forces):
 - **gravitational**: General Relativity (curvature of spacetime)
 - electromagnetic, strong, weak: Standard Model
 - Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles
 - Abelian U(1): Maxwell
 - ▶ Non-Abelian $U(1) \times SU(2) \times SU(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
 - Gauge bosons (Yang-Mills theory, challenged by Pauli)

- 4 fundamental interactions (forces):
 - **gravitational**: General Relativity (curvature of spacetime)
 - electromagnetic, strong, weak: Standard Model
 - Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles
 - Abelian U(1): Maxwell
 - ▶ Non-Abelian $U(1) \times SU(2) \times SU(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
 - Gauge bosons (Yang-Mills theory, challenged by Pauli)
 - Massless : gluon (strong), photon (electromagnetic)

- 4 fundamental interactions (forces):
 - **gravitational**: General Relativity (curvature of spacetime)
 - electromagnetic, strong, weak: Standard Model
 - Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles
 - ► Abelian U(1): Maxwell
 - ▶ Non-Abelian $U(1) \times SU(2) \times SU(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
 - Gauge bosons (Yang-Mills theory, challenged by Pauli)
 - Massless : gluon (strong), photon (electromagnetic)

Massive : W and Z bosons (weak)

- 4 fundamental interactions (forces):
 - **gravitational**: General Relativity (curvature of spacetime)
 - electromagnetic, strong, weak: Standard Model
 - Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles
 - ► Abelian U(1): Maxwell
 - ▶ Non-Abelian $U(1) \times SU(2) \times SU(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
 - Gauge bosons (Yang-Mills theory, challenged by Pauli)
 - Massless : gluon (strong), photon (electromagnetic)
 - Massive : W and Z bosons (weak)
 - Scalar bosons (Higgs mechanism, verified at CERN in 2012)

- 4 fundamental interactions (forces):
 - **gravitational**: General Relativity (curvature of spacetime)
 - electromagnetic, strong, weak: Standard Model
 - Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles
 - ► Abelian U(1): Maxwell
 - ▶ Non-Abelian $U(1) \times SU(2) \times SU(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
 - Gauge bosons (Yang-Mills theory, challenged by Pauli)
 - Massless : gluon (strong), photon (electromagnetic)
 - Massive : W and Z bosons (weak)
 - Scalar bosons (Higgs mechanism, verified at CERN in 2012)
 - Higgs bosons (W and Z bosons acquire mass via interactions with Higgs bosons)

- 4 fundamental interactions (forces):
 - **gravitational**: General Relativity (curvature of spacetime)
 - electromagnetic, strong, weak: Standard Model
 - Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles
 - ► Abelian U(1): Maxwell
 - ▶ Non-Abelian $U(1) \times SU(2) \times SU(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
 - Gauge bosons (Yang-Mills theory, challenged by Pauli)
 - Massless : gluon (strong), photon (electromagnetic)
 - Massive : W and Z bosons (weak)
 - Scalar bosons (Higgs mechanism, verified at CERN in 2012)
 - Higgs bosons (W and Z bosons acquire mass via interactions with Higgs bosons)
- Fermions (spinor fields, generations of matters):

- 4 fundamental interactions (forces):
 - **gravitational**: General Relativity (curvature of spacetime)
 - electromagnetic, strong, weak: Standard Model
 - Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles
 - ► Abelian U(1): Maxwell
 - ▶ Non-Abelian $U(1) \times SU(2) \times SU(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
 - Gauge bosons (Yang-Mills theory, challenged by Pauli)
 - Massless : gluon (strong), photon (electromagnetic)
 - Massive : W and Z bosons (weak)
 - Scalar bosons (Higgs mechanism, verified at CERN in 2012)
 - Higgs bosons (W and Z bosons acquire mass via interactions with Higgs bosons)
- Fermions (spinor fields, generations of matters):
 - Quarks & anitquarks, leptons & antileptons (Dirac equation)

- 4 fundamental interactions (forces):
 - **gravitational**: General Relativity (curvature of spacetime)
 - electromagnetic, strong, weak: Standard Model
 - Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles
 - Abelian U(1): Maxwell
 - ▶ Non-Abelian $U(1) \times SU(2) \times SU(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
 - Gauge bosons (Yang-Mills theory, challenged by Pauli)
 - Massless : gluon (strong), photon (electromagnetic)
 - Massive : W and Z bosons (weak)
 - Scalar bosons (Higgs mechanism, verified at CERN in 2012)
 - Higgs bosons (W and Z bosons acquire mass via interactions with Higgs bosons)
- Fermions (spinor fields, generations of matters):
 - Quarks & anitquarks, leptons & antileptons (Dirac equation)
 - Mass gained via coupling with Higgs bosons (Yukawa coupling)

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

► We fix the following geometric datum.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- ► We fix the following geometric datum.
 - (\mathbb{M},g) : Minkowski space-time with signature (-,+,+,+)

- ► We fix the following geometric datum.
 - (\mathbb{M},g) : Minkowski space-time with signature (-,+,+,+)

• G : a compact Lie group e.g. $U(1) \times SU(2) \times SU(3)$

- We fix the following geometric datum.
 - (\mathbb{M},g) : Minkowski space-time with signature (-,+,+,+)

- G : a compact Lie group e.g. $U(1) \times SU(2) \times SU(3)$
- $\blacktriangleright~\mathfrak{g}$: Lie algebra of ${\it G}$ with an Ad-invariant $\langle\cdot,\cdot\rangle_\mathfrak{g}$

- We fix the following geometric datum.
 - (\mathbb{M},g) : Minkowski space-time with signature (-,+,+,+)

- G : a compact Lie group e.g. $U(1) \times SU(2) \times SU(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$
- $P \to \mathbb{M}$: principal fibre bundle with structure group G

We fix the following geometric datum.

- (\mathbb{M},g) : Minkowski space-time with signature (-,+,+,+)
- G : a compact Lie group e.g. $U(1) \times SU(2) \times SU(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$
- ▶ $P \to \mathbb{M}$: principal fibre bundle with structure group G
- ▶ $Ad = P \times_{Ad} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g}$: adjoint bundle with induced $\langle \cdot, \cdot \rangle_{Ad}$.

• We fix the following geometric datum.

- (\mathbb{M},g) : Minkowski space-time with signature (-,+,+,+)
- G: a compact Lie group e.g. $U(1) \times SU(2) \times SU(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$
- ▶ $P \to \mathbb{M}$: principal fibre bundle with structure group G
- ▶ $Ad = P \times_{Ad} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g}$: adjoint bundle with induced $\langle \cdot, \cdot \rangle_{Ad}$.

• A gauge field is $A = A_{\alpha} dx^{\alpha} \in \Omega^{1}(P, \mathfrak{g})$ compatible with G.

• We fix the following geometric datum.

- (\mathbb{M},g) : Minkowski space-time with signature (-,+,+,+)
- G : a compact Lie group e.g. $U(1) \times SU(2) \times SU(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$
- ▶ $P \to \mathbb{M}$: principal fibre bundle with structure group G
- $\blacktriangleright \operatorname{Ad} = P \times_{\operatorname{Ad}} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g} : \text{ adjoint bundle with induced } \langle \cdot, \cdot \rangle_{\operatorname{Ad}}.$
- A gauge field is $A = A_{\alpha} dx^{\alpha} \in \Omega^{1}(P, \mathfrak{g})$ compatible with G.
- ► The exterior covariant derivative on Ad:

$$\mathcal{D}_{\mathcal{A}}: \Omega^k(\mathbb{M};\mathfrak{g}) o \Omega^{k+1}(\mathbb{M};\mathfrak{g}), \qquad \mathcal{D}_{\mathcal{A}}\omega = d\omega + [\mathcal{A},\omega].$$

• We fix the following geometric datum.

- (\mathbb{M},g) : Minkowski space-time with signature (-,+,+,+)
- G : a compact Lie group e.g. $U(1) \times SU(2) \times SU(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$
- ▶ $P \to \mathbb{M}$: principal fibre bundle with structure group G
- $\blacktriangleright \operatorname{Ad} = P \times_{\operatorname{Ad}} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g} : \text{ adjoint bundle with induced } \langle \cdot, \cdot \rangle_{\operatorname{Ad}}.$
- A gauge field is $A = A_{\alpha} dx^{\alpha} \in \Omega^{1}(P, \mathfrak{g})$ compatible with G.
- ► The exterior covariant derivative on Ad:

$$\mathcal{D}_{\mathcal{A}}: \Omega^k(\mathbb{M};\mathfrak{g}) o \Omega^{k+1}(\mathbb{M};\mathfrak{g}), \qquad \mathcal{D}_{\mathcal{A}}\omega = d\omega + [\mathcal{A},\omega].$$

(日)(1)<

• The curvature 2-form (field strength) : $F_A := dA + \frac{1}{2}[A, A]$.

• We fix the following geometric datum.

- (\mathbb{M},g) : Minkowski space-time with signature (-,+,+,+)
- G : a compact Lie group e.g. $U(1) \times SU(2) \times SU(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$
- ▶ $P \to \mathbb{M}$: principal fibre bundle with structure group G
- $\blacktriangleright \operatorname{Ad} = P \times_{\operatorname{Ad}} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g} : \text{ adjoint bundle with induced } \langle \cdot, \cdot \rangle_{\operatorname{Ad}}.$
- A gauge field is $A = A_{\alpha} dx^{\alpha} \in \Omega^{1}(P, \mathfrak{g})$ compatible with G.
- ► The exterior covariant derivative on Ad:

$$\mathcal{D}_{\mathcal{A}}: \Omega^k(\mathbb{M};\mathfrak{g}) o \Omega^{k+1}(\mathbb{M};\mathfrak{g}), \qquad \mathcal{D}_{\mathcal{A}}\omega = d\omega + [\mathcal{A},\omega].$$

(日)(1)<

The curvature 2-form (field strength) : F_A := dA + ½[A, A].
The Yang-Mills Lagrangian : ℒ_{YM}[A] = -½⟨F_A, F_A⟩_{Ad}.

We fix the following geometric datum.

- (\mathbb{M},g) : Minkowski space-time with signature (-,+,+,+)
- G : a compact Lie group e.g. $U(1) \times SU(2) \times SU(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$
- ▶ $P \to \mathbb{M}$: principal fibre bundle with structure group G
- ▶ $Ad = P \times_{Ad} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g}$: adjoint bundle with induced $\langle \cdot, \cdot \rangle_{Ad}$.
- A gauge field is $A = A_{\alpha} dx^{\alpha} \in \Omega^{1}(P, \mathfrak{g})$ compatible with G.
- ► The exterior covariant derivative on Ad:

$$\mathcal{D}_{\mathcal{A}}: \Omega^k(\mathbb{M};\mathfrak{g}) o \Omega^{k+1}(\mathbb{M};\mathfrak{g}), \qquad \mathcal{D}_{\mathcal{A}}\omega = d\omega + [\mathcal{A},\omega].$$

- The curvature 2-form (field strength) : $F_A := dA + \frac{1}{2}[A, A]$.
- The Yang-Mills Lagrangian : $\mathscr{L}_{YM}[A] = -\frac{1}{2} \langle F_A, F_A \rangle_{Ad}$.
- The Yang-Mills action (energy) : $YM[A] = -\frac{1}{2} \langle F_A, F_A \rangle_{Ad,L^2}$.

• We fix the following geometric datum.

- (\mathbb{M},g) : Minkowski space-time with signature (-,+,+,+)
- G : a compact Lie group e.g. $U(1) \times SU(2) \times SU(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$
- ▶ $P \to \mathbb{M}$: principal fibre bundle with structure group G
- $Ad = P \times_{Ad} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g}$: adjoint bundle with induced $\langle \cdot, \cdot \rangle_{Ad}$.
- A gauge field is $A = A_{\alpha} dx^{\alpha} \in \Omega^{1}(P, \mathfrak{g})$ compatible with G.
- ► The exterior covariant derivative on Ad:

$$\mathcal{D}_{\mathcal{A}}: \Omega^k(\mathbb{M};\mathfrak{g}) o \Omega^{k+1}(\mathbb{M};\mathfrak{g}), \qquad \mathcal{D}_{\mathcal{A}}\omega = d\omega + [\mathcal{A},\omega].$$

- The curvature 2-form (field strength) : $F_A := dA + \frac{1}{2}[A, A]$.
- ► The Yang-Mills Lagrangian : $\mathscr{L}_{YM}[A] = -\frac{1}{2} \langle F_A, F_A \rangle_{Ad}$.
- The Yang-Mills action (energy) : $YM[A] = -\frac{1}{2} \langle F_A, F_A \rangle_{Ad,L^2}$.
- ▶ The Yang-Mills Equation (Euler-Lagrange Equation of YM)

$$D_A^*F_A = 0$$
, where $D_A^* = \star D_A \star$.

• We fix the following geometric datum.

- (\mathbb{M},g) : Minkowski space-time with signature (-,+,+,+)
- G : a compact Lie group e.g. $U(1) \times SU(2) \times SU(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$
- ▶ $P \to \mathbb{M}$: principal fibre bundle with structure group G
- $\blacktriangleright \operatorname{Ad} = P \times_{\operatorname{Ad}} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g} : \text{ adjoint bundle with induced } \langle \cdot, \cdot \rangle_{\operatorname{Ad}}.$
- A gauge field is $A = A_{\alpha} dx^{\alpha} \in \Omega^{1}(P, \mathfrak{g})$ compatible with G.
- ► The exterior covariant derivative on Ad:

$$\mathcal{D}_{\mathcal{A}}: \Omega^k(\mathbb{M};\mathfrak{g}) o \Omega^{k+1}(\mathbb{M};\mathfrak{g}), \qquad \mathcal{D}_{\mathcal{A}}\omega = d\omega + [\mathcal{A},\omega].$$

- The curvature 2-form (field strength) : $F_A := dA + \frac{1}{2}[A, A]$.
- The Yang-Mills Lagrangian : $\mathscr{L}_{YM}[A] = -\frac{1}{2} \langle F_A, F_A \rangle_{Ad}$.
- The Yang-Mills action (energy) : $YM[A] = -\frac{1}{2} \langle F_A, F_A \rangle_{Ad,L^2}$.
- ▶ The Yang-Mills Equation (Euler-Lagrange Equation of YM)

$$D_A^*F_A = 0$$
, where $D_A^* = \star D_A \star$.

► To describe massive bosons, a mass term $\frac{m^2}{2}\langle A, A \rangle_{Ad}$ is required in the Lagrangian. However, $A \notin \Omega^1(M, Ad)$.

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Additional structures for Higgs fields

- Additional structures for Higgs fields
 - \mathcal{W} : a complex vector space with a *G*-invariant $\langle \cdot, \cdot \rangle_{\mathcal{W}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Additional structures for Higgs fields
 - W : a complex vector space with a *G*-invariant $\langle \cdot, \cdot \rangle_{W}$
 - $\rho: \mathcal{G} \to \operatorname{GL}(\mathcal{W})$: a complex linear representation of \mathcal{G} in \mathcal{W}
- Additional structures for Higgs fields
 - \mathcal{W} : a complex vector space with a *G*-invariant $\langle \cdot, \cdot \rangle_{\mathcal{W}}$
 - $\rho: \mathcal{G} \to \operatorname{GL}(\mathcal{W})$: a complex linear representation of \mathcal{G} in \mathcal{W}
 - $E = P \times_{\rho} \mathcal{W} \cong M \times \mathcal{W}$: associated vector bundle with $\langle \cdot, \cdot \rangle_E$

- Additional structures for Higgs fields
 - \mathcal{W} : a complex vector space with a *G*-invariant $\langle \cdot, \cdot \rangle_{\mathcal{W}}$
 - ▶ $\rho: G \to \operatorname{GL}(W)$: a complex linear representation of G in W
 - $E = P \times_{\rho} \mathcal{W} \cong M \times \mathcal{W}$: associated vector bundle with $\langle \cdot, \cdot \rangle_E$
 - The exterior covariant derivative on E:

$$d_A: \Omega^k(\mathbb{M};\mathcal{W}) o \Omega^{k+1}(\mathbb{M};\mathcal{W}), \qquad d_A \Phi = d \Phi +
ho_*(A) \wedge \Phi.$$

- Additional structures for Higgs fields
 - \mathcal{W} : a complex vector space with a *G*-invariant $\langle \cdot, \cdot \rangle_{\mathcal{W}}$
 - ▶ $\rho: G \to \operatorname{GL}(W)$: a complex linear representation of G in W
 - $E = P \times_{\rho} \mathcal{W} \cong M \times \mathcal{W}$: associated vector bundle with $\langle \cdot, \cdot \rangle_E$
 - The exterior covariant derivative on E:

$$d_{\mathcal{A}}: \Omega^k(\mathbb{M};\mathcal{W}) o \Omega^{k+1}(\mathbb{M};\mathcal{W}), \qquad d_{\mathcal{A}} \Phi = d\Phi +
ho_*(\mathcal{A}) \wedge \Phi.$$

• The Higgs Lagrangian with the potential $\mathcal{V}(s) = as^2 - bs$

$$\mathscr{L}_{\mathrm{H}}[A,\Phi] = \langle d_A \Phi, d_A \Phi \rangle_E + \mathcal{V}(|\Phi^2|_E).$$

- Additional structures for Higgs fields
 - \mathcal{W} : a complex vector space with a *G*-invariant $\langle \cdot, \cdot \rangle_{\mathcal{W}}$
 - ▶ $\rho: G \to \operatorname{GL}(W)$: a complex linear representation of G in W
 - $E = P \times_{\rho} \mathcal{W} \cong M \times \mathcal{W}$: associated vector bundle with $\langle \cdot, \cdot \rangle_E$
 - The exterior covariant derivative on E:

$$d_{\mathcal{A}}: \Omega^k(\mathbb{M};\mathcal{W}) o \Omega^{k+1}(\mathbb{M};\mathcal{W}), \qquad d_{\mathcal{A}} \Phi = d\Phi +
ho_*(\mathcal{A}) \wedge \Phi.$$

• The Higgs Lagrangian with the potential $\mathcal{V}(s) = as^2 - bs$

$$\mathscr{L}_{\mathrm{H}}[A,\Phi] = \langle d_A \Phi, d_A \Phi \rangle_E + \mathcal{V}(|\Phi^2|_E).$$

▶ The Yang-Mills-Higgs Lagrangian $\mathscr{L}_{YMH} = \mathscr{L}_{YM} + \mathscr{L}_{H}$

- Additional structures for Higgs fields
 - \mathcal{W} : a complex vector space with a *G*-invariant $\langle \cdot, \cdot
 angle_{\mathcal{W}}$
 - ▶ $\rho: G \to \operatorname{GL}(W)$: a complex linear representation of G in W
 - $E = P \times_{\rho} \mathcal{W} \cong M \times \mathcal{W}$: associated vector bundle with $\langle \cdot, \cdot \rangle_E$
 - The exterior covariant derivative on E:

$$d_{\mathcal{A}}: \Omega^k(\mathbb{M};\mathcal{W}) o \Omega^{k+1}(\mathbb{M};\mathcal{W}), \qquad d_{\mathcal{A}} \Phi = d\Phi +
ho_*(\mathcal{A}) \wedge \Phi.$$

• The Higgs Lagrangian with the potential $\mathcal{V}(s) = as^2 - bs$

$$\mathscr{L}_{\mathrm{H}}[A,\Phi] = \langle d_A\Phi, d_A\Phi \rangle_E + \mathcal{V}(|\Phi^2|_E).$$

The Yang-Mills-Higgs Lagrangian L_{YMH} = L_{YM} + L_H
 The Yang-Mills-Higgs equations

$$D_A^* F_A + J_\rho(d_A \Phi, \Phi) = 0$$
$$d_A^* d_A \Phi + \mathcal{V}'(|\Phi^2|_E) \Phi = 0$$

where the bilinear form $J_{
ho}:\mathcal{W}\times\mathcal{W}
ightarrow\mathfrak{g}$ is defined by

 $\Re \langle v, \rho_*(X)w \rangle_{\mathcal{W}} = \langle J_\rho(v,w), X \rangle_{\mathrm{Ad}}, \quad \forall X \in \mathfrak{g}, \, v, w \in \mathcal{W}.$

- Additional structures for Higgs fields
 - \mathcal{W} : a complex vector space with a *G*-invariant $\langle \cdot, \cdot
 angle_{\mathcal{W}}$
 - ▶ $\rho: G \to \operatorname{GL}(W)$: a complex linear representation of G in W
 - $E = P \times_{\rho} \mathcal{W} \cong M \times \mathcal{W}$: associated vector bundle with $\langle \cdot, \cdot \rangle_E$
 - The exterior covariant derivative on E:

$$d_{\!A}: \Omega^k(\mathbb{M};\mathcal{W}) o \Omega^{k+1}(\mathbb{M};\mathcal{W}), \qquad d_{\!A}\Phi = d\Phi +
ho_*(A) \wedge \Phi.$$

• The Higgs Lagrangian with the potential $\mathcal{V}(s) = as^2 - bs$

$$\mathscr{L}_{\mathrm{H}}[A,\Phi] = \langle d_A\Phi, d_A\Phi \rangle_E + \mathcal{V}(|\Phi^2|_E).$$

The Yang-Mills-Higgs Lagrangian L_{YMH} = L_{YM} + L_H
 The Yang-Mills-Higgs equations

$$D_A^* F_A + J_\rho(d_A \Phi, \Phi) = 0$$
$$d_A^* d_A \Phi + \mathcal{V}'(|\Phi^2|_E) \Phi = 0$$

where the bilinear form $J_{\rho}: \mathcal{W} \times \mathcal{W} \to \mathfrak{g}$ is defined by

 $\Re \langle v, \rho_*(X)w \rangle_{\mathcal{W}} = \langle J_{\rho}(v,w), X \rangle_{\mathrm{Ad}}, \quad \forall X \in \mathfrak{g}, \, v, w \in \mathcal{W}.$

• Coupling of A and Φ after symmetry breaking generates mass.

▶ IP : Can one recover (A, Φ) by active local measurements?

- ▶ **IP** : Can one recover (A, Φ) by active local measurements?
- Active local measurements : adding artificial sources (J, F) to the YMH equations and observing perturbed fields (V, Ψ).

- ▶ **IP** : Can one recover (A, Φ) by active local measurements?
- Active local measurements : adding artificial sources (J, F) to the YMH equations and observing perturbed fields (V, Ψ).
- ▶ Specifically, we enter 'active' sources (*J*, *F*) in the YMH equations and then the coupled YMH fields will be perturbed.

$$D_A^* F_A + J_\rho(d_A \Phi, \Phi) = 0 \xrightarrow{\text{perturbed}} D_V^* F_V + J_\rho(d_V \Psi, \Psi) = J$$
$$d_A^* d_A \Phi + \mathcal{V}'(|\Phi^2|) \Phi = 0 \xrightarrow{\text{perturbed}} d_V^* d_V \Psi + \mathcal{V}'(|\Psi^2|) \Psi = \mathcal{F}$$

- ▶ **IP** : Can one recover (A, Φ) by active local measurements?
- Active local measurements : adding artificial sources (J, F) to the YMH equations and observing perturbed fields (V, Ψ).
- Specifically, we enter 'active' sources (J, F) in the YMH equations and then the coupled YMH fields will be perturbed.

$$D_A^* F_A + J_\rho(d_A \Phi, \Phi) = 0 \xrightarrow{\text{perturbed}} D_V^* F_V + J_\rho(d_V \Psi, \Psi) = J$$
$$d_A^* d_A \Phi + \mathcal{V}'(|\Phi^2|) \Phi = 0 \xrightarrow{d_V^* d_V \Psi} d_V \Psi + \mathcal{V}'(|\Psi^2|) \Psi = \mathcal{F}$$

• We denote by $(W, \Upsilon) = (V - A, \Psi - \Phi)$ perturbation fields.

- ▶ **IP** : Can one recover (A, Φ) by active local measurements?
- Active local measurements : adding artificial sources (J, F) to the YMH equations and observing perturbed fields (V, Ψ).
- Specifically, we enter 'active' sources (J, F) in the YMH equations and then the coupled YMH fields will be perturbed.

$$D_A^* F_A + J_\rho(d_A \Phi, \Phi) = 0 \xrightarrow{\text{perturbed}} D_V^* F_V + J_\rho(d_V \Psi, \Psi) = J$$
$$d_A^* d_A \Phi + \mathcal{V}'(|\Phi^2|) \Phi = 0 \xrightarrow{d_V^* d_V \Psi} d_V \Psi + \mathcal{V}'(|\Psi^2|) \Psi = \mathcal{F}$$

- We denote by $(W, \Upsilon) = (V A, \Psi \Phi)$ perturbation fields.
- (W, Υ) obeys following equations in the gauge $D_A^*W = 0$,

$$\begin{split} \Box_{A,\mathrm{Ad}} W + J_{\rho}(d\Upsilon, \Phi) + \mathcal{N}_{\mathrm{YM},(A,\Phi)}(W, \Upsilon) &= J, \quad \Box_{A,\mathrm{Ad}} = D_{A}^{*}D_{A}, \\ \Box_{A,\rho} \Upsilon + \mathcal{N}_{\mathrm{H},(A,\Phi)}(W, \Upsilon) &= \mathcal{F}, \quad \Box_{A,\rho} = d_{A}^{*}d_{A}. \end{split}$$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

- ▶ IP : Can one recover (A, Φ) by active local measurements?
- Active local measurements : adding artificial sources (J, F) to the YMH equations and observing perturbed fields (V, Ψ).
- Specifically, we enter 'active' sources (J, F) in the YMH equations and then the coupled YMH fields will be perturbed.

$$D_A^* F_A + J_\rho(d_A \Phi, \Phi) = 0 \xrightarrow{\text{perturbed}} D_V^* F_V + J_\rho(d_V \Psi, \Psi) = J$$
$$d_A^* d_A \Phi + \mathcal{V}'(|\Phi^2|) \Phi = 0 \xrightarrow{d_V^* d_V \Psi + \mathcal{V}'(|\Psi^2|) \Psi} = \mathcal{F}$$

- We denote by $(W, \Upsilon) = (V A, \Psi \Phi)$ perturbation fields.
- (W, Υ) obeys following equations in the gauge $D_A^*W = 0$, $\Box_{A, Ad}W + J_{\rho}(d\Upsilon, \Phi) + N_{YM, (A, \Phi)}(W, \Upsilon) = J, \quad \Box_{A, Ad} = D_A^*D_A,$

$$\Box_{\mathcal{A},\rho}\Upsilon+\textit{N}_{\mathrm{H},(\mathcal{A},\Phi)}(\mathcal{W},\Upsilon)=\mathcal{F}, \ \ \Box_{\mathcal{A},\rho}=d_{\mathcal{A}}^{*}d_{\mathcal{A}}.$$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

The active measurement is encoded in the well-defined Source-to-Solution map L^{A,Φ} : (J, F) → (W, Υ).

- ▶ **IP** : Can one recover (A, Φ) by active local measurements?
- Active local measurements : adding artificial sources (J, F) to the YMH equations and observing perturbed fields (V, Ψ).
- Specifically, we enter 'active' sources (J, F) in the YMH equations and then the coupled YMH fields will be perturbed.

$$D_A^* F_A + J_\rho(d_A \Phi, \Phi) = 0 \xrightarrow{\text{perturbed}} D_V^* F_V + J_\rho(d_V \Psi, \Psi) = J$$
$$d_A^* d_A \Phi + \mathcal{V}'(|\Phi^2|) \Phi = 0 \xrightarrow{d_V^* d_V \Psi} d_V \Psi + \mathcal{V}'(|\Psi^2|) \Psi = \mathcal{F}$$

- We denote by $(W, \Upsilon) = (V A, \Psi \Phi)$ perturbation fields.
- ► (W, Υ) obeys following equations in the gauge $D_A^*W = 0$, $\Box_{A,Ad}W + J_{\rho}(d\Upsilon, \Phi) + N_{YM,(A,\Phi)}(W, \Upsilon) = J$, $\Box_{A,Ad} = D_A^*D_A$,

$$\Box_{A,\rho}\Upsilon + N_{\mathrm{H},(A,\Phi)}(W,\Upsilon) = \mathcal{F}, \quad \Box_{A,\rho} = d_A^* d_A.$$

The active measurement is encoded in the well-defined Source-to-Solution map L^{A,Φ} : (J, F) → (W, Υ).
 The geometric inverse problem in question reduces to does L^{A,Φ} determine (A, Φ) uniquely up to a gauge

does $L^{A,\Phi}$ determine (A,Φ) uniquely up to a gauge?

$$\begin{split} \mathbb{D} &:= \{(t,x) \in \mathbb{R}^{1+3} : |x| \leq t+1, \ |x| \leq 1-t \} \\ \partial^{-}\mathbb{D} &= \{(t,x) \in \mathbb{D} : \ |x| = t+1 \} \\ \mathbb{O} &:= \{(t,x) : (t,x) \in \mathbb{D}^{\circ} \text{ and } |x| < \varepsilon_{0} \} \end{split}$$

Theorem (CLOP)

$$\begin{split} \mathbb{D} &:= \{(t,x) \in \mathbb{R}^{1+3} : |x| \leq t+1, \ |x| \leq 1-t \} \\ \partial^{-}\mathbb{D} &= \{(t,x) \in \mathbb{D} : \ |x| = t+1 \} \\ \mathbb{O} &:= \{(t,x) : (t,x) \in \mathbb{D}^{\circ} \text{ and } |x| < \varepsilon_{0} \} \end{split}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (CLOP)

Set the data set (a variant of the source-to-solution map)

$$\mathcal{D}_{(A,\Phi)} := \left\{ \begin{array}{c} (V,\Psi)|_{\mho} \\ and (V,\Psi) \sim (A,\Phi) \text{ near } \partial^{-}\mathbb{D} \end{array} \right.$$

$$\begin{split} \mathbb{D} &:= \{(t,x) \in \mathbb{R}^{1+3} : |x| \leq t+1, \ |x| \leq 1-t \} \\ \partial^{-}\mathbb{D} &= \{(t,x) \in \mathbb{D} : \ |x| = t+1 \} \\ \mathbb{O} &:= \{(t,x) : (t,x) \in \mathbb{D}^{\circ} \text{ and } |x| < \varepsilon_{0} \} \end{split}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Theorem (CLOP)

Set the data set (a variant of the source-to-solution map)

$$\mathcal{D}_{(A,\Phi)} := \left\{ \begin{array}{c} (V,\Psi)|_{\mho} \\ and (V,\Psi) \sim (A,\Phi) \text{ near } \partial^{-}\mathbb{D} \end{array} \right.$$

Assume ρ_{*} is fully charged (ρ_{*}(X)w = 0, ∀X ∈ g ⇒ w = 0) and Z(g) ∩ Ker ρ_{*} = {0}. (Necessary non-degeneracy.)

$$\begin{split} \mathbb{D} &:= \{(t,x) \in \mathbb{R}^{1+3} : |x| \leq t+1, \ |x| \leq 1-t \} \\ \partial^{-}\mathbb{D} &= \{(t,x) \in \mathbb{D} : \ |x| = t+1 \} \\ \mathbb{O} &:= \{(t,x) : (t,x) \in \mathbb{D}^{\circ} \text{ and } |x| < \varepsilon_{0} \} \end{split}$$

Theorem (CLOP)

Set the data set (a variant of the source-to-solution map)

$$\mathcal{D}_{(A,\Phi)} := \left\{ \begin{array}{c} (V,\Psi)|_{\mho} \\ and (V,\Psi) \sim (A,\Phi) \text{ near } \partial^{-}\mathbb{D} \end{array} \right.$$

- Assume ρ_{*} is fully charged (ρ_{*}(X)w = 0, ∀X ∈ g ⇒ w = 0) and Z(g) ∩ Ker ρ_{*} = {0}. (Necessary non-degeneracy.)
- For two Yang-Mills-Higgs fields $(A, \Phi), (B, \Xi)$, there holds

$$\begin{aligned} \mathcal{D}_{(A,\Phi)} &= \mathcal{D}_{(B,\Xi)} \iff (A,\Phi) \sim (B,\Xi) \text{ in } \mathbb{D} \\ \iff \exists \mathsf{U} \in G^0(\mathbb{D},p) \text{ s.t. } (B,\Xi) = (\mathsf{U}^{-1}d\mathsf{U} + \mathsf{U}^{-1}A\mathsf{U},\rho(\mathsf{U}^{-1})\Phi) \end{aligned}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The hypotheses on the representation ρ_* are natural in physics.

The hypotheses on the representation ρ_* are natural in physics.

• The electroweak model : $G = SU(2) \times \mathbb{S}^1$ and $\mathcal{W} = \mathbb{C}^2$

The hypotheses on the representation ρ_* are natural in physics.

▶ The electroweak model : $G = SU(2) \times S^1$ and $W = C^2$

• The representation ρ is given by

$$ho(g,e^{\imath heta})w=e^{\imath n_Y heta}gw \quad ext{with } (g,e^{\imath heta})\in \mathrm{SU}(2) imes\mathbb{S}^1.$$

The hypotheses on the representation ρ_* are natural in physics.

▶ The electroweak model : $G = SU(2) \times S^1$ and $W = C^2$

• The representation ρ is given by

$$ho(g,e^{\imath heta})w=e^{\imath n_Y heta}gw \quad ext{with } (g,e^{\imath heta})\in \mathrm{SU}(2) imes\mathbb{S}^1.$$

• The derivative ρ_* is easily computed as

 $\rho_*(X, \imath x)w = (X + \imath n_Y x \mathrm{Id})w \quad \text{with } (X, \imath x) \in \mathfrak{g} = \mathfrak{su}(2) \times \imath \mathbb{R}.$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

The hypotheses on the representation ρ_* are natural in physics.

▶ The electroweak model : $G = SU(2) \times S^1$ and $W = C^2$

• The representation ρ is given by

$$ho(g,e^{\imath heta})w=e^{\imath n_Y heta}gw \quad ext{with } (g,e^{\imath heta})\in \mathrm{SU}(2) imes\mathbb{S}^1.$$

• The derivative ρ_* is easily computed as

 $\rho_*(X, \imath x)w = (X + \imath n_Y x \mathrm{Id})w \quad \text{with } (X, \imath x) \in \mathfrak{g} = \mathfrak{su}(2) \times \imath \mathbb{R}.$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

For $n_Y \neq 0$ we see that ρ_* is fully charged and $\operatorname{Ker} \rho_* = \{0\}$.

The hypotheses on the representation ρ_* are natural in physics.

▶ The electroweak model : $G = SU(2) \times S^1$ and $W = C^2$

• The representation ρ is given by

$$ho(g,e^{\imath heta})w=e^{\imath n_Y heta}gw \quad ext{with } (g,e^{\imath heta})\in \mathrm{SU}(2) imes\mathbb{S}^1.$$

• The derivative ρ_* is easily computed as

 $\rho_*(X, \imath x)w = (X + \imath n_Y x \mathrm{Id})w \quad \text{with } (X, \imath x) \in \mathfrak{g} = \mathfrak{su}(2) \times \imath \mathbb{R}.$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

For n_Y ≠ 0 we see that ρ_{*} is fully charged and Ker ρ_{*} = {0}.
The centre of the Lie algebra is u(1) = iℝ.

The hypotheses on the representation ρ_* are natural in physics.

▶ The electroweak model : $G = SU(2) \times S^1$ and $W = C^2$

• The representation ρ is given by

$$ho(g,e^{\imath heta})w=e^{\imath n_Y heta}gw \quad ext{with } (g,e^{\imath heta})\in \mathrm{SU}(2) imes\mathbb{S}^1.$$

The derivative ρ_{*} is easily computed as

 $\rho_*(X, \imath x)w = (X + \imath n_Y x \mathrm{Id})w \quad \text{with } (X, \imath x) \in \mathfrak{g} = \mathfrak{su}(2) \times \imath \mathbb{R}.$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

For n_Y ≠ 0 we see that ρ_{*} is fully charged and Ker ρ_{*} = {0}.
The centre of the Lie algebra is u(1) = iℝ.

• The Standard Model : $G = SU(3) \times SU(2) \times S^1$.

The hypotheses on the representation ρ_* are natural in physics.

▶ The electroweak model : $G = SU(2) \times S^1$ and $W = C^2$

• The representation ρ is given by

$$ho(g,e^{i heta})w=e^{in_Y heta}gw \quad ext{with } (g,e^{i heta})\in \mathrm{SU}(2) imes \mathbb{S}^1.$$

The derivative ρ_{*} is easily computed as

 $\rho_*(X, \imath x)w = (X + \imath n_Y x \mathrm{Id})w \quad \text{with } (X, \imath x) \in \mathfrak{g} = \mathfrak{su}(2) \times \imath \mathbb{R}.$

- For n_Y ≠ 0 we see that ρ_{*} is fully charged and Ker ρ_{*} = {0}.
 The centre of the Lie algebra is u(1) = *i*ℝ.
- The Standard Model : $G = SU(3) \times SU(2) \times \mathbb{S}^1$.
 - ρ_* is fully charged and Ker $\rho_* = \mathfrak{su}(3)$

The hypotheses on the representation ρ_* are natural in physics.

▶ The electroweak model : $G = SU(2) \times S^1$ and $W = C^2$

• The representation ρ is given by

$$ho(g,e^{i heta})w=e^{in_Y heta}gw \quad ext{with } (g,e^{i heta})\in \mathrm{SU}(2) imes \mathbb{S}^1.$$

The derivative ρ_{*} is easily computed as

 $\rho_*(X, \imath x)w = (X + \imath n_Y x \mathrm{Id})w \quad \text{with } (X, \imath x) \in \mathfrak{g} = \mathfrak{su}(2) \times \imath \mathbb{R}.$

- For n_Y ≠ 0 we see that ρ_{*} is fully charged and Ker ρ_{*} = {0}.
 The centre of the Lie algebra is u(1) = iℝ.
- The Standard Model : $G = SU(3) \times SU(2) \times S^1$.
 - ρ_* is fully charged and Ker $\rho_* = \mathfrak{su}(3)$
 - $\blacktriangleright \mathfrak{su}(3) \cap \mathfrak{u}(1) = \{0\}.$

 Kurylev-Lassas-Uhlmann pioneered a novel framework to solve inverse problems of time-dependent nonlinear hyperbolic PDEs.

- Kurylev-Lassas-Uhlmann pioneered a novel framework to solve inverse problems of time-dependent nonlinear hyperbolic PDEs.
- CLOP simplified KLU's four-wave linearization to three-wave linearization for cubic wave equations (e.g. the Higgs equation)

- Kurylev-Lassas-Uhlmann pioneered a novel framework to solve inverse problems of time-dependent nonlinear hyperbolic PDEs.
- CLOP simplified KLU's four-wave linearization to three-wave linearization for cubic wave equations (e.g. the Higgs equation)

• The sources $(J, \mathcal{F}) = \sum_{k=1}^{3} \epsilon_{(k)}(J_{(k)}, \mathcal{F}_{(k)})$ for small $\epsilon_{(k)} > 0$

- Kurylev-Lassas-Uhlmann pioneered a novel framework to solve inverse problems of time-dependent nonlinear hyperbolic PDEs.
- CLOP simplified KLU's four-wave linearization to three-wave linearization for cubic wave equations (e.g. the Higgs equation)

• The sources
$$(J, \mathcal{F}) = \sum_{k=1}^{3} \epsilon_{(k)}(J_{(k)}, \mathcal{F}_{(k)})$$
 for small $\epsilon_{(k)} > 0$

$$\blacktriangleright \text{ Denote } \bullet_{(k)} = \partial_{\epsilon_{(k)}}(\bullet)|_{\epsilon=0}, \bullet_{(kl)} = \partial_{\epsilon_{(k)}}\partial_{\epsilon_{(l)}}(\bullet)|_{\epsilon=0}, \cdots$$

- Kurylev-Lassas-Uhlmann pioneered a novel framework to solve inverse problems of time-dependent nonlinear hyperbolic PDEs.
- CLOP simplified KLU's four-wave linearization to three-wave linearization for cubic wave equations (e.g. the Higgs equation)
 - The sources $(J, \mathcal{F}) = \sum_{k=1}^{3} \epsilon_{(k)}(J_{(k)}, \mathcal{F}_{(k)})$ for small $\epsilon_{(k)} > 0$
 - $\blacktriangleright \text{ Denote } \bullet_{(k)} = \partial_{\epsilon_{(k)}}(\bullet)|_{\epsilon=0}, \bullet_{(kl)} = \partial_{\epsilon_{(k)}}\partial_{\epsilon_{(l)}}(\bullet)|_{\epsilon=0}, \cdots$
 - The linearized YMH, with lower order terms removed, reads

$$\Box_{A,Ad} W_{(k)} + J_{\rho}(d_{A}\Upsilon_{(k)}, \Phi) = J_{(k)}$$
$$\Box_{A,\rho}\Upsilon_{(k)} = \mathcal{F}_{(k)}$$
$$\Box_{A,Ad} W_{(kl)} + J_{\rho}(d_{A}\Upsilon_{(kl)}, \Phi) = N_{(kl)}$$
$$\Box_{A,\rho}\Upsilon_{(kl)} = \mathcal{N}_{(kl)}$$
$$\Box_{A,Ad} W_{(123)} + J_{\rho}(d_{A}\Upsilon_{(123)}, \Phi) = N_{(123)}$$
$$\Box_{A,\rho}\Upsilon_{(123)} = \mathcal{N}_{(123)}$$

- Kurylev-Lassas-Uhlmann pioneered a novel framework to solve inverse problems of time-dependent nonlinear hyperbolic PDEs.
- CLOP simplified KLU's four-wave linearization to three-wave linearization for cubic wave equations (e.g. the Higgs equation)
 - The sources $(J, \mathcal{F}) = \sum_{k=1}^{3} \epsilon_{(k)}(J_{(k)}, \mathcal{F}_{(k)})$ for small $\epsilon_{(k)} > 0$
 - $\blacktriangleright \text{ Denote } \bullet_{(k)} = \partial_{\epsilon_{(k)}}(\bullet)|_{\epsilon=0}, \bullet_{(kl)} = \partial_{\epsilon_{(k)}}\partial_{\epsilon_{(l)}}(\bullet)|_{\epsilon=0}, \cdots$
 - The linearized YMH, with lower order terms removed, reads

$$\Box_{A,\mathrm{Ad}}W_{(k)} + J_{\rho}(d_{A}\Upsilon_{(k)}, \Phi) = J_{(k)}$$
$$\Box_{A,\rho}\Upsilon_{(k)} = \mathcal{F}_{(k)}$$
$$\Box_{A,\mathrm{Ad}}W_{(kl)} + J_{\rho}(d_{A}\Upsilon_{(kl)}, \Phi) = N_{(kl)}$$
$$\Box_{A,\rho}\Upsilon_{(kl)} = \mathcal{N}_{(kl)}$$
$$\Box_{A,\mathrm{Ad}}W_{(123)} + J_{\rho}(d_{A}\Upsilon_{(123)}, \Phi) = N_{(123)}$$
$$\Box_{A,\rho}\Upsilon_{(123)} = \mathcal{N}_{(123)}$$

In previous projects, CLOP recovered the gauge field A for decoupled YM equations and H equations by using the three-wave linearization and the method of broken X-ray.

- Kurylev-Lassas-Uhlmann pioneered a novel framework to solve inverse problems of time-dependent nonlinear hyperbolic PDEs.
- CLOP simplified KLU's four-wave linearization to three-wave linearization for cubic wave equations (e.g. the Higgs equation)
 - The sources $(J, \mathcal{F}) = \sum_{k=1}^{3} \epsilon_{(k)}(J_{(k)}, \mathcal{F}_{(k)})$ for small $\epsilon_{(k)} > 0$
 - $\blacktriangleright \text{ Denote } \bullet_{(k)} = \partial_{\epsilon_{(k)}}(\bullet)|_{\epsilon=0}, \bullet_{(kl)} = \partial_{\epsilon_{(k)}}\partial_{\epsilon_{(l)}}(\bullet)|_{\epsilon=0}, \cdots$
 - The linearized YMH, with lower order terms removed, reads

$$\Box_{A,\mathrm{Ad}}W_{(k)} + J_{\rho}(d_{A}\Upsilon_{(k)}, \Phi) = J_{(k)}$$
$$\Box_{A,\rho}\Upsilon_{(k)} = \mathcal{F}_{(k)}$$
$$\Box_{A,\mathrm{Ad}}W_{(kl)} + J_{\rho}(d_{A}\Upsilon_{(kl)}, \Phi) = N_{(kl)}$$
$$\Box_{A,\rho}\Upsilon_{(kl)} = \mathcal{N}_{(kl)}$$
$$\Box_{A,\mathrm{Ad}}W_{(123)} + J_{\rho}(d_{A}\Upsilon_{(123)}, \Phi) = N_{(123)}$$
$$\Box_{A,\rho}\Upsilon_{(123)} = \mathcal{N}_{(123)}.$$

- In previous projects, CLOP recovered the gauge field A for decoupled YM equations and H equations by using the three-wave linearization and the method of broken X-ray.
- The challenge of coupled YMH is the **coupling term** $J_{\rho}(\cdot, \Phi)$.

Nonlinear interaction of three waves

The linearized YMH system is illustrated by the following figures of three-wave interactions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで
Nonlinear interaction of three waves

The linearized YMH system is illustrated by the following figures of three-wave interactions.

2D

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Nonlinear interaction of three waves

The linearized YMH system is illustrated by the following figures of three-wave interactions.

2D

▲□▶▲□▶▲目▶▲目▶ 目 のへの

▶ The decoupled parallel transport and broken X-ray transform

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ► The decoupled parallel transport and broken X-ray transform
 - ▶ By Hörmander-Duistermaat's FIO, $\Box_A u = 0$ corresponds to

 $\mathcal{L}_{H_{\sigma[\Box_A]}}\sigma[u] + \imath\sigma_{\mathrm{sub}}[\Box_A]\sigma[u] = 0.$

- ▶ The decoupled parallel transport and broken X-ray transform
 - ▶ By Hörmander-Duistermaat's FIO, $\Box_A u = 0$ corresponds to

$$\mathcal{L}_{H_{\sigma[\Box_A]}}\sigma[u] + \imath\sigma_{\mathrm{sub}}[\Box_A]\sigma[u] = 0.$$

The parallel transport equation of weighted principal symbols

 $\partial_{s}(\sigma_{\omega,\beta}[u]) + \rho_{*}(\langle A, \dot{\gamma}(s) \rangle)\sigma_{\omega,\beta}[u] = 0.$

- ▶ The decoupled parallel transport and broken X-ray transform
 - ▶ By Hörmander-Duistermaat's FIO, $\Box_A u = 0$ corresponds to

$$\mathcal{L}_{H_{\sigma[\Box_A]}}\sigma[u] + \imath\sigma_{\mathrm{sub}}[\Box_A]\sigma[u] = 0.$$

The parallel transport equation of weighted principal symbols

$$\partial_{s}(\sigma_{\omega,\beta}[u]) + \rho_{*}(\langle A, \dot{\gamma}(s) \rangle)\sigma_{\omega,\beta}[u] = 0.$$

The parallel transport of weighed principal symbols

$$\sigma_{\omega,\beta}[u](t) = \mathsf{P}^{\mathcal{A},\rho}_{\gamma(t)\leftarrow\gamma(0)}\sigma_{\omega,\beta}[u](0).$$

- The decoupled parallel transport and broken X-ray transform
 - ▶ By Hörmander-Duistermaat's FIO, $\Box_A u = 0$ corresponds to

$$\mathcal{L}_{H_{\sigma[\Box_A]}}\sigma[u] + \imath\sigma_{\mathrm{sub}}[\Box_A]\sigma[u] = 0.$$

The parallel transport equation of weighted principal symbols

$$\partial_{s}(\sigma_{\omega,\beta}[u]) + \rho_{*}(\langle A, \dot{\gamma}(s) \rangle)\sigma_{\omega,\beta}[u] = 0.$$

The parallel transport of weighed principal symbols

$$\sigma_{\omega,\beta}[u](t) = \mathsf{P}^{A,\rho}_{\gamma(t)\leftarrow\gamma(0)}\sigma_{\omega,\beta}[u](0).$$

► The broken X-ray transform : $S_{z \leftarrow y \leftarrow x}^{A,\rho} = P_{z \leftarrow y}^{A,\rho} \circ P_{y \leftarrow x}^{A,\rho}$

- ▶ The decoupled parallel transport and broken X-ray transform
 - ▶ By Hörmander-Duistermaat's FIO, $\Box_A u = 0$ corresponds to

$$\mathcal{L}_{H_{\sigma[\Box_A]}}\sigma[u] + \imath\sigma_{\mathrm{sub}}[\Box_A]\sigma[u] = 0.$$

The parallel transport equation of weighted principal symbols

$$\partial_{s}(\sigma_{\omega,\beta}[u]) + \rho_{*}(\langle A, \dot{\gamma}(s) \rangle)\sigma_{\omega,\beta}[u] = 0.$$

The parallel transport of weighed principal symbols

$$\sigma_{\omega,\beta}[u](t) = \mathsf{P}^{\mathcal{A},\rho}_{\gamma(t)\leftarrow\gamma(0)}\sigma_{\omega,\beta}[u](0).$$

▶ The broken X-ray transform : S^{A,ρ}_{z←y←x} = P^{A,ρ}_{z←y} ∘ P^{A,ρ}_{y←x}
 ▶ The coupled parallel transport equation with Higgs fields

$$\dot{w}_eta + [A_\gamma(\dot{\gamma}), w_eta] - rac{1}{2}\dot{\gamma}_eta(t) J_
ho \left(\upsilon, \Phi(\gamma(t))
ight) = 0 \ \dot{\upsilon} +
ho_*(A_\gamma(\dot{\gamma}))\upsilon = 0$$

- ▶ The decoupled parallel transport and broken X-ray transform
 - ▶ By Hörmander-Duistermaat's FIO, $\Box_A u = 0$ corresponds to

$$\mathcal{L}_{H_{\sigma[\Box_A]}}\sigma[u] + \imath\sigma_{\mathrm{sub}}[\Box_A]\sigma[u] = 0.$$

The parallel transport equation of weighted principal symbols

$$\partial_{s}(\sigma_{\omega,\beta}[u]) + \rho_{*}(\langle A, \dot{\gamma}(s) \rangle)\sigma_{\omega,\beta}[u] = 0.$$

The parallel transport of weighed principal symbols

$$\sigma_{\omega,\beta}[u](t) = \mathsf{P}^{\mathcal{A},\rho}_{\gamma(t)\leftarrow\gamma(0)}\sigma_{\omega,\beta}[u](0).$$

▶ The broken X-ray transform : S^{A,ρ}_{z←y←x} = P^{A,ρ}_{z←y} ∘ P^{A,ρ}_{y←x}
 ▶ The coupled parallel transport equation with Higgs fields

$$egin{aligned} \dot{w}_eta + [\mathcal{A}_\gamma(\dot{\gamma}), w_eta] - rac{1}{2} \dot{\gamma}_eta(t) \, J_
ho\left(arcupha, \Phi(\gamma(t))
ight) = 0 \ \dot{arcupha} +
ho_*(\mathcal{A}_\gamma(\dot{\gamma}))arcuphu = 0. \end{aligned}$$

The coupled parallel transport with Higgs fields

$$\mathsf{P}_{\gamma}^{\mathcal{A},\Phi,\rho} = \begin{pmatrix} \mathsf{P}_{\gamma}^{\mathcal{A},\mathrm{Ad}} & (\mathsf{P}_{\gamma}^{\mathcal{A},\Phi,\rho})_{12} \\ 0 & \mathsf{P}_{\gamma}^{\mathcal{A},\rho} \end{pmatrix}_{\mathbb{P}} \cdot (\mathbb{P}_{\gamma}^{\mathcal{A},\Phi,\rho})_{\mathbb{P}} \end{pmatrix}_{\mathbb{P}} \cdot (\mathbb{P}_{\gamma}^{\mathcal{A},\Phi,\rho})_{\mathbb{P}} \cdot (\mathbb{P}_{\gamma}^{\mathcal{A},\Phi,\rho}))_{\mathbb{P}} \cdot (\mathbb$$

・ロト・日本・ヨト・ヨー もんの

• Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$\mathsf{S}^{\mathcal{A},\Phi,\rho}_{z\leftarrow y\leftarrow x}=\mathsf{P}^{\mathcal{A},\Phi,\rho}_{z\leftarrow y}\circ\mathsf{P}^{\mathcal{A},\Phi,\rho}_{y\leftarrow x}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$\mathsf{S}^{A,\Phi,\rho}_{z\leftarrow y\leftarrow x}=\mathsf{P}^{A,\Phi,\rho}_{z\leftarrow y}\circ\mathsf{P}^{A,\Phi,\rho}_{y\leftarrow x}$$

Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.

• Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$\mathsf{S}^{A,\Phi,\rho}_{z\leftarrow y\leftarrow x}=\mathsf{P}^{A,\Phi,\rho}_{z\leftarrow y}\circ\mathsf{P}^{A,\Phi,\rho}_{y\leftarrow x}$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
 - ► This amounts to making holes on the matrix S^{A,Φ,ρ}_{z←y←x} to obtain solutions to linear equations with fewer coupling terms.

• Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$\mathsf{S}^{A,\Phi,\rho}_{z\leftarrow y\leftarrow x}=\mathsf{P}^{A,\Phi,\rho}_{z\leftarrow y}\circ\mathsf{P}^{A,\Phi,\rho}_{y\leftarrow x}$$

Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.

► This amounts to making holes on the matrix S^{A,Φ,ρ}_{z←y←x} to obtain solutions to linear equations with fewer coupling terms.

Source 1: (J, 0)

• Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$\mathsf{S}^{A,\Phi,\rho}_{z\leftarrow y\leftarrow x}=\mathsf{P}^{A,\Phi,\rho}_{z\leftarrow y}\circ\mathsf{P}^{A,\Phi,\rho}_{y\leftarrow x}$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
 - This amounts to making holes on the matrix S^{A,Φ,ρ}_{z ← y ← x} to obtain solutions to linear equations with fewer coupling terms.

- ► Source 1: (*J*, 0)
 - It marginalizes the coupling term.

• Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$\mathsf{S}^{A,\Phi,\rho}_{z\leftarrow y\leftarrow x}=\mathsf{P}^{A,\Phi,\rho}_{z\leftarrow y}\circ\mathsf{P}^{A,\Phi,\rho}_{y\leftarrow x}$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
 - This amounts to making holes on the matrix S^{A,Φ,ρ}_{z ← y ← x} to obtain solutions to linear equations with fewer coupling terms.
 - Source 1: (*J*, 0)
 - It marginalizes the coupling term.
 - ► We can extract the decoupled X-ray transform S^{A,Ad}_{z←y←x}.

• Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$\mathsf{S}^{A,\Phi,\rho}_{z\leftarrow y\leftarrow x}=\mathsf{P}^{A,\Phi,\rho}_{z\leftarrow y}\circ\mathsf{P}^{A,\Phi,\rho}_{y\leftarrow x}$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
 - This amounts to making holes on the matrix S^{A,Φ,ρ}_{z ← y ← x} to obtain solutions to linear equations with fewer coupling terms.
 - Source 1: (J, 0)
 - It marginalizes the coupling term.
 - ► We can extract the decoupled X-ray transform S^{A,Ad}_{z←y←x}.

► Source 2: $(0, J_{(2)}, J_{(3)}, \mathcal{F}_{(1)}, 0, 0)$ with J abelian

• Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$\mathsf{S}^{A,\Phi,\rho}_{z\leftarrow y\leftarrow x}=\mathsf{P}^{A,\Phi,\rho}_{z\leftarrow y}\circ\mathsf{P}^{A,\Phi,\rho}_{y\leftarrow x}$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
 - This amounts to making holes on the matrix S^{A,Φ,ρ}_{z ← y ← x} to obtain solutions to linear equations with fewer coupling terms.
 - Source 1: (J, 0)
 - It marginalizes the coupling term.
 - ► We can extract the decoupled X-ray transform S^{A,Ad}_{z←y←x}.

- Source 2: $(0, J_{(2)}, J_{(3)}, \mathcal{F}_{(1)}, 0, 0)$ with J abelian
 - All of the commutator terms vanish.

• Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$\mathsf{S}^{A,\Phi,\rho}_{z\leftarrow y\leftarrow x}=\mathsf{P}^{A,\Phi,\rho}_{z\leftarrow y}\circ\mathsf{P}^{A,\Phi,\rho}_{y\leftarrow x}$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
 - This amounts to making holes on the matrix S^{A,Φ,ρ}_{z ← y ← x} to obtain solutions to linear equations with fewer coupling terms.
 - Source 1: (J, 0)
 - It marginalizes the coupling term.
 - ► We can extract the decoupled X-ray transform S^{A,Ad}_{z←y←x}.
 - Source 2: $(0, J_{(2)}, J_{(3)}, \mathcal{F}_{(1)}, 0, 0)$ with J abelian
 - All of the commutator terms vanish.
 - The broken X-ray $S_{z\leftarrow y\leftarrow x}^{A,\Phi,\rho}$ has only one off-diagonal term.

• Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$\mathsf{S}^{A,\Phi,\rho}_{z\leftarrow y\leftarrow x}=\mathsf{P}^{A,\Phi,\rho}_{z\leftarrow y}\circ\mathsf{P}^{A,\Phi,\rho}_{y\leftarrow x}$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
 - This amounts to making holes on the matrix S^{A,Φ,ρ}_{z ← y ← x} to obtain solutions to linear equations with fewer coupling terms.
 - Source 1: (J, 0)
 - It marginalizes the coupling term.
 - ► We can extract the decoupled X-ray transform S^{A,Ad}_{z←y←x}.
 - Source 2: $(0, J_{(2)}, J_{(3)}, \mathcal{F}_{(1)}, 0, 0)$ with J abelian
 - All of the commutator terms vanish.
 - ▶ The broken X-ray $S_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}$ has only one off-diagonal term.

But the (2, 2)-entry $S_{z \leftarrow y \leftarrow x}^{\vec{A}, \rho}$ is intact.

• Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$\mathsf{S}^{A,\Phi,\rho}_{z\leftarrow y\leftarrow x}=\mathsf{P}^{A,\Phi,\rho}_{z\leftarrow y}\circ\mathsf{P}^{A,\Phi,\rho}_{y\leftarrow x}$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
 - This amounts to making holes on the matrix $S_{z\leftarrow \psi\leftarrow x}^{A,\Phi,\rho}$ to obtain solutions to linear equations with fewer coupling terms.
 - Source 1: (J, 0)
 - It marginalizes the coupling term.
 - We can extract the decoupled X-ray transform $S_{z \leftarrow v \leftarrow x}^{A, Ad}$.
 - Source 2: $(0, J_{(2)}, J_{(3)}, \mathcal{F}_{(1)}, 0, 0)$ with J abelian
 - All of the commutator terms vanish.
 - The broken X-ray S^{A,Φ,ρ}_{z←y←x} has only one off-diagonal term.
 But the (2, 2)-entry S^{A,ρ}_{z←y←x} is intact.

- A is recovered via $S_{z \leftarrow v \leftarrow x}^{A, Ad \oplus \rho}$ as $Z(\mathfrak{g}) \cap \operatorname{Ker} \rho_* = \{0\}$.

• Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$\mathsf{S}^{A,\Phi,\rho}_{z\leftarrow y\leftarrow x}=\mathsf{P}^{A,\Phi,\rho}_{z\leftarrow y}\circ\mathsf{P}^{A,\Phi,\rho}_{y\leftarrow x}$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
 - This amounts to making holes on the matrix S^{A,Φ,ρ}_{z ← y ← x} to obtain solutions to linear equations with fewer coupling terms.
 - Source 1: (J, 0)
 - It marginalizes the coupling term.
 - We can extract the decoupled X-ray transform $S_{z \leftarrow y \leftarrow x}^{A,Ad}$.
 - Source 2: $(0, J_{(2)}, J_{(3)}, \mathcal{F}_{(1)}, 0, 0)$ with J abelian
 - All of the commutator terms vanish.
 - The broken X-ray $S_{z\leftarrow y\leftarrow x}^{A,\Phi,\rho}$ has only one off-diagonal term.
 - But the (2,2)-entry $S_{z \leftarrow y \leftarrow x}^{A,\rho}$ is intact.
 - A is recovered via $S_{z \leftarrow y \leftarrow x}^{A, Ad \oplus \rho}$ as $Z(\mathfrak{g}) \cap Ker \rho_* = \{0\}$.
 - The measured off-diagonal contribution reads explicitly

$$\left(\mathsf{P}_{z\leftarrow y}^{A,\Phi,\rho}\right)_{12}(v) = -\frac{1}{2}\mathsf{P}_{z\leftarrow y}^{A,\mathrm{Ad}}\int_{t_y}^{t_z}J_{\rho}(\dot{\gamma}_{\beta}(s)v,\rho(U_{\gamma}^A(s))^{-1}\Phi(\gamma(s)))\,ds.$$

• Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$\mathsf{S}^{A,\Phi,\rho}_{z\leftarrow y\leftarrow x}=\mathsf{P}^{A,\Phi,\rho}_{z\leftarrow y}\circ\mathsf{P}^{A,\Phi,\rho}_{y\leftarrow x}$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
 - This amounts to making holes on the matrix $S_{z\leftarrow \psi\leftarrow x}^{A,\Phi,\rho}$ to obtain solutions to linear equations with fewer coupling terms.
 - Source 1: (J, 0)
 - It marginalizes the coupling term.
 - We can extract the decoupled X-ray transform $S_{z \leftarrow v \leftarrow x}^{A, Ad}$.
 - Source 2: $(0, J_{(2)}, J_{(3)}, \mathcal{F}_{(1)}, 0, 0)$ with J abelian
 - All of the commutator terms vanish.
 - The broken X-ray S^{A,Φ,ρ}_{z←y→x} has only one off-diagonal term.
 But the (2, 2)-entry S^{A,ρ}_{z←y→x} is intact.
 - A is recovered via $S^{A,Ad\oplus\rho}_{z\leftarrow\nu\leftarrow x}$ as $Z(\mathfrak{g})\cap \operatorname{Ker}\rho_*=\{0\}$.
 - The measured off-diagonal contribution reads explicitly

$$\left(\mathsf{P}^{A,\Phi,\rho}_{z\leftarrow y}\right)_{12}(v) = -\frac{1}{2}\mathsf{P}^{A,\mathrm{Ad}}_{z\leftarrow y}\int_{t_y}^{t_z}J_{\rho}(\dot{\gamma}_{\beta}(s)v,\rho(U^A_{\gamma}(s))^{-1}\Phi(\gamma(s)))\,ds.$$

• The non-degeneracy of J_{ρ} (i.e. ρ_* is fully charged) yields Φ .

Danke schön!