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The Standard Model (of particle physics)

▶ 4 fundamental interactions (forces):
▶ gravitational: General Relativity (curvature of spacetime)
▶ electromagnetic, strong, weak: Standard Model
▶ Grand Unification Theory

▶ Standard Model: describes electromagnetic U(1), weak SU(2),
strong SU(3) interactions, and classifies elementary particles
▶ Abelian U(1): Maxwell
▶ Non-Abelian U(1)× SU(2)× SU(3): Yang-Mills

▶ Bosons (tensor fields, force carriers):
▶ Gauge bosons (Yang-Mills theory, challenged by Pauli)

▶ Massless : gluon (strong), photon (electromagnetic)
▶ Massive : W and Z bosons (weak)

▶ Scalar bosons (Higgs mechanism, verified at CERN in 2012)
▶ Higgs bosons (W and Z bosons acquire mass via interactions

with Higgs bosons)
▶ Fermions (spinor fields, generations of matters):

▶ Quarks & anitquarks, leptons & antileptons (Dirac equation)
▶ Mass gained via coupling with Higgs bosons (Yukawa coupling)
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The Yang-Mills Theory

▶ We fix the following geometric datum.
▶ (M, g) : Minkowski space-time with signature (−,+,+,+)
▶ G : a compact Lie group e.g. U(1)× SU(2)× SU(3)
▶ g : Lie algebra of G with an Ad-invariant ⟨·, ·⟩g
▶ P → M : principal fibre bundle with structure group G
▶ Ad = P ×Ad g ∼= M× g : adjoint bundle with induced ⟨·, ·⟩Ad.

▶ A gauge field is A = Aαdx
α ∈ Ω1(P, g) compatible with G .

▶ The exterior covariant derivative on Ad:

DA : Ωk(M; g) → Ωk+1(M; g), DAω = dω + [A, ω].

▶ The curvature 2-form (field strength) : FA := dA+ 1
2 [A,A].

▶ The Yang-Mills Lagrangian : LYM[A] = −1
2⟨FA,FA⟩Ad.

▶ The Yang-Mills action (energy) : YM[A] = −1
2⟨FA,FA⟩Ad,L2 .

▶ The Yang-Mills Equation (Euler-Lagrange Equation of YM)

D∗AFA = 0, where D∗A = ⋆DA⋆.

▶ To describe massive bosons, a mass term m2

2 ⟨A,A⟩Ad is
required in the Lagrangian. However, A /∈ Ω1(M,Ad).
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The Higgs mechanism

▶ Additional structures for Higgs fields
▶ W : a complex vector space with a G -invariant ⟨·, ·⟩W
▶ ρ : G → GL(W) : a complex linear representation of G in W
▶ E = P ×ρ W ∼= M ×W : associated vector bundle with ⟨·, ·⟩E
▶ The exterior covariant derivative on E :

dA : Ωk(M;W) → Ωk+1(M;W), dAΦ = dΦ+ ρ∗(A) ∧ Φ.

▶ The Higgs Lagrangian with the potential V(s) = as2 − bs

LH[A,Φ] = ⟨dAΦ, dAΦ⟩E + V(|Φ2|E ).
▶ The Yang-Mills-Higgs Lagrangian LYMH = LYM + LH
▶ The Yang-Mills-Higgs equations

D∗AFA + Jρ(dAΦ,Φ) = 0

d∗AdAΦ+ V ′(|Φ2|E )Φ = 0

where the bilinear form Jρ : W ×W → g is defined by

ℜ⟨v , ρ∗(X )w⟩W = ⟨Jρ(v ,w),X ⟩Ad, ∀X ∈ g, v ,w ∈ W.

▶ Coupling of A and Φ after symmetry breaking generates mass.
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The inverse problem

▶ IP : Can one recover (A,Φ) by active local measurements?
▶ Active local measurements : adding artificial sources (J,F)

to the YMH equations and observing perturbed fields (V ,Ψ).
▶ Specifically, we enter ’active’ sources (J,F) in the YMH

equations and then the coupled YMH fields will be perturbed.

D∗AFA + Jρ(dAΦ,Φ) = 0

d∗AdAΦ+ V ′(|Φ2|)Φ = 0
perturbed−−−−−→

D∗VFV + Jρ(dVΨ,Ψ) = J

d∗V dVΨ+ V ′(|Ψ2|)Ψ = F
▶ We denote by (W ,Υ) = (V − A,Ψ− Φ) perturbation fields.
▶ (W ,Υ) obeys following equations in the gauge D∗AW = 0,

□A,AdW + Jρ(dΥ,Φ) + NYM,(A,Φ)(W ,Υ) = J, □A,Ad = D∗ADA,

□A,ρΥ+ NH,(A,Φ)(W ,Υ) = F , □A,ρ = d∗AdA.

▶ The active measurement is encoded in the well-defined
Source-to-Solution map LA,Φ : (J,F) → (W ,Υ).

▶ The geometric inverse problem in question reduces to

does LA,Φ determine (A,Φ) uniquely up to a gauge?
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Retrieving coupled Yang-Mills-Higgs fields

Theorem (CLOP)

▶ Set the data set (a variant of the source-to-solution map)

D(A,Φ) :=

{
(V ,Ψ)|℧

(V ,Ψ) ∈ C 3 solves YMH in D \ ℧
and (V ,Ψ) ∼ (A,Φ) near ∂−D

}
.

▶ Assume ρ∗ is fully charged (ρ∗(X )w = 0, ∀X ∈ g ⇒ w = 0)
and Z (g) ∩ Ker ρ∗ = {0}. (Necessary non-degeneracy.)

▶ For two Yang-Mills-Higgs fields (A,Φ), (B,Ξ), there holds

D(A,Φ) = D(B,Ξ) ⇐⇒ (A,Φ) ∼ (B,Ξ) in D
⇐⇒ ∃U ∈ G 0(D, p) s.t. (B,Ξ) = (U−1dU + U−1AU, ρ(U−1)Φ).
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Remark on the representation in the Standard Model

The hypotheses on the representation ρ∗ are natural in physics.

▶ The electroweak model : G = SU(2)× S1 and W = C2

▶ The representation ρ is given by

ρ(g , eıθ)w = eınY θgw with (g , eıθ) ∈ SU(2)× S1.

▶ The derivative ρ∗ is easily computed as

ρ∗(X , ıx)w = (X + ınY xId)w with (X , ıx) ∈ g = su(2)× ıR.

▶ For nY ̸= 0 we see that ρ∗ is fully charged and Ker ρ∗ = {0}.
▶ The centre of the Lie algebra is u(1) = ıR.

▶ The Standard Model : G = SU(3)× SU(2)× S1.
▶ ρ∗ is fully charged and Ker ρ∗ = su(3)
▶ su(3) ∩ u(1) = {0}.
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Modified Kurylev-Lassas-Uhlmann linearization scheme

▶ Kurylev-Lassas-Uhlmann pioneered a novel framework to solve
inverse problems of time-dependent nonlinear hyperbolic PDEs.

▶ CLOP simplified KLU’s four-wave linearization to three-wave
linearization for cubic wave equations (e.g. the Higgs equation)
▶ The sources (J,F) =

∑3
k=1 ϵ(k)(J(k),F(k)) for small ϵ(k) > 0

▶ Denote •(k) = ∂ϵ(k)(•)|ϵ=0, •(kl) = ∂ϵ(k)∂ϵ(l)(•)|ϵ=0, · · ·
▶ The linearized YMH, with lower order terms removed, reads

□A,AdW(k) + Jρ(dAΥ(k),Φ) = J(k)

□A,ρΥ(k) = F(k)

□A,AdW(kl) + Jρ(dAΥ(kl),Φ) = N(kl)

□A,ρΥ(kl) = N(kl)

□A,AdW(123) + Jρ(dAΥ(123),Φ) = N(123)

□A,ρΥ(123) = N(123).

▶ In previous projects, CLOP recovered the gauge field A for
decoupled YM equations and H equations by using the
three-wave linearization and the method of broken X-ray.

▶ The challenge of coupled YMH is the coupling term Jρ(·,Φ).
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Nonlinear interaction of three waves
The linearized YMH system is illustrated by the following figures of
three-wave interactions.

▶ 2D

x(1), x(2), x(3) → x

▶ 3D
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The coupled parallel transport and broken X-ray transform

▶ The decoupled parallel transport and broken X-ray transform
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▶ The coupled parallel transport equation with Higgs fields
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1
2
γ̇β(t) Jρ (υ,Φ(γ(t))) = 0

υ̇ + ρ∗(Aγ(γ̇))υ = 0.

▶ The coupled parallel transport with Higgs fields
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ẇβ + [Aγ(γ̇),wβ]−
1
2
γ̇β(t) Jρ (υ,Φ(γ(t))) = 0

υ̇ + ρ∗(Aγ(γ̇))υ = 0.

▶ The coupled parallel transport with Higgs fields

PA,Φ,ρ
γ =

(
PA,Ad
γ (PA,Φ,ρ

γ )12

0 PA,ρ
γ

)
.



The coupled parallel transport and broken X-ray transform
▶ The decoupled parallel transport and broken X-ray transform

▶ By Hörmander-Duistermaat’s FIO, □Au = 0 corresponds to

LHσ[□A ]
σ[u] + ıσsub[□A]σ[u] = 0.

▶ The parallel transport equation of weighted principal symbols

∂s(σω,β[u]) + ρ∗(⟨A, γ̇(s)⟩)σω,β[u] = 0.

▶ The parallel transport of weighed principal symbols

σω,β[u](t) = PA,ρ
γ(t)←γ(0)σω,β[u](0).

▶ The broken X-ray transform : SA,ρ
z←y←x = PA,ρ

z←y ◦ PA,ρ
y←x

▶ The coupled parallel transport equation with Higgs fields
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Manipulating the sources effectively

▶ Direct strategy: recover (A,Φ) from the coupled broken X-ray?

SA,Φ,ρ
z←y←x = PA,Φ,ρ

z←y ◦ PA,Φ,ρ
y←x

▶ Smart strategy: invoke sources such that one can gain A first
and then use other sources to recover Φ provided A known.
▶ This amounts to making holes on the matrix SA,Φ,ρ

z←y←x to
obtain solutions to linear equations with fewer coupling terms.

▶ Source 1: (J, 0)
▶ It marginalizes the coupling term.
▶ We can extract the decoupled X-ray transform SA,Ad

z←y←x .
▶ Source 2: (0, J(2), J(3),F(1), 0, 0) with J abelian

▶ All of the commutator terms vanish.
▶ The broken X-ray SA,Φ,ρ

z←y←x has only one off-diagonal term.
▶ But the (2, 2)-entry SA,ρ

z←y←x is intact.
▶ A is recovered via SA,Ad⊕ρ

z←y←x as Z (g) ∩ Kerρ∗ = {0}.
▶ The measured off-diagonal contribution reads explicitly(

PA,Φ,ρ
z←y

)
12 (v) = −1

2
PA,Ad
z←y

∫ tz

ty

Jρ(γ̇β(s)v , ρ(U
A
γ (s))

−1Φ(γ(s))) ds.

▶ The non-degeneracy of Jρ (i.e. ρ∗ is fully charged) yields Φ.
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▶ All of the commutator terms vanish.
▶ The broken X-ray SA,Φ,ρ

z←y←x has only one off-diagonal term.
▶ But the (2, 2)-entry SA,ρ
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▶ A is recovered via SA,Ad⊕ρ

z←y←x as Z (g) ∩ Kerρ∗ = {0}.

▶ The measured off-diagonal contribution reads explicitly(
PA,Φ,ρ
z←y

)
12 (v) = −1

2
PA,Ad
z←y

∫ tz

ty

Jρ(γ̇β(s)v , ρ(U
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