Retrieving coupled Yang-Mills-Higgs fields

Chen, Xi
Shanghai Centre for Mathematical Sciences
Fudan University

Joint work with Matti Lassas (Helsinki), Lauri Oksanen
(Helsinki), and Gabriel Paternain (Cambridge)

Workshop 4 "Geometrical Inverse Problems"
Special Semester on "Tomography Across the Scales" RICAM, The 8th November 2022

The Standard Model (of particle physics)

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):
- gravitational: General Relativity (curvature of spacetime)

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):
- gravitational: General Relativity (curvature of spacetime)
- electromagnetic, strong, weak: Standard Model

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):
- gravitational: General Relativity (curvature of spacetime)
- electromagnetic, strong, weak: Standard Model
- Grand Unification Theory

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):
- gravitational: General Relativity (curvature of spacetime)
- electromagnetic, strong, weak: Standard Model
- Grand Unification Theory
- Standard Model: describes electromagnetic $\mathrm{U}(1)$, weak $\mathrm{SU}(2)$, strong $\mathrm{SU}(3)$ interactions, and classifies elementary particles

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):
- gravitational: General Relativity (curvature of spacetime)
- electromagnetic, strong, weak: Standard Model
- Grand Unification Theory
- Standard Model: describes electromagnetic $\mathrm{U}(1)$, weak $\mathrm{SU}(2)$, strong $\mathrm{SU}(3)$ interactions, and classifies elementary particles
- Abelian U(1): Maxwell

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):
- gravitational: General Relativity (curvature of spacetime)
- electromagnetic, strong, weak: Standard Model
- Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles
- Abelian U(1): Maxwell
- Non-Abelian $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$: Yang-Mills

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):
- gravitational: General Relativity (curvature of spacetime)
- electromagnetic, strong, weak: Standard Model
- Grand Unification Theory
- Standard Model: describes electromagnetic $\mathrm{U}(1)$, weak $\mathrm{SU}(2)$, strong $\mathrm{SU}(3)$ interactions, and classifies elementary particles
- Abelian U(1): Maxwell
- Non-Abelian U(1) $\times \mathrm{SU}(2) \times \mathrm{SU}(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):
- gravitational: General Relativity (curvature of spacetime)
- electromagnetic, strong, weak: Standard Model
- Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong $\mathrm{SU}(3)$ interactions, and classifies elementary particles
- Abelian U(1): Maxwell
- Non-Abelian $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
- Gauge bosons (Yang-Mills theory, challenged by Pauli)

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):
- gravitational: General Relativity (curvature of spacetime)
- electromagnetic, strong, weak: Standard Model
- Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles
- Abelian U(1): Maxwell
- Non-Abelian U(1) $\times \mathrm{SU}(2) \times \mathrm{SU}(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
- Gauge bosons (Yang-Mills theory, challenged by Pauli)
- Massless : gluon (strong), photon (electromagnetic)

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):
- gravitational: General Relativity (curvature of spacetime)
- electromagnetic, strong, weak: Standard Model
- Grand Unification Theory
- Standard Model: describes electromagnetic $\mathrm{U}(1)$, weak $\mathrm{SU}(2)$, strong SU(3) interactions, and classifies elementary particles
- Abelian U(1): Maxwell
- Non-Abelian $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
- Gauge bosons (Yang-Mills theory, challenged by Pauli)
- Massless : gluon (strong), photon (electromagnetic)
- Massive : W and Z bosons (weak)

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):
- gravitational: General Relativity (curvature of spacetime)
- electromagnetic, strong, weak: Standard Model
- Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles
- Abelian U(1): Maxwell
- Non-Abelian $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
- Gauge bosons (Yang-Mills theory, challenged by Pauli)
- Massless : gluon (strong), photon (electromagnetic)
- Massive : W and Z bosons (weak)
- Scalar bosons (Higgs mechanism, verified at CERN in 2012)

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):
- gravitational: General Relativity (curvature of spacetime)
- electromagnetic, strong, weak: Standard Model
- Grand Unification Theory
- Standard Model: describes electromagnetic U(1), weak SU(2), strong SU(3) interactions, and classifies elementary particles
- Abelian U(1): Maxwell
- Non-Abelian $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
- Gauge bosons (Yang-Mills theory, challenged by Pauli)
- Massless : gluon (strong), photon (electromagnetic)
- Massive : W and Z bosons (weak)
- Scalar bosons (Higgs mechanism, verified at CERN in 2012)
- Higgs bosons (W and Z bosons acquire mass via interactions with Higgs bosons)

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):
- gravitational: General Relativity (curvature of spacetime)
- electromagnetic, strong, weak: Standard Model
- Grand Unification Theory
- Standard Model: describes electromagnetic $\mathrm{U}(1)$, weak $\mathrm{SU}(2)$, strong SU(3) interactions, and classifies elementary particles
- Abelian U(1): Maxwell
- Non-Abelian $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
- Gauge bosons (Yang-Mills theory, challenged by Pauli)
- Massless : gluon (strong), photon (electromagnetic)
- Massive: W and Z bosons (weak)
- Scalar bosons (Higgs mechanism, verified at CERN in 2012)
- Higgs bosons (W and Z bosons acquire mass via interactions with Higgs bosons)
- Fermions (spinor fields, generations of matters):

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):
- gravitational: General Relativity (curvature of spacetime)
- electromagnetic, strong, weak: Standard Model
- Grand Unification Theory
- Standard Model: describes electromagnetic $\mathrm{U}(1)$, weak $\mathrm{SU}(2)$, strong SU(3) interactions, and classifies elementary particles
- Abelian U(1): Maxwell
- Non-Abelian $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
- Gauge bosons (Yang-Mills theory, challenged by Pauli)
- Massless : gluon (strong), photon (electromagnetic)
- Massive: W and Z bosons (weak)
- Scalar bosons (Higgs mechanism, verified at CERN in 2012)
- Higgs bosons (W and Z bosons acquire mass via interactions with Higgs bosons)
- Fermions (spinor fields, generations of matters):
- Quarks \& anitquarks, leptons \& antileptons (Dirac equation)

The Standard Model (of particle physics)

- 4 fundamental interactions (forces):
- gravitational: General Relativity (curvature of spacetime)
- electromagnetic, strong, weak: Standard Model
- Grand Unification Theory
- Standard Model: describes electromagnetic $\mathrm{U}(1)$, weak $\mathrm{SU}(2)$, strong SU(3) interactions, and classifies elementary particles
- Abelian U(1): Maxwell
- Non-Abelian $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$: Yang-Mills
- Bosons (tensor fields, force carriers):
- Gauge bosons (Yang-Mills theory, challenged by Pauli)
- Massless : gluon (strong), photon (electromagnetic)
- Massive: W and Z bosons (weak)
- Scalar bosons (Higgs mechanism, verified at CERN in 2012)
- Higgs bosons (W and Z bosons acquire mass via interactions with Higgs bosons)
- Fermions (spinor fields, generations of matters):
- Quarks \& anitquarks, leptons \& antileptons (Dirac equation)
- Mass gained via coupling with Higgs bosons (Yukawa coupling)

The Yang-Mills Theory

The Yang-Mills Theory

- We fix the following geometric datum.

The Yang-Mills Theory

- We fix the following geometric datum.
- (\mathbb{M}, g) : Minkowski space-time with signature $(-,+,+,+)$

The Yang-Mills Theory

- We fix the following geometric datum.
- (\mathbb{M}, g) : Minkowski space-time with signature $(-,+,+,+)$
- G : a compact Lie group e.g. $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$

The Yang-Mills Theory

- We fix the following geometric datum.
- (\mathbb{M}, g) : Minkowski space-time with signature $(-,+,+,+)$
- G : a compact Lie group e.g. $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$

The Yang-Mills Theory

- We fix the following geometric datum.
- (\mathbb{M}, g) : Minkowski space-time with signature $(-,+,+,+)$
- G : a compact Lie group e.g. $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$
- $P \rightarrow \mathbb{M}$: principal fibre bundle with structure group G

The Yang-Mills Theory

- We fix the following geometric datum.
- (M, g) : Minkowski space-time with signature $(-,+,+,+)$
- G : a compact Lie group e.g. $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$
- $P \rightarrow \mathbb{M}$: principal fibre bundle with structure group G
- $\operatorname{Ad}=P \times_{\text {Ad }} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g}$: adjoint bundle with induced $\langle\cdot, \cdot\rangle_{\text {Ad }}$.

The Yang-Mills Theory

- We fix the following geometric datum.
- (\mathbb{M}, g) : Minkowski space-time with signature $(-,+,+,+)$
- G : a compact Lie group e.g. $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$
- $P \rightarrow \mathbb{M}$: principal fibre bundle with structure group G
- $\mathrm{Ad}=P \times_{\mathrm{Ad}} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g}:$ adjoint bundle with induced $\langle\cdot, \cdot\rangle_{\text {Ad }}$.
- A gauge field is $A=A_{\alpha} d x^{\alpha} \in \Omega^{1}(P, \mathfrak{g})$ compatible with G.

The Yang-Mills Theory

- We fix the following geometric datum.
- (\mathbb{M}, g) : Minkowski space-time with signature $(-,+,+,+)$
- G : a compact Lie group e.g. $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$
- $P \rightarrow \mathbb{M}$: principal fibre bundle with structure group G
- $\operatorname{Ad}=P \times_{\text {Ad }} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g}$: adjoint bundle with induced $\langle\cdot, \cdot\rangle_{\text {Ad }}$.
- A gauge field is $A=A_{\alpha} d x^{\alpha} \in \Omega^{1}(P, \mathfrak{g})$ compatible with G.
- The exterior covariant derivative on Ad:

$$
D_{A}: \Omega^{k}(\mathbb{M} ; \mathfrak{g}) \rightarrow \Omega^{k+1}(\mathbb{M} ; \mathfrak{g}), \quad D_{A} \omega=d \omega+[A, \omega]
$$

The Yang-Mills Theory

- We fix the following geometric datum.
- (\mathbb{M}, g) : Minkowski space-time with signature $(-,+,+,+)$
- G : a compact Lie group e.g. $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$
- $P \rightarrow \mathbb{M}$: principal fibre bundle with structure group G
- $\operatorname{Ad}=P \times_{\text {Ad }} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g}$: adjoint bundle with induced $\langle\cdot, \cdot\rangle_{\text {Ad }}$.
- A gauge field is $A=A_{\alpha} d x^{\alpha} \in \Omega^{1}(P, \mathfrak{g})$ compatible with G.
- The exterior covariant derivative on Ad:

$$
D_{A}: \Omega^{k}(\mathbb{M} ; \mathfrak{g}) \rightarrow \Omega^{k+1}(\mathbb{M} ; \mathfrak{g}), \quad D_{A} \omega=d \omega+[A, \omega]
$$

- The curvature 2-form (field strength) : $F_{A}:=d A+\frac{1}{2}[A, A]$.

The Yang-Mills Theory

- We fix the following geometric datum.
- (\mathbb{M}, g) : Minkowski space-time with signature $(-,+,+,+)$
- G : a compact Lie group e.g. $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$
- $P \rightarrow \mathbb{M}$: principal fibre bundle with structure group G
- $\operatorname{Ad}=P \times_{\text {Ad }} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g}$: adjoint bundle with induced $\langle\cdot, \cdot\rangle_{\text {Ad }}$.
- A gauge field is $A=A_{\alpha} d x^{\alpha} \in \Omega^{1}(P, \mathfrak{g})$ compatible with G.
- The exterior covariant derivative on Ad:

$$
D_{A}: \Omega^{k}(\mathbb{M} ; \mathfrak{g}) \rightarrow \Omega^{k+1}(\mathbb{M} ; \mathfrak{g}), \quad D_{A} \omega=d \omega+[A, \omega]
$$

- The curvature 2-form (field strength) : $F_{A}:=d A+\frac{1}{2}[A, A]$.
- The Yang-Mills Lagrangian : $\mathscr{L}_{\mathrm{YM}}[A]=-\frac{1}{2}\left\langle F_{A}, F_{A}\right\rangle_{\text {Ad }}$.

The Yang-Mills Theory

- We fix the following geometric datum.
- (\mathbb{M}, g) : Minkowski space-time with signature $(-,+,+,+)$
- G : a compact Lie group e.g. $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$
- $P \rightarrow \mathbb{M}$: principal fibre bundle with structure group G
- $\operatorname{Ad}=P \times_{\text {Ad }} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g}$: adjoint bundle with induced $\langle\cdot, \cdot\rangle_{\text {Ad }}$.
- A gauge field is $A=A_{\alpha} d x^{\alpha} \in \Omega^{1}(P, \mathfrak{g})$ compatible with G.
- The exterior covariant derivative on Ad:

$$
D_{A}: \Omega^{k}(\mathbb{M} ; \mathfrak{g}) \rightarrow \Omega^{k+1}(\mathbb{M} ; \mathfrak{g}), \quad D_{A} \omega=d \omega+[A, \omega]
$$

- The curvature 2-form (field strength) : $F_{A}:=d A+\frac{1}{2}[A, A]$.
- The Yang-Mills Lagrangian : $\mathscr{L}_{\mathrm{YM}}[A]=-\frac{1}{2}\left\langle F_{A}, F_{A}\right\rangle_{\text {Ad }}$.
- The Yang-Mills action (energy) : YM $[A]=-\frac{1}{2}\left\langle F_{A}, F_{A}\right\rangle_{\mathrm{Ad}, L^{2}}$.

The Yang-Mills Theory

- We fix the following geometric datum.
- (\mathbb{M}, g) : Minkowski space-time with signature $(-,+,+,+)$
- G : a compact Lie group e.g. $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$
- $P \rightarrow \mathbb{M}$: principal fibre bundle with structure group G
- $\operatorname{Ad}=P \times_{\text {Ad }} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g}$: adjoint bundle with induced $\langle\cdot, \cdot\rangle_{\text {Ad }}$.
- A gauge field is $A=A_{\alpha} d x^{\alpha} \in \Omega^{1}(P, \mathfrak{g})$ compatible with G.
- The exterior covariant derivative on Ad:

$$
D_{A}: \Omega^{k}(\mathbb{M} ; \mathfrak{g}) \rightarrow \Omega^{k+1}(\mathbb{M} ; \mathfrak{g}), \quad D_{A} \omega=d \omega+[A, \omega]
$$

- The curvature 2-form (field strength) : $F_{A}:=d A+\frac{1}{2}[A, A]$.
- The Yang-Mills Lagrangian : $\mathscr{L}_{\mathrm{YM}}[A]=-\frac{1}{2}\left\langle F_{A}, F_{A}\right\rangle_{\text {Ad }}$.
- The Yang-Mills action (energy) : YM $[A]=-\frac{1}{2}\left\langle F_{A}, F_{A}\right\rangle_{\mathrm{Ad}, \mathrm{L}^{2}}$.
- The Yang-Mills Equation (Euler-Lagrange Equation of YM)

$$
D_{A}^{*} F_{A}=0, \quad \text { where } D_{A}^{*}=\star D_{A \star}
$$

The Yang-Mills Theory

- We fix the following geometric datum.
- (\mathbb{M}, g) : Minkowski space-time with signature $(-,+,+,+)$
- G : a compact Lie group e.g. $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$
- \mathfrak{g} : Lie algebra of G with an Ad-invariant $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$
- $P \rightarrow \mathbb{M}$: principal fibre bundle with structure group G
- $\mathrm{Ad}=P \times_{\mathrm{Ad}} \mathfrak{g} \cong \mathbb{M} \times \mathfrak{g}$: adjoint bundle with induced $\langle\cdot, \cdot\rangle_{\mathrm{Ad}}$.
- A gauge field is $A=A_{\alpha} d x^{\alpha} \in \Omega^{1}(P, \mathfrak{g})$ compatible with G.
- The exterior covariant derivative on Ad:

$$
D_{A}: \Omega^{k}(\mathbb{M} ; \mathfrak{g}) \rightarrow \Omega^{k+1}(\mathbb{M} ; \mathfrak{g}), \quad D_{A} \omega=d \omega+[A, \omega]
$$

- The curvature 2-form (field strength) : $F_{A}:=d A+\frac{1}{2}[A, A]$.
- The Yang-Mills Lagrangian : $\mathscr{L}_{\mathrm{YM}}[A]=-\frac{1}{2}\left\langle F_{A}, F_{A}\right\rangle_{\mathrm{Ad}}$.
- The Yang-Mills action (energy) : YM $[A]=-\frac{1}{2}\left\langle F_{A}, F_{A}\right\rangle_{\mathrm{Ad}, L^{2}}$.
- The Yang-Mills Equation (Euler-Lagrange Equation of YM)

$$
D_{A}^{*} F_{A}=0, \quad \text { where } D_{A}^{*}=\star D_{A \star}
$$

- To describe massive bosons, a mass term $\frac{m^{2}}{2}\langle A, A\rangle_{\mathrm{Ad}}$ is required in the Lagrangian. However, $A \notin \Omega^{1}(M, A d)$.

The Higgs mechanism

The Higgs mechanism

- Additional structures for Higgs fields

The Higgs mechanism

- Additional structures for Higgs fields
- \mathcal{W} : a complex vector space with a G-invariant $\langle\cdot, \cdot\rangle_{\mathcal{W}}$

The Higgs mechanism

- Additional structures for Higgs fields
- \mathcal{W} : a complex vector space with a G-invariant $\langle\cdot, \cdot\rangle_{\mathcal{W}}$
- $\rho: G \rightarrow \mathrm{GL}(\mathcal{W})$: a complex linear representation of G in \mathcal{W}

The Higgs mechanism

- Additional structures for Higgs fields
- \mathcal{W} : a complex vector space with a G-invariant $\langle\cdot, \cdot\rangle_{\mathcal{W}}$
- $\rho: G \rightarrow \operatorname{GL}(\mathcal{W})$: a complex linear representation of G in \mathcal{W}
- $E=P \times{ }_{\rho} \mathcal{W} \cong M \times \mathcal{W}$: associated vector bundle with $\langle\cdot, \cdot\rangle_{E}$

The Higgs mechanism

- Additional structures for Higgs fields
- \mathcal{W} : a complex vector space with a G-invariant $\langle\cdot, \cdot\rangle_{\mathcal{W}}$
- $\rho: G \rightarrow \operatorname{GL}(\mathcal{W})$: a complex linear representation of G in \mathcal{W}
- $E=P \times{ }_{\rho} \mathcal{W} \cong M \times \mathcal{W}$: associated vector bundle with $\langle\cdot, \cdot\rangle_{E}$
- The exterior covariant derivative on E :

$$
d_{A}: \Omega^{k}(\mathbb{M} ; \mathcal{W}) \rightarrow \Omega^{k+1}(\mathbb{M} ; \mathcal{W}), \quad d_{A} \Phi=d \Phi+\rho_{*}(A) \wedge \Phi .
$$

The Higgs mechanism

- Additional structures for Higgs fields
- \mathcal{W} : a complex vector space with a G-invariant $\langle\cdot, \cdot\rangle_{\mathcal{W}}$
- $\rho: G \rightarrow \operatorname{GL}(\mathcal{W})$: a complex linear representation of G in \mathcal{W}
- $E=P \times{ }_{\rho} \mathcal{W} \cong M \times \mathcal{W}$: associated vector bundle with $\langle\cdot, \cdot\rangle_{E}$
- The exterior covariant derivative on E :

$$
d_{A}: \Omega^{k}(\mathbb{M} ; \mathcal{W}) \rightarrow \Omega^{k+1}(\mathbb{M} ; \mathcal{W}), \quad d_{A} \Phi=d \Phi+\rho_{*}(A) \wedge \Phi .
$$

- The Higgs Lagrangian with the potential $\mathcal{V}(s)=a s^{2}-b s$

$$
\mathscr{L}_{H}[A, \Phi]=\left\langle d_{A} \Phi, d_{A} \Phi\right\rangle_{E}+\mathcal{V}\left(\left|\Phi^{2}\right|_{E}\right)
$$

The Higgs mechanism

- Additional structures for Higgs fields
- \mathcal{W} : a complex vector space with a G-invariant $\langle\cdot, \cdot\rangle_{\mathcal{W}}$
- $\rho: G \rightarrow \mathrm{GL}(\mathcal{W})$: a complex linear representation of G in \mathcal{W}
- $E=P \times{ }_{\rho} \mathcal{W} \cong M \times \mathcal{W}$: associated vector bundle with $\langle\cdot, \cdot\rangle_{E}$
- The exterior covariant derivative on E :

$$
d_{A}: \Omega^{k}(\mathbb{M} ; \mathcal{W}) \rightarrow \Omega^{k+1}(\mathbb{M} ; \mathcal{W}), \quad d_{A} \Phi=d \Phi+\rho_{*}(A) \wedge \Phi
$$

- The Higgs Lagrangian with the potential $\mathcal{V}(s)=a s^{2}-b s$

$$
\mathscr{L}_{H}[A, \Phi]=\left\langle d_{A} \Phi, d_{A} \Phi\right\rangle_{E}+\mathcal{V}\left(\left|\Phi^{2}\right|_{E}\right)
$$

- The Yang-Mills-Higgs Lagrangian $\mathscr{L}_{\mathrm{YMH}}=\mathscr{L}_{\mathrm{YM}}+\mathscr{L}_{\mathrm{H}}$

The Higgs mechanism

- Additional structures for Higgs fields
- \mathcal{W} : a complex vector space with a G-invariant $\langle\cdot, \cdot\rangle_{\mathcal{W}}$
- $\rho: G \rightarrow \mathrm{GL}(\mathcal{W})$: a complex linear representation of G in \mathcal{W}
- $E=P \times{ }_{\rho} \mathcal{W} \cong M \times \mathcal{W}$: associated vector bundle with $\langle\cdot, \cdot\rangle_{E}$
- The exterior covariant derivative on E :

$$
d_{A}: \Omega^{k}(\mathbb{M} ; \mathcal{W}) \rightarrow \Omega^{k+1}(\mathbb{M} ; \mathcal{W}), \quad d_{A} \Phi=d \Phi+\rho_{*}(A) \wedge \Phi .
$$

- The Higgs Lagrangian with the potential $\mathcal{V}(s)=a s^{2}-b s$

$$
\mathscr{L}_{\mathrm{H}}[A, \Phi]=\left\langle d_{A} \Phi, d_{A} \Phi\right\rangle_{E}+\mathcal{V}\left(\left|\Phi^{2}\right|_{E}\right)
$$

- The Yang-Mills-Higgs Lagrangian $\mathscr{L}_{\mathrm{YMH}}=\mathscr{L}_{\mathrm{YM}}+\mathscr{L}_{\mathrm{H}}$
- The Yang-Mills-Higgs equations

$$
\begin{aligned}
D_{A}^{*} F_{A}+J_{\rho}\left(d_{A} \Phi, \Phi\right) & =0 \\
d_{A}^{*} d_{A} \Phi+\mathcal{V}^{\prime}\left(\left|\Phi^{2}\right|_{E}\right) \Phi & =0
\end{aligned}
$$

where the bilinear form $J_{\rho}: \mathcal{W} \times \mathcal{W} \rightarrow \mathfrak{g}$ is defined by

$$
\Re\left\langle v, \rho_{*}(X) w\right\rangle_{\mathcal{W}}=\left\langle J_{\rho}(v, w), X\right\rangle_{\mathrm{Ad}}, \quad \forall X \in \mathfrak{g}, v, w \in \mathcal{W}
$$

The Higgs mechanism

- Additional structures for Higgs fields
- \mathcal{W} : a complex vector space with a G-invariant $\langle\cdot, \cdot\rangle_{\mathcal{W}}$
- $\rho: G \rightarrow \mathrm{GL}(\mathcal{W})$: a complex linear representation of G in \mathcal{W}
- $E=P \times{ }_{\rho} \mathcal{W} \cong M \times \mathcal{W}$: associated vector bundle with $\langle\cdot, \cdot\rangle_{E}$
- The exterior covariant derivative on E :

$$
d_{A}: \Omega^{k}(\mathbb{M} ; \mathcal{W}) \rightarrow \Omega^{k+1}(\mathbb{M} ; \mathcal{W}), \quad d_{A} \Phi=d \Phi+\rho_{*}(A) \wedge \Phi
$$

- The Higgs Lagrangian with the potential $\mathcal{V}(s)=a s^{2}-b s$

$$
\mathscr{L}_{\mathrm{H}}[A, \Phi]=\left\langle d_{A} \Phi, d_{A} \Phi\right\rangle_{E}+\mathcal{V}\left(\left|\Phi^{2}\right|_{E}\right)
$$

- The Yang-Mills-Higgs Lagrangian $\mathscr{L}_{\text {YMH }}=\mathscr{L}_{\mathrm{YM}}+\mathscr{L}_{\mathrm{H}}$
- The Yang-Mills-Higgs equations

$$
\begin{aligned}
D_{A}^{*} F_{A}+J_{\rho}\left(d_{A} \Phi, \Phi\right) & =0 \\
d_{A}^{*} d_{A} \Phi+\mathcal{V}^{\prime}\left(\left|\Phi^{2}\right|_{E}\right) \Phi & =0
\end{aligned}
$$

where the bilinear form $J_{\rho}: \mathcal{W} \times \mathcal{W} \rightarrow \mathfrak{g}$ is defined by

$$
\Re\left\langle v, \rho_{*}(X) w\right\rangle_{\mathcal{W}}=\left\langle J_{\rho}(v, w), X\right\rangle_{\mathrm{Ad}}, \quad \forall X \in \mathfrak{g}, v, w \in \mathcal{W}
$$

- Coupling of A and Φ after symmetry breaking generates mass.

The inverse problem

- IP : Can one recover (A, Φ) by active local measurements?

The inverse problem

- IP : Can one recover (A, Φ) by active local measurements?
- Active local measurements : adding artificial sources (J, \mathcal{F}) to the YMH equations and observing perturbed fields (V, Ψ).

The inverse problem

- IP : Can one recover (A, Φ) by active local measurements?
- Active local measurements : adding artificial sources (J, \mathcal{F}) to the YMH equations and observing perturbed fields (V, Ψ).
- Specifically, we enter 'active' sources (J, \mathcal{F}) in the YMH equations and then the coupled YMH fields will be perturbed.

$$
\begin{aligned}
& D_{A}^{*} F_{A}+J_{\rho}\left(d_{A} \Phi, \Phi\right)=0 \xrightarrow{\text { perturbed }} D_{V}^{*} F_{V}+J_{\rho}\left(d_{V} \Psi, \Psi\right)=J \\
& d_{A}^{*} d_{A} \Phi+\mathcal{V}^{\prime}\left(\left|\Phi^{2}\right|\right) \Phi=0 \longrightarrow d_{V}^{*} d_{V} \Psi+\mathcal{V}^{\prime}\left(\left|\Psi^{2}\right|\right) \Psi=\mathcal{F}
\end{aligned}
$$

The inverse problem

- IP : Can one recover (A, Φ) by active local measurements?
- Active local measurements : adding artificial sources (J, \mathcal{F}) to the YMH equations and observing perturbed fields (V, Ψ).
- Specifically, we enter 'active' sources (J, \mathcal{F}) in the YMH equations and then the coupled YMH fields will be perturbed.

$$
\begin{aligned}
& D_{A}^{*} F_{A}+J_{\rho}\left(d_{A} \Phi, \Phi\right)=0 \xrightarrow{\text { perturbed }} D_{V}^{*} F_{V}+J_{\rho}\left(d_{V} \Psi, \Psi\right)=J \\
& d_{A}^{*} d_{A} \Phi+\mathcal{V}^{\prime}\left(\left|\Phi^{2}\right|\right) \Phi=0 \longrightarrow d_{V}^{*} d_{V} \Psi+\mathcal{V}^{\prime}\left(\left|\Psi^{2}\right|\right) \Psi=\mathcal{F}
\end{aligned}
$$

- We denote by $(W, \Upsilon)=(V-A, \Psi-\Phi)$ perturbation fields.

The inverse problem

- IP : Can one recover (A, Φ) by active local measurements?
- Active local measurements : adding artificial sources (J, \mathcal{F}) to the YMH equations and observing perturbed fields (V, Ψ).
- Specifically, we enter 'active' sources (J, \mathcal{F}) in the YMH equations and then the coupled YMH fields will be perturbed.

$$
\begin{aligned}
& D_{A}^{*} F_{A}+J_{\rho}\left(d_{A} \Phi, \Phi\right)=0 \xrightarrow{\text { perturbed }} D_{V}^{*} F_{V}+J_{\rho}\left(d_{V} \Psi, \Psi\right)=J \\
& d_{A}^{*} d_{A} \Phi+\mathcal{V}^{\prime}\left(\left|\Phi^{2}\right|\right) \Phi=0 \longrightarrow d_{V}^{*} d_{V} \Psi+\mathcal{V}^{\prime}\left(\left|\Psi^{2}\right|\right) \Psi=\mathcal{F}
\end{aligned}
$$

- We denote by $(W, \Upsilon)=(V-A, \Psi-\Phi)$ perturbation fields.
- (W, Υ) obeys following equations in the gauge $D_{A}^{*} W=0$,

$$
\begin{array}{rlrl}
\square_{A, A d} W+J_{\rho}(d \Upsilon, \Phi)+ & N_{\mathrm{YM},(A, \Phi)}(W, \Upsilon) & =J, & \square_{A, \mathrm{Ad}}=D_{A}^{*} D_{A}, \\
\square_{A, \rho} \Upsilon+N_{\mathrm{H},(A, \Phi)}(W, \Upsilon) & =\mathcal{F}, & \square_{A, \rho}=d_{A}^{*} d_{A} .
\end{array}
$$

The inverse problem

- IP : Can one recover (A, Φ) by active local measurements?
- Active local measurements : adding artificial sources (J, \mathcal{F}) to the YMH equations and observing perturbed fields (V, Ψ).
- Specifically, we enter 'active' sources (J, \mathcal{F}) in the YMH equations and then the coupled YMH fields will be perturbed.

$$
\begin{aligned}
& D_{A}^{*} F_{A}+J_{\rho}\left(d_{A} \Phi, \Phi\right)=0 \xrightarrow{\text { perturbed }} D_{V}^{*} F_{V}+J_{\rho}\left(d_{V} \Psi, \Psi\right)=J \\
& d_{A}^{*} d_{A} \Phi+\mathcal{V}^{\prime}\left(\left|\Phi^{2}\right|\right) \Phi=0 \longrightarrow d_{V}^{*} d_{V} \Psi+\mathcal{V}^{\prime}\left(\left|\Psi^{2}\right|\right) \Psi=\mathcal{F}
\end{aligned}
$$

- We denote by $(W, \Upsilon)=(V-A, \Psi-\Phi)$ perturbation fields.
- (W, Υ) obeys following equations in the gauge $D_{A}^{*} W=0$,

$$
\begin{aligned}
\square_{A, A d} W+J_{\rho}(d \Upsilon, \Phi)+N_{\mathrm{YM},(A, \Phi)}(W, \Upsilon) & =J, & \square_{A, \mathrm{Ad}}=D_{A}^{*} D_{A}, \\
\square_{A, \rho} \Upsilon+N_{\mathrm{H},(A, \Phi)}(W, \Upsilon) & =\mathcal{F}, & \square_{A, \rho}=d_{A}^{*} d_{A} .
\end{aligned}
$$

- The active measurement is encoded in the well-defined Source-to-Solution map $L^{A, \Phi}:(J, \mathcal{F}) \rightarrow(W, \Upsilon)$.

The inverse problem

- IP : Can one recover (A, Φ) by active local measurements?
- Active local measurements : adding artificial sources (J, \mathcal{F}) to the YMH equations and observing perturbed fields (V, Ψ).
- Specifically, we enter 'active' sources (J, \mathcal{F}) in the YMH equations and then the coupled YMH fields will be perturbed.

$$
\begin{aligned}
& D_{A}^{*} F_{A}+J_{\rho}\left(d_{A} \Phi, \Phi\right)=0 \quad \text { perturbed } \\
& d_{A}^{*} d_{A} \Phi+\mathcal{V}^{\prime}\left(\left|\Phi^{2}\right|\right) \Phi=0
\end{aligned} \begin{aligned}
& D_{V}^{*} F_{V}+J_{\rho}\left(d_{V} \Psi, \Psi\right)=J \\
& d_{V}^{*} d_{V} \Psi+\mathcal{V}^{\prime}\left(\left|\Psi^{2}\right|\right) \Psi=\mathcal{F}
\end{aligned}
$$

- We denote by $(W, \Upsilon)=(V-A, \Psi-\Phi)$ perturbation fields.
- (W, Υ) obeys following equations in the gauge $D_{A}^{*} W=0$,

$$
\begin{aligned}
\square_{A, \mathrm{Ad}} W+J_{\rho}(d \Upsilon, \Phi)+N_{\mathrm{YM},(A, \Phi)}(W, \Upsilon) & =J, & \square_{A, \mathrm{Ad}}=D_{A}^{*} D_{A}, \\
\square_{A, \rho} \Upsilon+N_{\mathrm{H},(A, \Phi)}(W, \Upsilon) & =\mathcal{F}, & \square_{A, \rho}=d_{A}^{*} d_{A} .
\end{aligned}
$$

- The active measurement is encoded in the well-defined Source-to-Solution map $L^{A, \Phi}:(J, \mathcal{F}) \rightarrow(W, \Upsilon)$.
- The geometric inverse problem in question reduces to does $L^{A, \Phi}$ determine (A, Φ) uniquely up to a gauge?

Retrieving coupled Yang-Mills-Higgs fields

$$
\begin{aligned}
& \mathbb{D}:=\left\{(t, x) \in \mathbb{R}^{1+3}:|x| \leq t+1,|x| \leq 1-t\right\} \\
& \partial^{-} \mathbb{D}=\{(t, x) \in \mathbb{D}:|x|=t+1\} \\
& \mho:=\left\{(t, x):(t, x) \in \mathbb{D}^{\circ} \text { and }|x|<\varepsilon_{0}\right\}
\end{aligned}
$$

Theorem (CLOP)

Retrieving coupled Yang-Mills-Higgs fields

$$
\begin{aligned}
& \mathbb{D}:=\left\{(t, x) \in \mathbb{R}^{1+3}:|x| \leq t+1,|x| \leq 1-t\right\} \\
& \partial^{-} \mathbb{D}=\{(t, x) \in \mathbb{D}:|x|=t+1\} \\
& \mho:=\left\{(t, x):(t, x) \in \mathbb{D}^{\circ} \text { and }|x|<\varepsilon_{0}\right\}
\end{aligned}
$$

Theorem (CLOP)

- Set the data set (a variant of the source-to-solution map)

$$
\mathcal{D}_{(A, \Phi)}:=\left\{\begin{array}{l|l}
\left.(V, \Psi)\right|_{\mho} \left\lvert\, \begin{array}{l}
(V, \Psi) \in C^{3} \text { solves YMH in } \mathbb{D} \backslash \mho \\
\text { and }(V, \Psi) \sim(A, \Phi) \text { near } \partial^{-} \mathbb{D}
\end{array}\right.
\end{array}\right\} .
$$

Retrieving coupled Yang-Mills-Higgs fields

$$
\begin{aligned}
& \mathbb{D}:=\left\{(t, x) \in \mathbb{R}^{1+3}:|x| \leq t+1,|x| \leq 1-t\right\} \\
& \partial^{-} \mathbb{D}=\{(t, x) \in \mathbb{D}:|x|=t+1\} \\
& \mho:=\left\{(t, x):(t, x) \in \mathbb{D}^{\circ} \text { and }|x|<\varepsilon_{0}\right\}
\end{aligned}
$$

Theorem (CLOP)

- Set the data set (a variant of the source-to-solution map)

$$
\mathcal{D}_{(A, \Phi)}:=\left\{\begin{array}{l|l}
\left.(V, \Psi)\right|_{\mho} \left\lvert\, \begin{array}{l}
(V, \Psi) \in C^{3} \text { solves YMH in } \mathbb{D} \backslash \mho \\
\text { and }(V, \Psi) \sim(A, \Phi) \text { near } \partial^{-} \mathbb{D}
\end{array}\right.
\end{array}\right\} .
$$

- Assume ρ_{*} is fully charged ($\rho_{*}(X) w=0, \forall X \in \mathfrak{g} \Rightarrow w=0$) and $Z(\mathfrak{g}) \cap \operatorname{Ker} \rho_{*}=\{0\}$. (Necessary non-degeneracy.)

Retrieving coupled Yang-Mills-Higgs fields

$$
\begin{aligned}
& \mathbb{D}:=\left\{(t, x) \in \mathbb{R}^{1+3}:|x| \leq t+1,|x| \leq 1-t\right\} \\
& \partial^{-} \mathbb{D}=\{(t, x) \in \mathbb{D}:|x|=t+1\} \\
& \mho:=\left\{(t, x):(t, x) \in \mathbb{D}^{\circ} \text { and }|x|<\varepsilon_{0}\right\}
\end{aligned}
$$

Theorem (CLOP)

- Set the data set (a variant of the source-to-solution map)

$$
\mathcal{D}_{(A, \Phi)}:=\left\{\begin{array}{l|l}
\left.(V, \Psi)\right|_{\mho} \left\lvert\, \begin{array}{l}
(V, \Psi) \in C^{3} \text { solves YMH in } \mathbb{D} \backslash \mho \\
\text { and }(V, \Psi) \sim(A, \Phi) \text { near } \partial^{-} \mathbb{D}
\end{array}\right.
\end{array}\right\} .
$$

- Assume ρ_{*} is fully charged ($\rho_{*}(X) w=0, \forall X \in \mathfrak{g} \Rightarrow w=0$) and $Z(\mathfrak{g}) \cap$ Ker $\rho_{*}=\{0\}$. (Necessary non-degeneracy.)
- For two Yang-Mills-Higgs fields $(A, \Phi),(B, \equiv)$, there holds

$$
\begin{aligned}
& \mathcal{D}_{(A, \Phi)}=\mathcal{D}_{(B, \equiv)} \Longleftrightarrow(A, \Phi) \sim(B, \equiv) \text { in } \mathbb{D} \\
& \quad \Longleftrightarrow \exists \mathrm{U} \in G^{0}(\mathbb{D}, p) \text { s.t. }(B, \equiv)=\left(\mathrm{U}^{-1} d \mathrm{U}+\mathrm{U}^{-1} A \mathrm{U}, \rho\left(\mathrm{U}^{-1}\right) \Phi\right)
\end{aligned}
$$

Remark on the representation in the Standard Model

The hypotheses on the representation ρ_{*} are natural in physics.

Remark on the representation in the Standard Model

The hypotheses on the representation ρ_{*} are natural in physics.

- The electroweak model : $G=\mathrm{SU}(2) \times \mathbb{S}^{1}$ and $\mathcal{W}=\mathbb{C}^{2}$

Remark on the representation in the Standard Model

The hypotheses on the representation ρ_{*} are natural in physics.

- The electroweak model : $G=\mathrm{SU}(2) \times \mathbb{S}^{1}$ and $\mathcal{W}=\mathbb{C}^{2}$
- The representation ρ is given by

$$
\rho\left(g, e^{\imath \theta}\right) w=e^{\imath n \curlyvee \theta} g w \quad \text { with }\left(g, e^{\imath \theta}\right) \in \mathrm{SU}(2) \times \mathbb{S}^{1} .
$$

Remark on the representation in the Standard Model

The hypotheses on the representation ρ_{*} are natural in physics.

- The electroweak model : $G=\mathrm{SU}(2) \times \mathbb{S}^{1}$ and $\mathcal{W}=\mathbb{C}^{2}$
- The representation ρ is given by

$$
\rho\left(g, e^{\imath \theta}\right) w=e^{\imath n \gamma \theta} g w \quad \text { with }\left(g, e^{\imath \theta}\right) \in \mathrm{SU}(2) \times \mathbb{S}^{1} .
$$

- The derivative ρ_{*} is easily computed as

$$
\rho_{*}(X, \imath x) w=\left(X+\imath n_{Y} \times \operatorname{Id}\right) w \quad \text { with }(X, \imath x) \in \mathfrak{g}=\mathfrak{s u}(2) \times \imath \mathbb{R} .
$$

Remark on the representation in the Standard Model

The hypotheses on the representation ρ_{*} are natural in physics.

- The electroweak model : $G=\mathrm{SU}(2) \times \mathbb{S}^{1}$ and $\mathcal{W}=\mathbb{C}^{2}$
- The representation ρ is given by

$$
\rho\left(g, e^{\imath \theta}\right) w=e^{\imath n \gamma \theta} g w \quad \text { with }\left(g, e^{\imath \theta}\right) \in \mathrm{SU}(2) \times \mathbb{S}^{1} .
$$

- The derivative ρ_{*} is easily computed as

$$
\rho_{*}(X, \imath x) w=\left(X+\imath n_{Y} \times \operatorname{Id}\right) w \quad \text { with }(X, \imath x) \in \mathfrak{g}=\mathfrak{s u}(2) \times \imath \mathbb{R} .
$$

- For $n_{Y} \neq 0$ we see that ρ_{*} is fully charged and $\operatorname{Ker} \rho_{*}=\{0\}$.

Remark on the representation in the Standard Model

The hypotheses on the representation ρ_{*} are natural in physics.

- The electroweak model : $G=\mathrm{SU}(2) \times \mathbb{S}^{1}$ and $\mathcal{W}=\mathbb{C}^{2}$
- The representation ρ is given by

$$
\rho\left(g, e^{\imath \theta}\right) w=e^{\imath n \gamma \theta} g w \quad \text { with }\left(g, e^{\imath \theta}\right) \in \mathrm{SU}(2) \times \mathbb{S}^{1} .
$$

- The derivative ρ_{*} is easily computed as

$$
\rho_{*}(X, \imath x) w=\left(X+\imath n_{Y} \times \operatorname{Id}\right) w \quad \text { with }(X, \imath x) \in \mathfrak{g}=\mathfrak{s u}(2) \times \imath \mathbb{R} .
$$

- For $n_{Y} \neq 0$ we see that ρ_{*} is fully charged and $\operatorname{Ker} \rho_{*}=\{0\}$.
- The centre of the Lie algebra is $\mathfrak{u}(1)=\imath \mathbb{R}$.

Remark on the representation in the Standard Model

The hypotheses on the representation ρ_{*} are natural in physics.

- The electroweak model : $G=\mathrm{SU}(2) \times \mathbb{S}^{1}$ and $\mathcal{W}=\mathbb{C}^{2}$
- The representation ρ is given by

$$
\rho\left(g, e^{\imath \theta}\right) w=e^{\imath n_{\gamma} \theta} g w \quad \text { with }\left(g, e^{\imath \theta}\right) \in \mathrm{SU}(2) \times \mathbb{S}^{1}
$$

- The derivative ρ_{*} is easily computed as

$$
\rho_{*}(X, \imath x) w=\left(X+\imath n_{Y} x \operatorname{Id}\right) w \quad \text { with }(X, \imath x) \in \mathfrak{g}=\mathfrak{s u}(2) \times \imath \mathbb{R}
$$

- For $n_{Y} \neq 0$ we see that ρ_{*} is fully charged and $\operatorname{Ker} \rho_{*}=\{0\}$.
- The centre of the Lie algebra is $\mathfrak{u}(1)=\imath \mathbb{R}$.
- The Standard Model : $G=\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathbb{S}^{1}$.

Remark on the representation in the Standard Model

The hypotheses on the representation ρ_{*} are natural in physics.

- The electroweak model : $G=\mathrm{SU}(2) \times \mathbb{S}^{1}$ and $\mathcal{W}=\mathbb{C}^{2}$
- The representation ρ is given by

$$
\rho\left(g, e^{\imath \theta}\right) w=e^{\imath n_{\gamma} \theta} g w \quad \text { with }\left(g, e^{\imath \theta}\right) \in \mathrm{SU}(2) \times \mathbb{S}^{1}
$$

- The derivative ρ_{*} is easily computed as

$$
\rho_{*}(X, \imath x) w=\left(X+\imath n_{Y} x \operatorname{Id}\right) w \quad \text { with }(X, \imath x) \in \mathfrak{g}=\mathfrak{s u}(2) \times \imath \mathbb{R}
$$

- For $n_{Y} \neq 0$ we see that ρ_{*} is fully charged and $\operatorname{Ker} \rho_{*}=\{0\}$.
- The centre of the Lie algebra is $\mathfrak{u}(1)=\imath \mathbb{R}$.
- The Standard Model: $G=\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathbb{S}^{1}$.
- ρ_{*} is fully charged and $\operatorname{Ker} \rho_{*}=\mathfrak{s u}(3)$

Remark on the representation in the Standard Model

The hypotheses on the representation ρ_{*} are natural in physics.

- The electroweak model : $G=\mathrm{SU}(2) \times \mathbb{S}^{1}$ and $\mathcal{W}=\mathbb{C}^{2}$
- The representation ρ is given by

$$
\rho\left(g, e^{\imath \theta}\right) w=e^{\imath n_{\gamma} \theta} g w \quad \text { with }\left(g, e^{\imath \theta}\right) \in \mathrm{SU}(2) \times \mathbb{S}^{1}
$$

- The derivative ρ_{*} is easily computed as

$$
\rho_{*}(X, \imath x) w=\left(X+\imath n_{Y} x \operatorname{Id}\right) w \quad \text { with }(X, \imath x) \in \mathfrak{g}=\mathfrak{s u}(2) \times \imath \mathbb{R}
$$

- For $n_{Y} \neq 0$ we see that ρ_{*} is fully charged and Ker $\rho_{*}=\{0\}$.
- The centre of the Lie algebra is $\mathfrak{u}(1)=\imath \mathbb{R}$.
- The Standard Model: $G=\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathbb{S}^{1}$.
- ρ_{*} is fully charged and $\operatorname{Ker} \rho_{*}=\mathfrak{s u}(3)$
- $\mathfrak{s u}(3) \cap \mathfrak{u}(1)=\{0\}$.

Modified Kurylev-Lassas-Uhlmann linearization scheme

Modified Kurylev-Lassas-Uhlmann linearization scheme

- Kurylev-Lassas-Uhlmann pioneered a novel framework to solve inverse problems of time-dependent nonlinear hyperbolic PDEs.

Modified Kurylev-Lassas-Uhlmann linearization scheme

- Kurylev-Lassas-Uhlmann pioneered a novel framework to solve inverse problems of time-dependent nonlinear hyperbolic PDEs.
- CLOP simplified KLU's four-wave linearization to three-wave linearization for cubic wave equations (e.g. the Higgs equation)

Modified Kurylev-Lassas-Uhlmann linearization scheme

- Kurylev-Lassas-Uhlmann pioneered a novel framework to solve inverse problems of time-dependent nonlinear hyperbolic PDEs.
- CLOP simplified KLU's four-wave linearization to three-wave linearization for cubic wave equations (e.g. the Higgs equation)
- The sources $(J, \mathcal{F})=\sum_{k=1}^{3} \epsilon_{(k)}\left(J_{(k)}, \mathcal{F}_{(k)}\right)$ for small $\epsilon_{(k)}>0$

Modified Kurylev-Lassas-Uhlmann linearization scheme

- Kurylev-Lassas-Uhlmann pioneered a novel framework to solve inverse problems of time-dependent nonlinear hyperbolic PDEs.
- CLOP simplified KLU's four-wave linearization to three-wave linearization for cubic wave equations (e.g. the Higgs equation)
- The sources $(J, \mathcal{F})=\sum_{k=1}^{3} \epsilon_{(k)}\left(J_{(k)}, \mathcal{F}_{(k)}\right)$ for small $\epsilon_{(k)}>0$
- Denote $\bullet_{(k)}=\left.\partial_{\epsilon_{(k)}}(\bullet)\right|_{\epsilon=0}, \bullet(k l)=\left.\partial_{\epsilon_{(k)}} \partial_{\epsilon_{(l)}}(\bullet)\right|_{\epsilon=0}, \cdots$

Modified Kurylev-Lassas-Uhlmann linearization scheme

- Kurylev-Lassas-Uhlmann pioneered a novel framework to solve inverse problems of time-dependent nonlinear hyperbolic PDEs.
- CLOP simplified KLU's four-wave linearization to three-wave linearization for cubic wave equations (e.g. the Higgs equation)
- The sources $(J, \mathcal{F})=\sum_{k=1}^{3} \epsilon_{(k)}\left(J_{(k)}, \mathcal{F}_{(k)}\right)$ for small $\epsilon_{(k)}>0$
- Denote $\bullet_{(k)}=\left.\partial_{\epsilon_{(k)}}(\bullet)\right|_{\epsilon=0}, \bullet_{(k)}=\left.\partial_{\epsilon_{(k)}} \partial_{\epsilon_{(1)}}(\bullet)\right|_{\epsilon=0}, \cdots$
- The linearized YMH, with lower order terms removed, reads

$$
\begin{aligned}
\square_{A, A d} W_{(k)}+J_{\rho}\left(d_{A} \Upsilon_{(k)}, \Phi\right) & =J_{(k)} \\
\square_{A, \rho} \Upsilon_{(k)} & =\mathcal{F}_{(k)} \\
\square_{A, A d} W_{(k l)}+J_{\rho}\left(d_{A} \Upsilon_{(k l)}, \Phi\right) & =N_{(k l)} \\
\square_{A, \rho} \Upsilon_{(k l)} & =\mathcal{N}_{(k l)} \\
\square_{A, \text { Ad }} W_{(123)}+J_{\rho}\left(d_{A} \Upsilon_{(123)}, \Phi\right) & =N_{(123)} \\
\square_{A, \rho} \Upsilon_{(123)} & =\mathcal{N}_{(123)} .
\end{aligned}
$$

Modified Kurylev-Lassas-Uhlmann linearization scheme

- Kurylev-Lassas-Uhlmann pioneered a novel framework to solve inverse problems of time-dependent nonlinear hyperbolic PDEs.
- CLOP simplified KLU's four-wave linearization to three-wave linearization for cubic wave equations (e.g. the Higgs equation)
- The sources $(J, \mathcal{F})=\sum_{k=1}^{3} \epsilon_{(k)}\left(J_{(k)}, \mathcal{F}_{(k)}\right)$ for small $\epsilon_{(k)}>0$
- Denote $\bullet_{(k)}=\left.\partial_{\epsilon_{(k)}}(\bullet)\right|_{\epsilon=0}, \bullet_{(k)}=\left.\partial_{\epsilon_{(k)}} \partial_{\epsilon_{(1)}}(\bullet)\right|_{\epsilon=0}, \cdots$
- The linearized YMH, with lower order terms removed, reads

$$
\begin{aligned}
\square_{A, A d} W_{(k)}+J_{\rho}\left(d_{A} \Upsilon_{(k)}, \Phi\right) & =J_{(k)} \\
\square_{A, \rho} \Upsilon_{(k)} & =\mathcal{F}_{(k)} \\
\square_{A, A d} W_{(k l)}+J_{\rho}\left(d_{A} \Upsilon_{(k l)}, \Phi\right) & =N_{(k l)} \\
\square_{A, \rho} \Upsilon_{(k l)} & =\mathcal{N}_{(k l)} \\
\square_{A, A d} W_{(123)}+J_{\rho}\left(d_{A} \Upsilon_{(123)}, \Phi\right) & =N_{(123)} \\
\square_{A, \rho} \Upsilon_{(123)} & =\mathcal{N}_{(123)} .
\end{aligned}
$$

- In previous projects, CLOP recovered the gauge field A for decoupled YM equations and H equations by using the three-wave linearization and the method of broken X-ray.

Modified Kurylev-Lassas-Uhlmann linearization scheme

- Kurylev-Lassas-Uhlmann pioneered a novel framework to solve inverse problems of time-dependent nonlinear hyperbolic PDEs.
- CLOP simplified KLU's four-wave linearization to three-wave linearization for cubic wave equations (e.g. the Higgs equation)
- The sources $(J, \mathcal{F})=\sum_{k=1}^{3} \epsilon_{(k)}\left(J_{(k)}, \mathcal{F}_{(k)}\right)$ for small $\epsilon_{(k)}>0$
- Denote $\bullet_{(k)}=\left.\partial_{\epsilon_{(k)}}(\bullet)\right|_{\epsilon=0}, \bullet_{(k)}=\left.\partial_{\epsilon_{(k)}} \partial_{\epsilon_{(1)}}(\bullet)\right|_{\epsilon=0}, \cdots$
- The linearized YMH, with lower order terms removed, reads

$$
\begin{aligned}
\square_{A, A d} W_{(k)}+J_{\rho}\left(d_{A} \Upsilon_{(k)}, \Phi\right) & =J_{(k)} \\
\square_{A, \rho} \Upsilon_{(k)} & =\mathcal{F}_{(k)} \\
\square_{A, A d} W_{(k l)}+J_{\rho}\left(d_{A} \Upsilon_{(k l)}, \Phi\right) & =N_{(k l)} \\
\square_{A, \rho} \Upsilon_{(k l)} & =\mathcal{N}_{(k l)} \\
\square_{A, A d} W_{(123)}+J_{\rho}\left(d_{A} \Upsilon_{(123)}, \Phi\right) & =N_{(123)} \\
\square_{A, \rho} \Upsilon_{(123)} & =\mathcal{N}_{(123)} .
\end{aligned}
$$

- In previous projects, CLOP recovered the gauge field A for decoupled YM equations and H equations by using the three-wave linearization and the method of broken X-ray.
- The challenge of coupled YMH is the coupling term $J_{\rho}(\cdot, \Phi)$.

Nonlinear interaction of three waves

The linearized YMH system is illustrated by the following figures of three-wave interactions.

Nonlinear interaction of three waves

The linearized YMH system is illustrated by the following figures of three-wave interactions.

- 2D

Nonlinear interaction of three waves

The linearized YMH system is illustrated by the following figures of three-wave interactions.

- 2D

$x_{(1)}, x_{(2)}, x_{(3)}$

X
- 3D

The coupled parallel transport and broken X-ray transform

The coupled parallel transport and broken X-ray transform

- The decoupled parallel transport and broken X-ray transform

The coupled parallel transport and broken X-ray transform

- The decoupled parallel transport and broken X-ray transform
- By Hörmander-Duistermaat's FIO, $\square_{A} u=0$ corresponds to

$$
\mathcal{L}_{H_{\sigma\left[\square_{A}\right]}} \sigma[u]+\imath \sigma_{\mathrm{sub}}\left[\square_{A}\right] \sigma[u]=0 .
$$

The coupled parallel transport and broken X-ray transform

- The decoupled parallel transport and broken X-ray transform
- By Hörmander-Duistermaat's FIO, $\square_{A} u=0$ corresponds to

$$
\mathcal{L}_{H_{\sigma\left[\square_{A}\right]}} \sigma[u]+\imath \sigma_{\mathrm{sub}}\left[\square_{A}\right] \sigma[u]=0 .
$$

- The parallel transport equation of weighted principal symbols

$$
\partial_{s}\left(\sigma_{\omega, \beta}[u]\right)+\rho_{*}(\langle A, \dot{\gamma}(s)\rangle) \sigma_{\omega, \beta}[u]=0 .
$$

The coupled parallel transport and broken X-ray transform

- The decoupled parallel transport and broken X-ray transform
- By Hörmander-Duistermat's FIO, $\square_{A} u=0$ corresponds to

$$
\mathcal{L}_{H_{\sigma\left[\square_{A}\right]}} \sigma[u]+\imath \sigma_{\mathrm{sub}}\left[\square_{A}\right] \sigma[u]=0 .
$$

- The parallel transport equation of weighted principal symbols

$$
\partial_{s}\left(\sigma_{\omega, \beta}[u]\right)+\rho_{*}(\langle A, \dot{\gamma}(s)\rangle) \sigma_{\omega, \beta}[u]=0 .
$$

- The parallel transport of weighed principal symbols

$$
\sigma_{\omega, \beta}[u](t)=\mathrm{P}_{\gamma(t) \leftarrow \gamma(0)}^{A, \rho} \sigma_{\omega, \beta}[u](0) .
$$

The coupled parallel transport and broken X-ray transform

- The decoupled parallel transport and broken X-ray transform
- By Hörmander-Duistermaat's FIO, $\square_{A} u=0$ corresponds to

$$
\mathcal{L}_{H_{\sigma\left[\square_{A}\right]}} \sigma[u]+\imath \sigma_{\mathrm{sub}}\left[\square_{A}\right] \sigma[u]=0 .
$$

- The parallel transport equation of weighted principal symbols

$$
\partial_{s}\left(\sigma_{\omega, \beta}[u]\right)+\rho_{*}(\langle A, \dot{\gamma}(s)\rangle) \sigma_{\omega, \beta}[u]=0 .
$$

- The parallel transport of weighed principal symbols

$$
\sigma_{\omega, \beta}[u](t)=\mathrm{P}_{\gamma(t) \leftarrow \gamma(0)}^{A, \rho} \sigma_{\omega, \beta}[u](0)
$$

- The broken X-ray transform : $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \rho}$

The coupled parallel transport and broken X-ray transform

- The decoupled parallel transport and broken X-ray transform
- By Hörmander-Duistermaat's FIO, $\square_{A} u=0$ corresponds to

$$
\mathcal{L}_{H_{\sigma\left[\square_{A}\right]}} \sigma[u]+\imath \sigma_{\mathrm{sub}}\left[\square_{A}\right] \sigma[u]=0
$$

- The parallel transport equation of weighted principal symbols

$$
\partial_{s}\left(\sigma_{\omega, \beta}[u]\right)+\rho_{*}(\langle A, \dot{\gamma}(s)\rangle) \sigma_{\omega, \beta}[u]=0
$$

- The parallel transport of weighed principal symbols

$$
\sigma_{\omega, \beta}[u](t)=\mathrm{P}_{\gamma(t) \leftarrow \gamma(0)}^{A, \rho} \sigma_{\omega, \beta}[u](0)
$$

- The broken X-ray transform : $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \rho}$
- The coupled parallel transport equation with Higgs fields

$$
\begin{aligned}
\dot{w}_{\beta}+\left[A_{\gamma}(\dot{\gamma}), w_{\beta}\right]-\frac{1}{2} \dot{\gamma}_{\beta}(t) J_{\rho}(v, \Phi(\gamma(t))) & =0 \\
\dot{v}+\rho_{*}\left(A_{\gamma}(\dot{\gamma})\right) v & =0
\end{aligned}
$$

The coupled parallel transport and broken X-ray transform

- The decoupled parallel transport and broken X-ray transform
- By Hörmander-Duistermaat's FIO, $\square_{A} u=0$ corresponds to

$$
\mathcal{L}_{H_{\sigma\left[\square_{A}\right]}} \sigma[u]+\imath \sigma_{\mathrm{sub}}\left[\square_{A}\right] \sigma[u]=0
$$

- The parallel transport equation of weighted principal symbols

$$
\partial_{s}\left(\sigma_{\omega, \beta}[u]\right)+\rho_{*}(\langle A, \dot{\gamma}(s)\rangle) \sigma_{\omega, \beta}[u]=0
$$

- The parallel transport of weighed principal symbols

$$
\sigma_{\omega, \beta}[u](t)=\mathrm{P}_{\gamma(t) \leftarrow \gamma(0)}^{A, \rho} \sigma_{\omega, \beta}[u](0)
$$

- The broken X-ray transform : $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \rho}$
- The coupled parallel transport equation with Higgs fields

$$
\begin{aligned}
\dot{w}_{\beta}+\left[A_{\gamma}(\dot{\gamma}), w_{\beta}\right]-\frac{1}{2} \dot{\gamma}_{\beta}(t) J_{\rho}(v, \Phi(\gamma(t))) & =0 \\
\dot{v}+\rho_{*}\left(A_{\gamma}(\dot{\gamma})\right) v & =0
\end{aligned}
$$

- The coupled parallel transport with Higgs fields

$$
\mathrm{P}_{\gamma}^{A, \Phi, \rho}=\left(\begin{array}{cc}
\mathrm{P}_{\gamma}^{A, \mathrm{Ad}} & \left(\mathrm{P}_{\gamma}^{A, \Phi, \rho}\right)_{12} \\
0 & \mathrm{P}_{\gamma}^{A, \rho}
\end{array}\right)
$$

Manipulating the sources effectively

Manipulating the sources effectively

- Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$
\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \Phi, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \Phi, \rho}
$$

Manipulating the sources effectively

- Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$
\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \Phi, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \Phi, \rho}
$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.

Manipulating the sources effectively

- Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$
\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \Phi, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \Phi, \rho}
$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
- This amounts to making holes on the matrix $\mathrm{S}_{z \leftarrow y<x}^{A, \Phi, \rho}$ to obtain solutions to linear equations with fewer coupling terms.

Manipulating the sources effectively

- Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$
\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \Phi, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \Phi, \rho}
$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
- This amounts to making holes on the matrix $\mathrm{S}_{z \leftarrow y<x}^{A, \Phi, \rho}$ to obtain solutions to linear equations with fewer coupling terms.
- Source 1: $(J, 0)$

Manipulating the sources effectively

- Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$
\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \Phi, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \Phi, \rho}
$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
- This amounts to making holes on the matrix $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}$ to obtain solutions to linear equations with fewer coupling terms.
- Source 1: $(J, 0)$
- It marginalizes the coupling term.

Manipulating the sources effectively

- Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$
\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \Phi, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \Phi, \rho}
$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
- This amounts to making holes on the matrix $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}$ to obtain solutions to linear equations with fewer coupling terms.
- Source 1: $(J, 0)$
- It marginalizes the coupling term.
- We can extract the decoupled X-ray transform $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, A d}$.

Manipulating the sources effectively

- Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$
\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \Phi, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \Phi, \rho}
$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
- This amounts to making holes on the matrix $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}$ to obtain solutions to linear equations with fewer coupling terms.
- Source 1: $(J, 0)$
- It marginalizes the coupling term.
- We can extract the decoupled X -ray transform $\mathrm{S}_{\mathrm{Z} \leftarrow y \leftarrow x}^{A, A d}$.
- Source 2: $\left(0, J_{(2)}, J_{(3)}, \mathcal{F}_{(1)}, 0,0\right)$ with J abelian

Manipulating the sources effectively

- Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$
\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \Phi, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \Phi, \rho}
$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
- This amounts to making holes on the matrix $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}$ to obtain solutions to linear equations with fewer coupling terms.
- Source 1: $(J, 0)$
- It marginalizes the coupling term.
- We can extract the decoupled X -ray transform $\mathrm{S}_{\mathrm{Z} \leftarrow y \leftarrow x}^{A, A d}$.
- Source 2: $\left(0, J_{(2)}, J_{(3)}, \mathcal{F}_{(1)}, 0,0\right)$ with J abelian
- All of the commutator terms vanish.

Manipulating the sources effectively

- Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$
\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \Phi, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \Phi, \rho}
$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
- This amounts to making holes on the matrix $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}$ to obtain solutions to linear equations with fewer coupling terms.
- Source 1: $(J, 0)$
- It marginalizes the coupling term.
- We can extract the decoupled X-ray transform $\mathrm{S}_{\mathrm{R} \leftarrow y \leftarrow x}^{A, A d}$.
- Source 2: $\left(0, J_{(2)}, J_{(3)}, \mathcal{F}_{(1)}, 0,0\right)$ with J abelian
- All of the commutator terms vanish.
- The broken X-ray $S_{z \& y<x}^{A, \Phi, \rho}$ has only one off-diagonal term.

Manipulating the sources effectively

- Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$
\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \Phi, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \Phi, \rho}
$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
- This amounts to making holes on the matrix $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}$ to obtain solutions to linear equations with fewer coupling terms.
- Source 1: $(J, 0)$
- It marginalizes the coupling term.
- We can extract the decoupled X -ray transform $\mathrm{S}_{\mathrm{Z} \leftarrow y \leftarrow x}^{A, A d}$.
- Source 2: $\left(0, J_{(2)}, J_{(3)}, \mathcal{F}_{(1)}, 0,0\right)$ with J abelian
- All of the commutator terms vanish.
- The broken X-ray $S_{z \& y \leftarrow x}^{A, \Phi, \rho}$ has only one off-diagonal term.
- But the (2,2)-entry $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \rho}$ is intact.

Manipulating the sources effectively

- Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$
\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \Phi, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \Phi, \rho}
$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
- This amounts to making holes on the matrix $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}$ to obtain solutions to linear equations with fewer coupling terms.
- Source 1: $(J, 0)$
- It marginalizes the coupling term.
- We can extract the decoupled X-ray transform $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, A d}$.
\rightarrow Source 2: $\left(0, J_{(2)}, J_{(3)}, \mathcal{F}_{(1)}, 0,0\right)$ with J abelian
- All of the commutator terms vanish.
- The broken X-ray $\mathrm{S}_{z \leftarrow+\leftarrow x}^{A, \Phi, \rho}$ has only one off-diagonal term.
- But the (2, 2)-entry $S_{z \leftarrow y \leftarrow x}^{A, \rho}$ is intact.
- A is recovered via $S_{z \leftarrow y \leftarrow x}^{A, \operatorname{Ad} \oplus \rho}$ as $Z(\mathfrak{g}) \cap \operatorname{Ker} \rho_{*}=\{0\}$.

Manipulating the sources effectively

- Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$
\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \Phi, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \Phi, \rho}
$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
- This amounts to making holes on the matrix $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}$ to obtain solutions to linear equations with fewer coupling terms.
- Source 1: $(J, 0)$
- It marginalizes the coupling term.
- We can extract the decoupled X-ray transform $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, A d}$.
\rightarrow Source 2: $\left(0, J_{(2)}, J_{(3)}, \mathcal{F}_{(1)}, 0,0\right)$ with J abelian
- All of the commutator terms vanish.
- The broken X-ray $\mathrm{S}_{z \leftarrow+\leftarrow x}^{A, \Phi, \rho}$ has only one off-diagonal term.
- But the (2,2)-entry $S_{z \leftarrow y \leftarrow x}^{A, \rho}$ is intact.
- A is recovered via $S_{z \leftarrow y \leftarrow x}^{A, \operatorname{Ad} \oplus \rho}$ as $Z(\mathfrak{g}) \cap \operatorname{Ker} \rho_{*}=\{0\}$.
- The measured off-diagonal contribution reads explicitly

$$
\left(\mathrm{P}_{z \leftarrow y}^{A, \Phi, \rho}\right)_{12}(v)=-\frac{1}{2} \mathrm{P}_{z \leftarrow y}^{A, A d} \int_{t_{y}}^{t_{z}} J_{\rho}\left(\dot{\gamma}_{\beta}(s) v, \rho\left(U_{\gamma}^{A}(s)\right)^{-1} \Phi(\gamma(s))\right) d s
$$

Manipulating the sources effectively

- Direct strategy: recover (A, Φ) from the coupled broken X-ray?

$$
\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}=\mathrm{P}_{z \leftarrow y}^{A, \Phi, \rho} \circ \mathrm{P}_{y \leftarrow x}^{A, \Phi, \rho}
$$

- Smart strategy: invoke sources such that one can gain A first and then use other sources to recover Φ provided A known.
- This amounts to making holes on the matrix $\mathrm{S}_{z \leftarrow y \leftarrow x}^{A, \Phi, \rho}$ to obtain solutions to linear equations with fewer coupling terms.
- Source 1: $(J, 0)$
- It marginalizes the coupling term.
- We can extract the decoupled X-ray transform $\mathrm{S}_{2 \leftarrow y \leftarrow x}^{\mathrm{A}, \mathrm{Ad}}$.
- Source 2: $\left(0, J_{(2)}, J_{(3)}, \mathcal{F}_{(1)}, 0,0\right)$ with J abelian
- All of the commutator terms vanish.
- The broken X-ray $S_{z \&-\infty<x}^{A, \Phi_{,} \rho}$ has only one off-diagonal term.
- But the (2,2)-entry $S_{z \leftarrow y \leftarrow x}^{A, \rho}$ is intact.
- A is recovered via $S_{z \leftarrow y \leftarrow x}^{A, A d \oplus \rho}$ as $Z(\mathfrak{g}) \cap \operatorname{Ker} \rho_{*}=\{0\}$.
- The measured off-diagonal contribution reads explicitly

$$
\left(\mathrm{P}_{z \leftarrow y}^{A, \Phi, \rho}\right)_{12}(v)=-\frac{1}{2} \mathrm{P}_{z \leftarrow y}^{A, A d} \int_{t_{y}}^{t_{z}} J_{\rho}\left(\dot{\gamma}_{\beta}(s) v, \rho\left(U_{\gamma}^{A}(s)\right)^{-1} \Phi(\gamma(s))\right) d s
$$

- The non-degeneracy of J_{ρ} (i.e. ρ_{*} is fully charged) yields Φ.

Danke schön!

