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> Massless : gluon (strong), photon (electromagnetic)
»> Massive : W and Z bosons (weak)

» Scalar bosons (Higgs mechanism, verified at CERN in 2012)

> Higgs bosons (W and Z bosons acquire mass via interactions
with Higgs bosons)

» Fermions (spinor fields, generations of matters):

» Quarks & anitquarks, leptons & antileptons (Dirac equation)
> Mass gained via coupling with Higgs bosons (Yukawa coupling)
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We fix the following geometric datum.

> (M, g) : Minkowski space-time with signature (—, +,+, +)

» G : a compact Lie group e.g. U(1) x SU(2) x SU(3)

» g : Lie algebra of G with an Ad-invariant (-, )4

» P — M : principal fibre bundle with structure group G

> Ad =P xpaqg =M x g: adjoint bundle with induced (-, ) aq.
A gauge field is A = A,dx® € Q'(P, g) compatible with G.
The exterior covariant derivative on Ad:

Dp: QK(M; g) — Q1M g), Daw = dw + [A,w].

The curvature 2-form (field strength) : Fa := dA + 3[A, A].
The Yang-Mills Lagrangian : A\[A] = —%(FA, Fa)Aq-
The Yang-Mills action (energy) : YM[A] = —3(Fa, Fa)ad,12-
The Yang-Mills Equation (Euler-Lagrange Equation of YM)

DjFa =0, where D} = *Dax.

To describe massive bosons, a mass term ’"72<A, A)ad is
required in the Lagrangian. However, A ¢ Q'(M, Ad).
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> p: G — GL(W) : a complex linear representation of G in W
> E=Px,W=MxW : associated vector bundle with (-,-)g
» The exterior covariant derivative on E:

da: Q5(M; W) — QL (M W), dad = d + p.(A) A D.
» The Higgs Lagrangian with the potential V(s) = as? — bs
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» The Yang-Mills-Higgs Lagrangian Z\g = %um + L
» The Yang-Mills-Higgs equations
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dada® + V' (|9?|g)d =0
where the bilinear form J, : W x W — g is defined by
R(v, 0 (X)W)w = (Up(v,w), X)ag, VX €g,v,weW.
» Coupling of A and ® after symmetry breaking generates mass.
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to the YMH equations and observing perturbed fields (V, V).
Specifically, we enter "active’ sources (J, F) in the YMH
equations and then the coupled YMH fields will be perturbed.

DpFa+ Jp(da®, @) =0 perturbed Dy Fv + Jp(dv W, V) = J
x 2 7 12
We denote by (W, T) = (V — A, W — ®) perturbation fields.
(W, T) obeys following equations in the gauge D;W =0,
OaadW + J,(dT, @) + Nynae) (W, T) =J, Oaaa = DaDa,
OapT + Nigae) (W, T)=F, Oa, = dada.

The active measurement is encoded in the well-defined
Source-to-Solution map LA® : (J, F) — (W, T).
The geometric inverse problem in question reduces to

does LA® determine (A, ®) uniquely up to a gauge?
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D:={(t,x) eR™3: x| <t+1, x| <1-1t}

0 D=A{(t,x)eD: x| =t+1}
U :={(t,x): (t,x) € D° and |x| < &0}

Theorem (CLOP)

» Set the data set (a variant of the source-to-solution map)

Dao) = { (VW)

(V,V) € C3 solves YMH in D\ U
and (V,V) ~ (A, ®) near 0-D

» Assume p. is fully charged (p«(X)w =0,¥X €g=w=0)
and Z(g) N Ker p, = {0}. (Necessary non-degeneracy.)
» For two Yang-Mills-Higgs fields (A, ®), (B, =), there holds

D(A,d)) = D(B,E) = (A,cb) ~ (B,E) inD
= 3U € GO, p) s.t. (B, =) = (ULdU + U~LAU, p(U~1)o).



Remark on the representation in the Standard Model

The hypotheses on the representation p, are natural in physics.



Remark on the representation in the Standard Model

The hypotheses on the representation p, are natural in physics.
» The electroweak model : G = SU(2) x S and W = C?



Remark on the representation in the Standard Model

The hypotheses on the representation p, are natural in physics.
» The electroweak model : G = SU(2) x S and W = C?
» The representation p is given by

p(g,e¥)w = e™%w with (g,e?) € SU(2) x St



Remark on the representation in the Standard Model

The hypotheses on the representation p, are natural in physics.
» The electroweak model : G = SU(2) x S and W = C?
» The representation p is given by

p(g,e¥)w = e™%w with (g,e?) € SU(2) x St
» The derivative p, is easily computed as

p(X,x)w = (X +anyxId)w  with (X, ix) € g = su(2) x R.



Remark on the representation in the Standard Model

The hypotheses on the representation p, are natural in physics.
» The electroweak model : G = SU(2) x S and W = C?
» The representation p is given by

p(g,e¥)w = e™%w with (g,e?) € SU(2) x St
» The derivative p, is easily computed as
p(X,x)w = (X +anyxId)w  with (X, ix) € g = su(2) x R.

» For ny # 0 we see that p, is fully charged and Ker p, = {0}.



Remark on the representation in the Standard Model

The hypotheses on the representation p, are natural in physics.
» The electroweak model : G = SU(2) x S and W = C?
» The representation p is given by

p(g,e¥)w = e™%w with (g,e?) € SU(2) x St
» The derivative p, is easily computed as
p(X,x)w = (X +anyxId)w  with (X, ix) € g = su(2) x R.

» For ny # 0 we see that p, is fully charged and Ker p, = {0}.
» The centre of the Lie algebra is u(1) =«R.



Remark on the representation in the Standard Model

The hypotheses on the representation p, are natural in physics.
» The electroweak model : G = SU(2) x S and W = C?
» The representation p is given by

p(g,e¥)w = e™%w with (g,e?) € SU(2) x St
» The derivative p, is easily computed as
p(X,x)w = (X +anyxId)w  with (X, ix) € g = su(2) x R.

» For ny # 0 we see that p, is fully charged and Ker p, = {0}.
» The centre of the Lie algebra is u(1) =«R.

» The Standard Model : G = SU(3) x SU(2) x St.



Remark on the representation in the Standard Model

The hypotheses on the representation p, are natural in physics.
» The electroweak model : G = SU(2) x S and W = C?
» The representation p is given by

p(g,e¥)w = e™%w with (g,e?) € SU(2) x St
» The derivative p, is easily computed as
p(X,x)w = (X +anyxId)w  with (X, ix) € g = su(2) x R.

» For ny # 0 we see that p, is fully charged and Ker p, = {0}.
» The centre of the Lie algebra is u(1) =«R.

» The Standard Model : G = SU(3) x SU(2) x St.
> p, is fully charged and Ker p, = su(3)



Remark on the representation in the Standard Model

The hypotheses on the representation p, are natural in physics.
» The electroweak model : G = SU(2) x S and W = C?
» The representation p is given by

p(g,e¥)w = e™%w with (g,e?) € SU(2) x St
» The derivative p, is easily computed as
p(X,x)w = (X +anyxId)w  with (X, ix) € g = su(2) x R.

» For ny # 0 we see that p, is fully charged and Ker p, = {0}.
» The centre of the Lie algebra is u(1) =«R.
» The Standard Model : G = SU(3) x SU(2) x St.
> p, is fully charged and Ker p, = su(3)
> su(3)Nu(l) = {0}.
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» Kurylev-Lassas-Uhlmann pioneered a novel framework to solve
inverse problems of time-dependent nonlinear hyperbolic PDEs.
» CLOP simplified KLU's four-wave linearization to three-wave
linearization for cubic wave equations (e.g. the Higgs equation)
» The sources (J,F) = Zi:l (k) (J(ky, Fiy) for small €() >0
» Denote .(k) = (96(‘()(0)|6:07 .(kl) = 8E(k)86(,) o ‘6:07 e
» The linearized YMH, with lower order terms removed, reads

Oaad Wiy + Jp(daT k), @) = Jy)

» In previous projects, CLOP recovered the gauge field A for
decoupled YM equations and H equations by using the
three-wave linearization and the method of broken X-ray.

» The challenge of coupled YMH is the coupling term J,(-, ®).



Nonlinear interaction of three waves

The linearized YMH system is illustrated by the following figures of
three-wave interactions.



Nonlinear interaction of three waves

The linearized YMH system is illustrated by the following figures of
three-wave interactions.
» 2D




Nonlinear interaction of three waves

The linearized YMH system is illustrated by the following figures of
three-wave interactions.
» 2D

» 3D



The coupled parallel transport and broken X-ray transform



The coupled parallel transport and broken X-ray transform

» The decoupled parallel transport and broken X-ray transform



The coupled parallel transport and broken X-ray transform

» The decoupled parallel transport and broken X-ray transform
» By Hérmander-Duistermaat’s FIO, [Jau = 0 corresponds to

LH,5,40u] + 105 [Dalou] = 0.



The coupled parallel transport and broken X-ray transform

» The decoupled parallel transport and broken X-ray transform
» By Hérmander-Duistermaat’s FIO, [Jau = 0 corresponds to

L, 0lu] + 105up[Halofu] = 0.
» The parallel transport equation of weighted principal symbols
9s(0w,8[u]) + p((A,¥(s)))ow,5lu] = 0.



The coupled parallel transport and broken X-ray transform

» The decoupled parallel transport and broken X-ray transform
» By Hérmander-Duistermaat’s FIO, [Jau = 0 corresponds to

£HU[DA]U[U] + 10sub[Halou] = 0.
» The parallel transport equation of weighted principal symbols
9s(0w,8[u]) + p((A,¥(s)))ow,5lu] = 0.
» The parallel transport of weighed principal symbols

0w slul(t) = PAE_ )0 slul(0):



The coupled parallel transport and broken X-ray transform

» The decoupled parallel transport and broken X-ray transform
» By Hérmander-Duistermaat’s FIO, [Jau = 0 corresponds to

£HU[DA]O'[U] + 10sub[Halou] = 0.
» The parallel transport equation of weighted principal symbols
Os(0w,p[ul) + P« ((A,¥(s)))ow,slu] = 0.
» The parallel transport of weighed principal symbols
0w slul(t) = PA2. 00w slul(0):

> The broken X-ray transform : S2» . =P2? oPr,



The coupled parallel transport and broken X-ray transform

» The decoupled parallel transport and broken X-ray transform
» By Hoérmander-Duistermaat’s FIO, au = 0 corresponds to

L0, 0lu] + 10sup[Halofu] = 0.
» The parallel transport equation of weighted principal symbols
Os(0w,5lu]) + p«((A,7(5)))ow,8[u] = 0.
» The parallel transport of weighed principal symbols
A

P08 [11(0)-
> The broken X-ray transform : S2» . =P2? oPr,

» The coupled parallel transport equation with Higgs fields

s+ 1A (3), wal — 235(8) J (v, @(3(1))) = 0
o+ p(A ()0 = 0.

w,plu)(t) =



The coupled parallel transport and broken X-ray transform
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» By Hoérmander-Duistermaat’s FIO, au = 0 corresponds to

L0, 0lu] + 10sup[Halofu] = 0.
» The parallel transport equation of weighted principal symbols
Os(0w,5lu]) + p«((A,7(5)))ow,8[u] = 0.
» The parallel transport of weighed principal symbols
A

P08 [11(0)-
> The broken X-ray transform : S2» . =P2? oPr,

» The coupled parallel transport equation with Higgs fields

. . 1.
Ws + [Ay (1), ws] = 595(t) Jp (v, ®(7(2))) = 0
U+ p«(Ay(7))v = 0.
» The coupled parallel transport with Higgs fields

A IAg)
sren_ [ PN P20 )
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» Smart strategy: invoke sources such that one can gain A first

and then use other sources to recover ® provided A known.
» This amounts to making holes on the matrix S;‘f}’,ﬁ_x to
obtain solutions to linear equations with fewer coupling terms.
» Source 1: (J,0)
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» The non-degeneracy of J, (i.e. p, is fully charged) yields ®.
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