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In this talk

Let (M, g) be a compact Riemannian manifold without boundary
and E → M a vector bundle equipped with a connection ∇E . We
address the following inverse problems:
Q1 To what extent does the holonomy of ∇E over closed geodesics

determine the gauge-equivalence class [∇E ] of ∇E?
Q2 Does the spectrum of the connection Laplacian (∇E)∗∇E determine

the gauge class of ∇E?

We will show
If (M, g) has chaotic geodesic flow and ∇E is orthogonal, then:
A1 Only the traces of holonomy suffice to determine the gauge-equivalence

class [∇E ] locally and in many cases globally!
A2 Similar results for Q2.
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Definition
A flow φt : M → M generated by a vector field X is called Anosov if
there is a continuous splitting TM = RX ⊕ Eu ⊕ Es into flow direction
RX, unstable/stable directions Eu/s invariant under dφt, and there are
constants C, ν > 0 such that for all x ∈ M, for some metric | • |

|dφt(x)v| ≤
{

Ce−νt|v|, t ≥ 0, v ∈ Es(x),
Ce−ν|t||v|, t ≤ 0, v ∈ Eu(x).

These flows model hyperbolic dynamics: sensitive (chaotic) upon a
change in initial conditions. Restrictions on geometry/topology.
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|dφt(x)v| ≤
{

Ce−νt|v|, t ≥ 0, v ∈ Es(x),
Ce−ν|t||v|, t ≤ 0, v ∈ Eu(x).
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Let M = SM = {(x, v) ∈ TM | |v|g = 1} be the unit sphere bundle
and define the geodesic flow φt(x, v) = (γx,v(t), γ̇x,v(t)) on SM,
where γx,v(t) is the geodesic generated by the initial condition (x, v).
Examples of Anosov geodesic flows:

Anosov [’67]: if (M, g) has negative sectional curvature;
∃ examples with portions of positive curvature (Eberlein [’73],
Donnay-Pugh [’03]).

If (M, g) negatively curved, ∃ bijection between free homotopy
classes c ∈ C and closed geodesics γg(c) of length Lg(c) in class c.
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Recall: connections on vector bundles
Connection ∇E is a map ∇E : C∞(M, E) → C∞(M,T∗M ⊗ E) such
that in local coordinates ∇E = d + A for a matrix A of 1-forms.
If γ : [a, b] → M a curve, e ∈ Ea, s : [a, b] → E is the parallel
transport of e along γ if ∇E

γ̇ s = 0 (first order ODE) and s(a) = e,
π ◦ s = γ. Denote Pγe := s(b) ∈ Eb.

∇E is orthogonal if compatible with the inner product in the fibres
of E ; it follows Pγ : Ea → Eb is an orthogonal map.
Vocabulary of the affine set AE of all orthogonal connections on E :

Gauge group G(E):= the set of all orthogonal isomorphisms of E ;
G(E) acts on AE by pullback p∗∇E(•) := p−1∇E(p•);
Two connections ∇E

1 and ∇E
2 are gauge-equivalent if there is a

p ∈ G(E) such that p∗∇E
2 = ∇E

1 ;
The quotient AE := AE/G(E) is the moduli space of connections;
A := tEAE is the moduli space of connections on all E → M.
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Primitive trace map

C♯ := {c♯1, c
♯
2, . . . } ⊂ C is the set of primitive free homotopy classes.

Hol∇E (c♯) ∈ U(xc♯) := parallel transport along γg(c♯) at some
xc♯ ∈ γg(c♯). Note Hol∇E (c♯) depends up to conjugation on the
choice of xc♯ and the gauge class [∇E ], but its trace does not.

Definition
Define the primitive trace map as:

T ♯ : A 3 ([E ], [∇E ]) 7→
(
Tr

(
Hol∇E (c♯1)

)
,Tr

(
Hol∇E (c♯2)

)
, ...

)
∈ ℓ∞(C♯).

Question (Holonomy Inverse Problem)
When is the primitive trace map T ♯ injective?
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Polynomial Structures

A map p : Sn → Sr is polynomial if it is the restriction of a
polynomial map Rn+1 → Rr+1.
Define q(n) to be the least positive integer such that there exists a
non-constant polynomial map Sn → Sq(n).
Examples:

The inclusion map Sn ↪−→ Sm is polynomial (of degree 1), so q(n) ≤ n;
so many polynomial maps from low to high dimensional spheres.
The Hopf fibrations S3 → S2, S7 → S4, and S15 → S8 are polynomial
of degree 2; z 7→ zk is polynomial S1 → S1.

Important result by Wood [’68]: “Assume 0 ≤ r ≤ n − 1 is such
that there exists a power of 2 among {r + 1, . . . , n}. Then, there is
no non-constant polynomial map Sn → Sr.”
Thus n

2 < q(n) ≤ n. The proof relies on theorems by Cassels [’64]
and Pfister [’65] on sums of squares.
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Possible to completely classify quadratic polynomial maps between
spheres, see Yiu [’86, ’94], which gives an upper bound on q(n).
Hopf construction: given a bilinear map F : Rr × Rs → Rt such that
|F(x, y)|2 = |x|2|y|2, define

H : Rr × Rs → Rt+1, H(x, y) := (|x|2 − |y|2, 2F(x, y)).

which yields a quadratic map Sr+s−1 → St.
Let ρ(n) be the Radon-Hurwitz number given by

ρ
(
(2b + 1)2c+4d) = 2c + 8d, 0 ≤ c ≤ 3;

ρ(n)−1 is the maximal number of independent vector fields on Sn−1.
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Possible to construct a Hopf map Sn+ρ(n+1) → Sn+1 by taking
F : Rn+1 × Rρ(n+1) → Rn+1

F(x, y) = y0x + y1J1x + ...+ yρ(n+1)−1Jρ(n+1)−1x,

where J1, ..., Jρ(n+1)−1 are orthogonal almost-complex structures on
Rn+1 (coming from a Clifford algebra representation).
Using the three Hopf fibrations, possible to show that:

q(2) = q(3) = 2, q(4) = . . . = q(7) = 4, q(8) = . . . = q(15) = 8.

The first unknown value is q(48) and we do not know if there is a
map S48 → S47 (of degree at least 3 necessarily).
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We are in shape to formulate our first main result:

Theorem (C-Lefeuvre ’21 & ’22)
Assume (Mn+1, g) has negative sectional curvature and E → M a
Euclidean vector bundle. Then, the primitive trace map T ♯ is:
(a) If n ≥ 2, locally injective near generic points in A;
(b) globally injective under a low rank assumption rank(E) ≤ q(n).

Generic in (a) refers to an open and dense set in the quotient CN

topology for N large enough. More precisely, it is related to
injectivity of the twisted X-ray transform studied in C-L [’20, ’21].
Similar methods used in C-L [’21] to show ergodicity of the frame
flow on E under a low rank assumption rank E = O(

√
n).

When dimM is odd, we also show that T ♯([E ], [∇E ]) determines [E ].
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Counterexample: On (M4m, g) set Λ± = {⋆ ∈ Λ2mTM | ⋆α = ±α}
and equip with the Levi-Civita connection ∇±. Then we show
T ♯(Λ+,∇+) = T ♯(Λ−,∇−), but [∇+] 6= [∇−] (and [Λ+] 6= [Λ−]

when m = 1).
Previous results:

Paternain [’09, ’10, ’12, ’13] classified transparent connections
(parallel transport over all closed geodesics is the identity) on
surfaces and showed their abundance on bundles with rank E = 2;
see also Guillarmou-P-Salo-Uhlmann [’16];
studied with the convex foliation condition by P-S-U-Zhou [’18] and
on simple surfaces P-S-U [’12];
Analogous marked length spectrum problem: study injectivity of
L♯ : M<0 3 g 7→ (Lg(c♯1), Lg(c♯2), . . . ) ∈ `∞(C♯).
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Length spectrum: the set of lengths of closed geodesics counted
with multiplicities. It is simple if all closed geodesics have distinct
lengths (generic condition).
Connection Laplacian is the operator ∆E := (∇E)∗∇E . It is 2nd
order elliptic, self-adjoint, non-negative, acting on C∞(M, E), with
discrete spectrum spec(∆E) = {0 ≤ λ0(∇E) ≤ λ1(∇E) ≤ . . . }
counted with multiplicities.
spec(∆E) depends only on [∇E ] and defines the spectrum map:

S : AE 3 [∇E ] 7→ spec(∆E) ∈ RN
≥0.

Trace formula of Duistermaat-Guillemin applied to ∆E reads
(assuming simple length spectrum; Pγ is the Poincaré map):

lim
t→Lg(c)

(t − Lg(c))
∑
j≥0

e−it
√

λj =
Lg(c) Tr (Hol∇E (c))

2π| det(id−Pγg(c))|1/2 . (1.1)
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Consequence of (1.1) and the previous theorem is:

Theorem (C-Lefeuvre ’21 & ’22)
Assume (Mn+1, g) has negative sectional curvature with simple length
spectrum. Then, the spectrum map S is:
(a) If dimM ≥ 3, locally injective near generic points in A;
(b) Globally injective on A under the low rank assumption rank(E) ≤ q(n).

Kuwabara [’90]: counterexamples to injectivity of S for line bundles
on covers of surfaces (simple length spectrum condition violated).
Famous question of Kac [’66]: “Can one hear the shape of a
drum?” (counterexamples exist on hyperbolic surfaces). Shape ↔
magnetic field.
Classical result of Guillemin-Kazhdan [’80]: q ∈ C∞(M)

determined from spec(−∆g + q) (see also Croke-Sharafutdinov
[’98], P-S-U [’14]).
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1 Introduction

2 Ideas of the Proof
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Parry’s representation
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1 Non-Abelian Livšic theory (dynamical systems): show that if
T ♯(E1,∇E1) = T ♯(E2,∇E2), then π∗∇E1 and π∗∇E2 are dynamically
equivalent, that is, there exists p : E2 → E1 such that

(π∗∇)
Hom(E2,E1)
X p = 0,

where X is the geodesic vector field and π : SM → M the projection.
(That is, for all geodesics γ, ∇E1

γ̇ p(γ, γ̇) = p(γ, γ̇)∇E2
γ̇ .)

2 For the local result: show that in a neighbourhood of a generic
connection, by a convexity argument (on the level of elliptic
operators) the unique Pollicott-Ruelle resonance close to zero
controls the distance in the moduli space.

3 Fourier analysis: by G-P-S-U [’16], p ∈ C∞(SM;Hom(E2, E1)) has
finite Fourier content, i.e. when restricted to an arbitrary sphere
SxM ⊂ SM, p : SxM → SO(r) is a polynomial map.

4 Algebraic geometry: assuming r ≤ q(n), p is constant in each fibre
and so p is a gauge-equivalence.
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Let z⋆ = (x⋆, v⋆) ∈ SM be a fixed closed geodesic and H the set of
all homoclinic orbits to z⋆. Define Parry’s free monoid G and
representation ρ : G → SO(Ex⋆):

G := {γm1
1 ...γmk

k | k ∈ N,m1, ...,mk ∈ N0, γ1, ..., γk ∈ H} .
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Let z⋆ = (x⋆, v⋆) ∈ SM be a fixed closed geodesic and H the set of
all homoclinic orbits to z⋆. Define Parry’s free monoid G and
representation ρ : G → SO(Ex⋆):

G := {γm1
1 ...γmk

k | k ∈ N,m1, ...,mk ∈ N0, γ1, ..., γk ∈ H} .

If T ♯(E1,∇1) = T ♯(E2,∇2), then their Parry’s representations are
conjugate by p⋆ : (E2)x⋆ → (E1)x⋆ . Possible to push p⋆ along H to a
smooth p dynamically conjugating the connections!
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Thank you for your attention!
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