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Plan of talk

Example of a distribution whose Radon transform is supported on the
set of tangents to a circle.

Theorem:
Such examples do not exist for other domains than ellipsoids.

Some words on the proof.

Related local questions.



The Radon transform

Define Rf(L) =

∫
L
f ds, f ∈ Cc(R2), L line in R2.

More generally: L hyperplane in Rn, ds area measure on L.

The hyperplanes are parametrized by (ω, p) ∈ Sn−1 × R so that

L = L(ω, p) is the hyperplane {x ∈ Rn; x · ω = p}.

Then we write

Rf(ω, p) = Rf(L(ω, p)) =

∫
x·ω=p

f ds, (ω, p) ∈ Sn−1 × R.

Note that Rf(ω, p) = Rf(−ω,−p).



The Radon transform of a distribution f in Rn is defined by

〈Rf, ϕ〉 = 〈f,R∗ϕ〉, for all test functions ϕ, where

(R∗ϕ)(x) =

∫
L3x

ϕ(L)dµ(L), or

(R∗ϕ)(x) =

∫
Sn−1

ϕ(ω, x · ω)dω,

where dω is surface measure on Sn−1.

Locally integrable functions g(ω, p) on Sn−1 × R are identified with
distributions by means of the definition

〈g, ϕ〉 =

∫∫
Sn−1×R

g(ω, p)ϕ(ω, p)dω dp, ϕ ∈ C∞c (Sn−1 × R).



Radon transform supported on a hypersurface
Let f0 be the function in the plane defined by

f0(x) =
1

π

1√
1− |x|2

for |x| < 1

and f = 0 for all other x = (x1, x2). An easy calculation shows that

Rf0(ω, p) =

∫
x·ω=p

f0(x) ds = 1 for |p| < 1,

and obviously Rf0(ω, p) = 0 for |p| ≥ 1.

Let f be the distribution f = ∆f0 = (∂2
x1 + ∂2

x2)f0.

Now use the formula R(∆h)(ω, p) = ∂2
pRh(ω, p) with h = f0.

Note that p 7→ Rf0(ω, p) is piecewise constant:
Rf0(ω, p)

p



It follows that

Rf(ω, p) = ∂2
pRf0(ω, p) = δ′(p+ 1)− δ′(p− 1),

where δ(p) denotes the Dirac measure at the origin.

This means that the distribution f = ∆f0 has the property that its
Radon transform, a distribution on the manifold of lines in the plane,
must be supported on the set of tangents to the unit circle.

f(x) is a smooth function in the unit disk, but tends fast to infinity at
the boundary:

f(x) =
1 + 2|x|2

π(1− |x|2)5/2
, |x| < 1.

By means of an affine transformation we can easily construct a similar
example where D is an ellipse.



QUESTION: Can one do the same for other domains than ellipses?

The answer is NO:

Theorem 1 (JB 2020). Let D ⊂ Rn be a bounded, convex domain.
Assume that there exists a distribution f 6= 0, supported in D, such
that Rf is supported in the set of supporting planes to ∂D. Then the
boundary of D is an ellipsoid.

If ∂D is C1 smooth, the supporting planes for D are of course tangent
planes to ∂D.

And why did I ask the question above?



On Region of Interest reconstruction
Let D0, the region of interest, be a proper subset of D. One would
like to reconstruct a function supported in D from measurements of
Rf(L) only for lines that intersect D0.

But this is in general not possible.

D

D0

L

In fact, given two disks D and D0 ⊂ D there exist functions f with
support equal to D such that

Rf(L) = 0 for all lines L that meet D0.

If D and D0 are concentric and centered at the origin, one can take f
radial, that is, f(x) = f(r) with r = |x|, which makes the problem
1-dimensional.



It is natural to replace the disks by arbitrary convex sets.

Conjecture. Let D and D0 be bounded convex domains in the plane
with D0 ⊂ D. Then there exists a smooth function f with
supp f = D, such that its Radon transform Rf(L) vanishes for every
line L that intersects D0.

D

D0



Proof idea: find a compactly supported distribution f whose Radon
transform is supported on the set of tangents to the blue curve.

D0

D

Then a regularization of f , f1 = f ∗ φ, will solve our problem,
because Rf1 = g1 will be a smooth function (on the manifold of lines)
that is supported in a neighborhood of the set of tangents to the curve.

Theorem 1 shows that this idea must fail.



Arnold’s Conjecture

Example:

x3 = p

The volume of the part of the unit ball in R3 that lies above the plane
x3 = p is∫ 1

p
π(
√

1− t2)2dt =

∫ 1

p
π(1− t2)dt =

π

3
(p3 − 3p+ 2).

Similar for all odd dimensions and for ellipses instead of balls.

In even dimensions the volume function is not algebraic.



Arnold’s Conjecture, cont.
Problem 1987-14 in Arnold’s Problems reads:

Do there exist smooth hypersurfaces in Rn (other than the quadrics in
odd-dimensional spaces), for which the volume of the segment cut by
any hyperplane from the body bounded by them is an algebraic
function of the hyperplane?

V (ω, p)

L(ω, p)

Vassiliev 1988: There exist no convex algebraically integrable
bounded domains in even dimensions.

V. A. Vassiliev: Applied Picard - Lefschetz Theory, AMS 2002.

Case of odd dimension still unsolved.



Arnold’s Conjecture, cont.
Special case: assume n is odd and the volume function p 7→ V (ω, p)
is polynomial for all ω. Prove that the boundary of D is an ellipsoid.

Solved by Koldobsky, Merkurjev, and Yaskin 2017.

Mark Agronovsky (2919) obtained the same conclusion with the
weaker assumption that p 7→ V (ω, p) is algebraic under an additional
condition on the boundary of D.

Moreover:

Theorem 1 implies the result of Koldobsky, Merkurjev, and Yaskin.

Because if p 7→ V (ω, p) is a polynomial of degree ≤ N for all ω, then
the Radon transform, p 7→ RχD(ω, p), of the characteristic function
for the domain D is a polynomial of degree ≤ N (for p in some
interval that depends on ω). Hence the Radon transform of ∆mχD is
supported on the set of tangent planes, if m > N/2. By Theorem 1
the boundary of D must then be an ellipsoid.



On the proof of Theorem 1
Strategy of proof (n = 2):

1. Write down an expression for an arbitrary distribution g(ω, p) on
the manifold of lines in R2 that is supported on the set of tangents to
the boundary of D.

2. Write down the condition on g(ω, p) for g to be the Radon
transform of a distribution f on R2 (with sufficient decay at infinity).

The condition is that

ω = (ω1, ω2) 7→
∫
R
g(ω, p)pkdp is a homogeneous polynomial

of degree k for every k.

3. Prove that those conditions imply that the boundary curve is an
ellipse.



On the proof of Theorem 1, cont.

Let ρD(ω) = ρ(ω) be the supporting function for D

ρ(ω) = sup{x · ω; x ∈ D}.

The line L(ω, p) is tangent to ∂D iff

p = ρ(ω) or p = ρ(−ω).

Assume first that D is symmetric, D = −D. Then we may assume
that g is even with respect to ω and p separately. If g is of order 0,
then for some density q(ω)

g(ω, p) = q(ω)
(
δ(p− ρ(ω)) + δ(p+ ρ(ω))

)
.

Here δ(·) denotes the Dirac measure.

Use range conditions to deduce information on ρ(ω).



Case D = −D and Rf = g is a distribution of order 0

k = 0:∫
R g(ω, p)p0dp = 2 q(ω) must be constant, q(ω) = q.

k = 2:∫
R g(ω, p)p2dp = 2q ρ(ω)2 must be polynomial of degree 2, hence

ρ(ω)2 = ρ(ω1, ω2)2 is a homogeneous polynomial of degree 2.

If D = −D, then ∂D is an ellipsoid iff ρ(ω)2 is a (quadratic)
polynomial.

It follows that ∂D is an ellipse.



If the distribution g(ω, p) is of order 1, then

g(ω, p) = q0(ω)
(
δ(p− ρ(ω)) + δ(p+ ρ(ω))

)
+ q1(ω)

(
δ′(p− ρ(ω))− δ′(p+ ρ(ω))

)
.

The minus sign is needed to make g even, g(−ω,−p) = g(ω, p).

Note that for instance∫
R
δ′(p− ρ(ω))pkdp = −kρ(ω)k−1.

The range conditions imply that there must exist polynomials
p0, p2, p4 etc., where pk(ω) is homogeneous of degree k, such that

q0 = p0

q0ρ
2 + 2 q1ρ = p2

q0ρ
4 + 4 q1ρ

3 = p4

q0ρ
6 + 6 q1ρ

5 = p6

. . . .

Eliminating q0 and q1 we easily see that ρ2 must be a rational
function. Here is an efficient way to eliminate q0 and q1.



In matrix form the equations read
1 0
ρ2 2ρ
ρ4 4ρ3

ρ6 6ρ5

. . . . . .


(
q0

q1

)
=


p0

p2

p4

p6

. . .

 .

This means that(
0 1
ρ2 2ρ

)(
q0

q1

)
=

(
p0

p2

)
,

(
ρ2 2ρ
ρ4 4ρ3

)(
q0

q1

)
=

(
p2

p4

)
, etc.

With shorter notation

M0Q = P0, M1Q = P1, M2Q = P2, etc.



Here I have set

M0 =

(
1 0
ρ2 2ρ

)
, M1 =

(
ρ2 2ρ
ρ4 4ρ3

)
, etc., and

Q =

(
q0

q1

)
, P0 =

(
p0

p2

)
, P1 =

(
p2

p4

)
etc.

The matrices M0,M1,M2, . . . form a geometric series

Mk = SkM0 or all k ≥ 0, where

S = M1M
−1
0 =

(
0 1
ρ2 −2ρ

)
.



This makes it easy to eliminate Q. Because for instance

SP0 = SM0Q = M1Q = P1.

And similarly
SPk = Pk+1 for all k.

In other words (
0 1
ρ2 −2ρ

)(
p0

p2

)
=

(
p2

p4

)
and

(
0 1
ρ2 −2ρ

)(
p2

p4

)
=

(
p4

p6

)
etc.

The last two equations can be combined to the matrix equation(
0 1
ρ2 −2ρ

)(
p0 p2

p2 p4

)
=

(
p2 p4

p4 p6

)
.



By the product law for determinants these equations shows that ρ2

must be a rational function. However, the fact that SMk = Mk+1

shows that more generally(
0 1
ρ2 −2ρ

)k (
p0 p2

p2 p4

)
=

(
p2k p2k+2

p2k+2 p2k+4

)
for every k. And this shows that ρ2k must be a rational function with
the same denominator for every k. Hence ρ2 must be a polynomial.



More generally: g is a distribution of order m

If m = 3 we get the system



1 0 0 0
ρ 1 0 0
ρ2 2ρ 2 0
ρ3 3ρ2 6ρ 6
ρ4 4ρ3 12ρ2 24ρ
ρ5 5ρ4 20ρ3 60ρ2

. . . . . . . . . . . .




q0

q1

q2

q3

 =



p0

p1

p2

p3

p4

p5

. . .


.

With the same notation as before this can be written

M0Q = P0, M1Q = P1, M2Q = P2, etc.

The important point is that

Mk = SkM0 = M0T
k for all k, where



S = M1M
−1
0 =


0 1 0 0
0 0 1 0
0 0 0 1
−ρ4 4ρ3 −12ρ2 24ρ


and

T = M−1
0 M1 =


ρ2 1 0 0
0 ρ2 2 0
0 0 ρ2 3
0 0 0 ρ2

 .

So
detS = detT = (ρ2)4 = ρ8.



General case: D not assumed symmetric
Then we have to consider matrices with two variables

M =



1 0 0 1 0 0
ρ 1 0 τ 1 0
ρ2 2ρ 2 τ2 2τ 2
ρ3 3ρ2 6ρ τ3 3τ2 6τ
ρ4 4ρ3 12ρ2 τ4 4τ3 12τ2

ρ5 5ρ4 20ρ3 τ5 5τ4 20τ3

ρ6 6ρ5 30ρ4 τ6 6τ5 30τ4

ρ7 7ρ6 42ρ5 τ7 7τ6 42τ5

. . . . . . . . . . . . . . .


.

As before we introduce the successive 2m× 2m submatrices, here
6× 6 submatrices, M0, M1, M2, etc. Then

Mk = SkM0, and

Mk = M0T
k,

where



T =

(
Tρ 0
0 Tτ

)

with Tρ =

ρ 1 0
0 ρ 2
0 0 ρ

 and Tτ =

τ 1 0
0 τ 2
0 0 τ

 ,

and the matrix S can be written (for m = 3)

S =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
s0 s1 s2 s3 s4 s5

 .

Here sj is (up to sign) the elemntary symmetric polynomial of degree
6− j in 6 variables, evaluated at (ρ, ρ, ρ, τ, τ, τ).



Local questions

Assume that there exists a distribution f with support in D, a tangent
plane L0, a point x0 ∈ L0 ∩ supp f , and a neighborhood V of L0 in
the manifold of hyperplanes, such that the restriction of Rf to V is
supported on the set of tangent planes to ∂D in V . Does it follow that
∂D is a quadric in some neighborhood of x0?

We don’t know.



Singularities of a distribution and of its support

It turned out that the arguments in the proof of Theorem 1 could prove
an apparently completely unrelated theorem that connects
singularities of a distribution with singularities of its support.

First a couple of introductory remarks.

If a distribution f is supported on a hypersurface, we can talk about
singularities of f (in terms of wave fronts), and we can talk about the
singularities of the surface (wave front set of the defining function).

What is the relationship?

The same if f is the characteristic function for a region. What is the
relationship between WFA(f) and the singularities of the boundary of
the region?

Let us look at some examples.



The following is an easy consequence of the definition of WF (f):

If f is a C∞ density on a C∞ hypersurface Σ, then WF (f) is
contained in the set N∗(Σ) of conormals to Σ,

N∗(Σ) = {(x, ξ); x ∈ Σ, and ξ conormal to Σ at x}.
If f is a real analytic density on a real analytic hypersurface Σ, then

WFA(f) ⊂ N∗(Σ).

And if f is the characteristic function for a domain D with real
analytic boundary, then

WFA(f) = N∗(∂D).

Σ

D



Similarly, for distributions of higher order:

Let Σ be a hypersurface in Rn+1 defined by y = Ψ(x) and f be the
distribution

〈f, ϕ〉 =

m−1∑
j=0

∫
Σ
qj ∂

j
yϕdx

=

m−1∑
j=0

∫
Rn

qj(x) (∂jyϕ)(x,Ψ(x))dx, ϕ ∈ C∞c (U).

If Ψ and all qj are real analytic, then WFA(f) ⊂ N∗(Σ).

I am interested in a strong converse to this statement. That is,
assuming some regularity of the distribution f , I want to conclude that
Ψ and all qj are real analytic.



Theorem 2. Let f be the distribution above, supported on the C1

surface Σ : y = Ψ(x), x ∈ U ⊂ Rn, that is

〈f, ϕ〉 =

m−1∑
j=0

∫
Σ
qj ∂

j
yϕdx.

Assume that WFA(f) contains no horisontal
cotangent vectors (ξ, η) = (ξ, 0), i.e. that

N∗(γx) ∩WFA(f) = ∅,

for every line γx : y 7→ (x, y) for x ∈ Rn.
Then the surface Σ and all densities qj are real
analytic.

Σξ

y

x

In particular, if WFA(f) ⊂ N∗(Σ), then the surface Σ and all
densities qj are real analytic.



Corollary. Let f be the characteristic function χD(x) for a domain D
with C1 boundary, or the product of χD(x) with a real analytic
function, and let x0 ∈ ∂D. Let v be a tangent vector that is transversal
to the boundary at x0. Assume that (x0, ξ) /∈WFA(f) for all ξ that
are conormal to v. Then the boundary of D is real analytic in a
neighborhood of x0.



There is in fact a coordinate free formulation of the theorem.

Theorem 2′. Let Σ be a C1 hypersurface in a real analytic manifold
M , let f ∈ D′(M) be supported in Σ, and let z ∈ supp f . Assume
that v ∈ Tz(M) is a tangent vector to M at z that is transversal to Σ
and that

(z, ξ) /∈WFA(f) for every ξ that is conormal to v.

Then there exists a neighborhood U of z such that the surface Σ is
real analytic in U and the distribution f has the form

〈f, ϕ〉 =

m−1∑
j=0

∫
Rn

qj(x) (∂jyϕ)(x,Ψ(x))dx, ϕ ∈ C∞c (U).

in suitable local coordinates in
U with all qj real analytic.

Σ
v

ξ



Theorems 1 and 2 appear unrelated, but proofs are very similar.

What is the relationship?

The hypothesis of Theorem 1 implies that

Sn−1 3 ω 7→
∫
g(ω, p)pkdp is a polynomial for every k.

The closely related condition

Sn−1 3 ω 7→
∫
g(ω, p)ϕ(ω, p)dp is real analytic for every real analytic ϕ

is equivalent to a microlocal regularity property of g(ω, p) (conormal
of p 7→ (ω, p) is disjoint from WFA(g)).

The conclusion of Theorem 1 is a very strong regularity property of
the supporting hypersurface of g (the surface is an ellipsoid).

Similarly, the assumption of Thm 2 is a microlocal regularity property
of f , and the conclusion is that the supporting hypersurface is real
analytic (and more).
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