Radon transforms supported in hypersurfaces

Jan Boman, Stockholm University

November 7, 2022

Plan of talk

Example of a distribution whose Radon transform is supported on the set of tangents to a circle.

Theorem:
Such examples do not exist for other domains than ellipsoids.

Some words on the proof.

Related local questions.

The Radon transform

Define $\quad R f(L)=\int_{L} f d s, \quad f \in C_{c}\left(\mathbb{R}^{2}\right), \quad L$ line in \mathbb{R}^{2}.
More generally: $\quad L$ hyperplane in $\mathbb{R}^{n}, d s$ area measure on L.
The hyperplanes are parametrized by $(\omega, p) \in S^{n-1} \times \mathbb{R}$ so that

$$
L=L(\omega, p) \quad \text { is the hyperplane } \quad\left\{x \in \mathbb{R}^{n} ; x \cdot \omega=p\right\} .
$$

Then we write

$$
R f(\omega, p)=R f(L(\omega, p))=\int_{x \cdot \omega=p} f d s, \quad(\omega, p) \in S^{n-1} \times \mathbb{R} .
$$

Note that $R f(\omega, p)=R f(-\omega,-p)$.

The Radon transform of a distribution f in \mathbb{R}^{n} is defined by

$$
\begin{gathered}
\langle R f, \varphi\rangle=\left\langle f, R^{*} \varphi\right\rangle, \quad \text { for all test functions } \varphi, \text { where } \\
\left(R^{*} \varphi\right)(x)=\int_{L \ni x} \varphi(L) d \mu(L), \quad \text { or } \\
\left(R^{*} \varphi\right)(x)=\int_{S^{n-1}} \varphi(\omega, x \cdot \omega) d \omega,
\end{gathered}
$$

where $d \omega$ is surface measure on S^{n-1}.
Locally integrable functions $g(\omega, p)$ on $S^{n-1} \times \mathbb{R}$ are identified with distributions by means of the definition

$$
\langle g, \varphi\rangle=\iint_{S^{n-1} \times \mathbb{R}} g(\omega, p) \varphi(\omega, p) d \omega d p, \quad \varphi \in C_{c}^{\infty}\left(S^{n-1} \times \mathbb{R}\right)
$$

Radon transform supported on a hypersurface

Let f_{0} be the function in the plane defined by

$$
f_{0}(x)=\frac{1}{\pi} \frac{1}{\sqrt{1-|x|^{2}}} \quad \text { for }|x|<1
$$

and $f=0$ for all other $x=\left(x_{1}, x_{2}\right)$. An easy calculation shows that

$$
R f_{0}(\omega, p)=\int_{x \cdot \omega=p} f_{0}(x) d s=1 \quad \text { for }|p|<1
$$

and obviously $R f_{0}(\omega, p)=0$ for $|p| \geq 1$.
Let f be the distribution $f=\Delta f_{0}=\left(\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}\right) f_{0}$.
Now use the formula $R(\Delta h)(\omega, p)=\partial_{p}^{2} R h(\omega, p)$ with $h=f_{0}$. Note that $p \mapsto R f_{0}(\omega, p)$ is piecewise constant:

It follows that

$$
R f(\omega, p)=\partial_{p}^{2} R f_{0}(\omega, p)=\delta^{\prime}(p+1)-\delta^{\prime}(p-1)
$$

where $\delta(p)$ denotes the Dirac measure at the origin.
This means that the distribution $f=\Delta f_{0}$ has the property that its Radon transform, a distribution on the manifold of lines in the plane, must be supported on the set of tangents to the unit circle.
$f(x)$ is a smooth function in the unit disk, but tends fast to infinity at the boundary:

$$
f(x)=\frac{1+2|x|^{2}}{\pi\left(1-|x|^{2}\right)^{5 / 2}}, \quad|x|<1
$$

By means of an affine transformation we can easily construct a similar example where D is an ellipse.

QUESTION: Can one do the same for other domains than ellipses?

The answer is NO:

Theorem 1 (JB 2020). Let $D \subset \mathbb{R}^{n}$ be a bounded, convex domain. Assume that there exists a distribution $f \neq 0$, supported in \bar{D}, such that $R f$ is supported in the set of supporting planes to ∂D. Then the boundary of D is an ellipsoid.

If ∂D is C^{1} smooth, the supporting planes for D are of course tangent planes to ∂D.

And why did I ask the question above?

On Region of Interest reconstruction

Let D_{0}, the region of interest, be a proper subset of D. One would like to reconstruct a function supported in \bar{D} from measurements of $R f(L)$ only for lines that intersect D_{0}.

But this is in general not possible.

In fact, given two disks D and $\overline{D_{0}} \subset D$ there exist functions f with support equal to \bar{D} such that

$$
R f(L)=0 \quad \text { for all lines } L \text { that meet } D_{0} .
$$

If D and D_{0} are concentric and centered at the origin, one can take f radial, that is, $f(x)=f(r)$ with $r=|x|$, which makes the problem 1-dimensional.

It is natural to replace the disks by arbitrary convex sets.
Conjecture. Let D and D_{0} be bounded convex domains in the plane with $\overline{D_{0}} \subset D$. Then there exists a smooth function f with $\operatorname{supp} f=\bar{D}$, such that its Radon transform $R f(L)$ vanishes for every line L that intersects D_{0}.

Proof idea: find a compactly supported distribution f whose Radon transform is supported on the set of tangents to the blue curve.

Then a regularization of $f, f_{1}=f * \phi$, will solve our problem, because $R f_{1}=g_{1}$ will be a smooth function (on the manifold of lines) that is supported in a neighborhood of the set of tangents to the curve.
Theorem 1 shows that this idea must fail.

Arnold's Conjecture

Example:

The volume of the part of the unit ball in \mathbb{R}^{3} that lies above the plane $x_{3}=p$ is

$$
\int_{p}^{1} \pi\left(\sqrt{1-t^{2}}\right)^{2} d t=\int_{p}^{1} \pi\left(1-t^{2}\right) d t=\frac{\pi}{3}\left(p^{3}-3 p+2\right)
$$

Similar for all odd dimensions and for ellipses instead of balls. In even dimensions the volume function is not algebraic.

Arnold's Conjecture, cont.

Problem 1987-14 in Arnold's Problems reads:
Do there exist smooth hypersurfaces in \mathbb{R}^{n} (other than the quadrics in odd-dimensional spaces), for which the volume of the segment cut by any hyperplane from the body bounded by them is an algebraic function of the hyperplane?

Vassiliev 1988: There exist no convex algebraically integrable bounded domains in even dimensions.
V. A. Vassiliev: Applied Picard - Lefschetz Theory, AMS 2002.

Case of odd dimension still unsolved.

Arnold's Conjecture, cont.

Special case: assume n is odd and the volume function $p \mapsto V(\omega, p)$ is polynomial for all ω. Prove that the boundary of D is an ellipsoid.
Solved by Koldobsky, Merkurjev, and Yaskin 2017.

Mark Agronovsky (2919) obtained the same conclusion with the weaker assumption that $p \mapsto V(\omega, p)$ is algebraic under an additional condition on the boundary of D.

Moreover:

Theorem 1 implies the result of Koldobsky, Merkurjev, and Yaskin.
Because if $p \mapsto V(\omega, p)$ is a polynomial of degree $\leq N$ for all ω, then the Radon transform, $p \mapsto R \chi_{D}(\omega, p)$, of the characteristic function for the domain D is a polynomial of degree $\leq N$ (for p in some interval that depends on ω). Hence the Radon transform of $\Delta^{m} \chi_{D}$ is supported on the set of tangent planes, if $m>N / 2$. By Theorem 1 the boundary of D must then be an ellipsoid.

On the proof of Theorem 1

Strategy of proof $(n=2)$:

1. Write down an expression for an arbitrary distribution $g(\omega, p)$ on the manifold of lines in \mathbb{R}^{2} that is supported on the set of tangents to the boundary of D.
2. Write down the condition on $g(\omega, p)$ for g to be the Radon transform of a distribution f on \mathbb{R}^{2} (with sufficient decay at infinity).

The condition is that

$$
\begin{gathered}
\omega=\left(\omega_{1}, \omega_{2}\right) \mapsto \int_{\mathbb{R}} g(\omega, p) p^{k} d p \quad \text { is a homogeneous polynomial } \\
\text { of degree } k \text { for every } k .
\end{gathered}
$$

3. Prove that those conditions imply that the boundary curve is an ellipse.

On the proof of Theorem 1, cont.

Let $\rho_{D}(\omega)=\rho(\omega)$ be the supporting function for D

$$
\rho(\omega)=\sup \{x \cdot \omega ; x \in D\}
$$

The line $L(\omega, p)$ is tangent to ∂D iff

$$
p=\rho(\omega) \quad \text { or } \quad p=\rho(-\omega) .
$$

Assume first that D is symmetric, $D=-D$. Then we may assume that g is even with respect to ω and p separately. If g is of order 0 , then for some density $q(\omega)$

$$
g(\omega, p)=q(\omega)(\delta(p-\rho(\omega))+\delta(p+\rho(\omega)))
$$

Here $\delta(\cdot)$ denotes the Dirac measure.
Use range conditions to deduce information on $\rho(\omega)$.

Case $D=-D$ and $R f=g$ is a distribution of order 0

$$
\begin{aligned}
& k=0: \\
& \int_{\mathbb{R}} g(\omega, p) p^{0} d p=2 q(\omega) \quad \text { must be constant, } q(\omega)=q . \\
& k=2 \\
& \int_{\mathbb{R}} g(\omega, p) p^{2} d p=2 q \rho(\omega)^{2} \quad \text { must be polynomial of degree } 2 \text {, hence } \\
& \quad \rho(\omega)^{2}=\rho\left(\omega_{1}, \omega_{2}\right)^{2} \quad \text { is a homogeneous polynomial of degree } 2 .
\end{aligned}
$$

If $D=-D$, then ∂D is an ellipsoid iff $\rho(\omega)^{2}$ is a (quadratic) polynomial.
It follows that ∂D is an ellipse.

If the distribution $g(\omega, p)$ is of order 1 , then

$$
\begin{aligned}
g(\omega, p) & =q_{0}(\omega)(\delta(p-\rho(\omega))+\delta(p+\rho(\omega))) \\
& +q_{1}(\omega)\left(\delta^{\prime}(p-\rho(\omega))-\delta^{\prime}(p+\rho(\omega))\right)
\end{aligned}
$$

The minus sign is needed to make g even, $g(-\omega,-p)=g(\omega, p)$.
Note that for instance

$$
\int_{\mathbb{R}} \delta^{\prime}(p-\rho(\omega)) p^{k} d p=-k \rho(\omega)^{k-1}
$$

The range conditions imply that there must exist polynomials p_{0}, p_{2}, p_{4} etc., where $p_{k}(\omega)$ is homogeneous of degree k, such that

$$
\begin{aligned}
& q_{0}=p_{0} \\
& q_{0} \rho^{2}+2 q_{1} \rho=p_{2} \\
& q_{0} \rho^{4}+4 q_{1} \rho^{3}=p_{4} \\
& q_{0} \rho^{6}+6 q_{1} \rho^{5}=p_{6}
\end{aligned}
$$

Eliminating q_{0} and q_{1} we easily see that ρ^{2} must be a rational function. Here is an efficient way to eliminate q_{0} and q_{1}.

In matrix form the equations read

$$
\left(\begin{array}{cc}
1 & 0 \\
\rho^{2} & 2 \rho \\
\rho^{4} & 4 \rho^{3} \\
\rho^{6} & 6 \rho^{5} \\
\ldots & \ldots
\end{array}\right)\binom{q_{0}}{q_{1}}=\left(\begin{array}{c}
p_{0} \\
p_{2} \\
p_{4} \\
p_{6} \\
\ldots
\end{array}\right)
$$

This means that

$$
\left(\begin{array}{cc}
0 & 1 \\
\rho^{2} & 2 \rho
\end{array}\right)\binom{q_{0}}{q_{1}}=\binom{p_{0}}{p_{2}}, \quad\left(\begin{array}{cc}
\rho^{2} & 2 \rho \\
\rho^{4} & 4 \rho^{3}
\end{array}\right)\binom{q_{0}}{q_{1}}=\binom{p_{2}}{p_{4}}, \text { etc. }
$$

With shorter notation

$$
M_{0} Q=P_{0}, \quad M_{1} Q=P_{1}, \quad M_{2} Q=P_{2}, \quad \text { etc. }
$$

Here I have set

$$
\begin{aligned}
M_{0} & =\left(\begin{array}{cc}
1 & 0 \\
\rho^{2} & 2 \rho
\end{array}\right), \quad M_{1}=\left(\begin{array}{cc}
\rho^{2} & 2 \rho \\
\rho^{4} & 4 \rho^{3}
\end{array}\right), \quad \text { etc., and } \\
Q & =\binom{q_{0}}{q_{1}}, \quad P_{0}=\binom{p_{0}}{p_{2}}, \quad P_{1}=\binom{p_{2}}{p_{4}} \quad \text { etc. }
\end{aligned}
$$

The matrices $M_{0}, M_{1}, M_{2}, \ldots$ form a geometric series

$$
\begin{gathered}
M_{k}=S^{k} M_{0} \quad \text { or all } k \geq 0, \quad \text { where } \\
S=M_{1} M_{0}^{-1}=\left(\begin{array}{cc}
0 & 1 \\
\rho^{2} & -2 \rho
\end{array}\right) .
\end{gathered}
$$

This makes it easy to eliminate Q. Because for instance

$$
S P_{0}=S M_{0} Q=M_{1} Q=P_{1}
$$

And similarly

$$
S P_{k}=P_{k+1} \quad \text { for all } k
$$

In other words

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & 1 \\
\rho^{2} & -2 \rho
\end{array}\right)\binom{p_{0}}{p_{2}}=\binom{p_{2}}{p_{4}} \quad \text { and } \\
& \left(\begin{array}{cc}
0 & 1 \\
\rho^{2} & -2 \rho
\end{array}\right)\binom{p_{2}}{p_{4}}=\binom{p_{4}}{p_{6}} \quad \text { etc. }
\end{aligned}
$$

The last two equations can be combined to the matrix equation

$$
\left(\begin{array}{cc}
0 & 1 \\
\rho^{2} & -2 \rho
\end{array}\right)\left(\begin{array}{ll}
p_{0} & p_{2} \\
p_{2} & p_{4}
\end{array}\right)=\left(\begin{array}{ll}
p_{2} & p_{4} \\
p_{4} & p_{6}
\end{array}\right) .
$$

By the product law for determinants these equations shows that ρ^{2} must be a rational function. However, the fact that $S M_{k}=M_{k+1}$ shows that more generally

$$
\left(\begin{array}{cc}
0 & 1 \\
\rho^{2} & -2 \rho
\end{array}\right)^{k}\left(\begin{array}{cc}
p_{0} & p_{2} \\
p_{2} & p_{4}
\end{array}\right)=\left(\begin{array}{cc}
p_{2 k} & p_{2 k+2} \\
p_{2 k+2} & p_{2 k+4}
\end{array}\right)
$$

for every k. And this shows that $\rho^{2 k}$ must be a rational function with the same denominator for every k. Hence ρ^{2} must be a polynomial.

More generally: g is a distribution of order m

If $m=3$ we get the system

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\rho & 1 & 0 & 0 \\
\rho^{2} & 2 \rho & 2 & 0 \\
\rho^{3} & 3 \rho^{2} & 6 \rho & 6 \\
\rho^{4} & 4 \rho^{3} & 12 \rho^{2} & 24 \rho \\
\rho^{5} & 5 \rho^{4} & 20 \rho^{3} & 60 \rho^{2} \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)\left(\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)=\left(\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5} \\
\ldots
\end{array}\right) .
$$

With the same notation as before this can be written

$$
M_{0} Q=P_{0}, \quad M_{1} Q=P_{1}, \quad M_{2} Q=P_{2}, \quad \text { etc. }
$$

The important point is that

$$
M_{k}=S^{k} M_{0}=M_{0} T^{k} \quad \text { for all } k, \text { where }
$$

$$
S=M_{1} M_{0}^{-1}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\rho^{4} & 4 \rho^{3} & -12 \rho^{2} & 24 \rho
\end{array}\right)
$$

and

$$
T=M_{0}^{-1} M_{1}=\left(\begin{array}{cccc}
\rho^{2} & 1 & 0 & 0 \\
0 & \rho^{2} & 2 & 0 \\
0 & 0 & \rho^{2} & 3 \\
0 & 0 & 0 & \rho^{2}
\end{array}\right)
$$

So

$$
\operatorname{det} S=\operatorname{det} T=\left(\rho^{2}\right)^{4}=\rho^{8} .
$$

General case: D not assumed symmetric

Then we have to consider matrices with two variables

$$
M=\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
\rho & 1 & 0 & \tau & 1 & 0 \\
\rho^{2} & 2 \rho & 2 & \tau^{2} & 2 \tau & 2 \\
\rho^{3} & 3 \rho^{2} & 6 \rho & \tau^{3} & 3 \tau^{2} & 6 \tau \\
\rho^{4} & 4 \rho^{3} & 12 \rho^{2} & \tau^{4} & 4 \tau^{3} & 12 \tau^{2} \\
\rho^{5} & 5 \rho^{4} & 20 \rho^{3} & \tau^{5} & 5 \tau^{4} & 20 \tau^{3} \\
\rho^{6} & 6 \rho^{5} & 30 \rho^{4} & \tau^{6} & 6 \tau^{5} & 30 \tau^{4} \\
\rho^{7} & 7 \rho^{6} & 42 \rho^{5} & \tau^{7} & 7 \tau^{6} & 42 \tau^{5} \\
\cdots & \cdots & \cdots & \cdots & \cdots &
\end{array}\right) .
$$

As before we introduce the successive $2 m \times 2 m$ submatrices, here 6×6 submatrices, M_{0}, M_{1}, M_{2}, etc. Then

$$
\begin{aligned}
& M_{k}=S^{k} M_{0}, \quad \text { and } \\
& M_{k}=M_{0} T^{k},
\end{aligned}
$$

where

$$
\begin{gathered}
T=\left(\begin{array}{cc}
T_{\rho} & 0 \\
0 & T_{\tau}
\end{array}\right) \\
\text { with } \quad T_{\rho}=\left(\begin{array}{ccc}
\rho & 1 & 0 \\
0 & \rho & 2 \\
0 & 0 & \rho
\end{array}\right) \quad \text { and } \quad T_{\tau}=\left(\begin{array}{ccc}
\tau & 1 & 0 \\
0 & \tau & 2 \\
0 & 0 & \tau
\end{array}\right),
\end{gathered}
$$

and the matrix S can be written (for $m=3$)

$$
S=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
s_{0} & s_{1} & s_{2} & s_{3} & s_{4} & s_{5}
\end{array}\right)
$$

Here s_{j} is (up to sign) the elemntary symmetric polynomial of degree $6-j$ in 6 variables, evaluated at $(\rho, \rho, \rho, \tau, \tau, \tau)$.

Local questions

Assume that there exists a distribution f with support in \bar{D}, a tangent plane L_{0}, a point $x^{0} \in L_{0} \cap \operatorname{supp} f$, and a neighborhood V of L_{0} in the manifold of hyperplanes, such that the restriction of $R f$ to V is supported on the set of tangent planes to ∂D in V. Does it follow that ∂D is a quadric in some neighborhood of x^{0} ?

We don't know.

Singularities of a distribution and of its support

It turned out that the arguments in the proof of Theorem 1 could prove an apparently completely unrelated theorem that connects singularities of a distribution with singularities of its support.

First a couple of introductory remarks.

If a distribution f is supported on a hypersurface, we can talk about singularities of f (in terms of wave fronts), and we can talk about the singularities of the surface (wave front set of the defining function).

What is the relationship?
The same if f is the characteristic function for a region. What is the relationship between $W F_{A}(f)$ and the singularities of the boundary of the region?

Let us look at some examples.

The following is an easy consequence of the definition of $W F(f)$:
If f is a C^{∞} density on a C^{∞} hypersurface Σ, then $W F(f)$ is contained in the set $N^{*}(\Sigma)$ of conormals to Σ,

$$
N^{*}(\Sigma)=\{(x, \xi) ; x \in \Sigma, \text { and } \xi \text { conormal to } \Sigma \text { at } \mathrm{x}\} .
$$

If f is a real analytic density on a real analytic hypersurface Σ, then

$$
W F_{A}(f) \subset N^{*}(\Sigma)
$$

And if f is the characteristic function for a domain D with real analytic boundary, then

$$
W F_{A}(f)=N^{*}(\partial D)
$$

Similarly, for distributions of higher order:
Let Σ be a hypersurface in R^{n+1} defined by $y=\Psi(x)$ and f be the distribution

$$
\begin{aligned}
\langle f, \varphi\rangle & =\sum_{j=0}^{m-1} \int_{\Sigma} q_{j} \partial_{y}^{j} \varphi d x \\
& =\sum_{j=0}^{m-1} \int_{\mathbb{R}^{n}} q_{j}(x)\left(\partial_{y}^{j} \varphi\right)(x, \Psi(x)) d x, \quad \varphi \in C_{c}^{\infty}(U)
\end{aligned}
$$

If Ψ and all q_{j} are real analytic, then $W F_{A}(f) \subset N^{*}(\Sigma)$.
I am interested in a strong converse to this statement. That is, assuming some regularity of the distribution f, I want to conclude that Ψ and all q_{j} are real analytic.

Theorem 2. Let f be the distribution above, supported on the C^{1} surface $\Sigma: y=\Psi(x), x \in U \subset \mathbb{R}^{n}$, that is

$$
\langle f, \varphi\rangle=\sum_{j=0}^{m-1} \int_{\Sigma} q_{j} \partial_{y}^{j} \varphi d x
$$

Assume that $W F_{A}(f)$ contains no horisontal cotangent vectors $(\xi, \eta)=(\xi, 0)$, i.e. that

$$
N^{*}\left(\gamma_{x}\right) \cap W F_{A}(f)=\emptyset
$$

for every line $\gamma_{x}: y \mapsto(x, y)$ for $x \in \mathbb{R}^{n}$.
Then the surface Σ and all densities q_{j} are real analytic.

In particular, if $W F_{A}(f) \subset N^{*}(\Sigma)$, then the surface Σ and all densities q_{j} are real analytic.

Corollary. Let f be the characteristic function $\chi_{D}(x)$ for a domain D with C^{1} boundary, or the product of $\chi_{D}(x)$ with a real analytic function, and let $x^{0} \in \partial D$. Let v be a tangent vector that is transversal to the boundary at x^{0}. Assume that $\left(x^{0}, \xi\right) \notin W F_{A}(f)$ for all ξ that are conormal to v. Then the boundary of D is real analytic in a neighborhood of x^{0}.

There is in fact a coordinate free formulation of the theorem.
Theorem $\mathbf{2}^{\prime}$. Let Σ be a C^{1} hypersurface in a real analytic manifold M, let $f \in \mathcal{D}^{\prime}(M)$ be supported in Σ, and let $z \in \operatorname{supp} f$. Assume that $v \in T_{z}(M)$ is a tangent vector to M at z that is transversal to Σ and that

$$
(z, \xi) \notin W F_{A}(f) \text { for every } \xi \text { that is conormal to } v .
$$

Then there exists a neighborhood U of z such that the surface Σ is real analytic in U and the distribution f has the form

$$
\langle f, \varphi\rangle=\sum_{j=0}^{m-1} \int_{\mathbb{R}^{n}} q_{j}(x)\left(\partial_{y}^{j} \varphi\right)(x, \Psi(x)) d x, \quad \varphi \in C_{c}^{\infty}(U)
$$

in suitable local coordinates in U with all q_{j} real analytic.

Theorems 1 and 2 appear unrelated, but proofs are very similar. What is the relationship?
The hypothesis of Theorem 1 implies that

$$
S^{n-1} \ni \omega \mapsto \int g(\omega, p) p^{k} d p \quad \text { is a polynomial for every } k .
$$

The closely related condition
$S^{n-1} \ni \omega \mapsto \int g(\omega, p) \varphi(\omega, p) d p \quad$ is real analytic for every real analytic φ
is equivalent to a microlocal regularity property of $g(\omega, p)$ (conormal of $p \mapsto(\omega, p)$ is disjoint from $W F_{A}(g)$).

The conclusion of Theorem 1 is a very strong regularity property of the supporting hypersurface of g (the surface is an ellipsoid).
Similarly, the assumption of Thm 2 is a microlocal regularity property of f, and the conclusion is that the supporting hypersurface is real analytic (and more).

References

目
J. Boman, A hypersurface containing the support of a Radon transform must be an ellipsoid. I: The symmetric case, J. Geom. Anal. 31 (2020), 2726-2741. https://doi.org/10.1007/s12220-020-00372-8

䍰 J. Boman, A hypersurface containing the support of a Radon transform must be an ellipsoid. II: The general case, J. Ill-posed Inverse Problems (2021).
https://www.degruyter.com/document/doi/10.1515/jiip-20200139/html
(-i J. Boman, Regularity of a distribution and of the boundary of its support, J. Geom. Anal. 32 (2022).

