ON TRANSPORT TWISTOR SPACES

Jan Bohr

Joint work with T. Lefeuvre and G. Paternain

Linz 2022

Outline

Motivation

▶ Geometric inverse problems in 2 dimensions are often best understood via the following interplay:

transport equations \leftrightarrow fibrewise Fourier analysis

▶ Transport twistor spaces are complex 2-dimensional manifolds that put these aspects on the same footing.

This talk

- ▶ Twistor correspondences novel point of view for old theorems
- ▶ two new theorems that were inspired by twistor considerations

Future

- ▶ Twistor spaces as a tool?
- ▶ Many intriguing questions about twistor spaces!

Transport equations vs. vertical Fourier analysis

Let (M, g) be an orientable Riemannian surface with (possibly empty) boundary ∂M . Define the unit tangent bundle

$$SM = \{(x, v) \in TM : g(v, v) = 1\}.$$

▶ Transport equations. Let X be the geodesic vector field, $A \in C^{\infty}(SM, \mathbb{C}^{n \times n})$ and consider:

$$(X + \mathbb{A})u = f \quad \text{on } SM \tag{TE}$$

Equivalent to a family of ODE:

$$\forall \text{ geodesics } \gamma(t): \quad \dot{u}(t) + \mathbb{A}(\gamma(t), \dot{\gamma}(t)) \cdot u(t) = 0 \qquad (\text{TE'})$$

▶ Fibrewise Fourier Analysis. Any $f \in C^{\infty}(SM)$ has a unique decomposition into vertical Fourier modes:

$$f = \sum_{k \in \mathbb{Z}} f_k$$

We say that f is **fibrewise holomorphic**, if $f_k = 0$ for k < 0.

It is often key to find solutions of the transport equation whose Fourier modes have special properties.

Problem 1: Invariant holomorphic distributions

Find many (distributional) solutions to Xu = 0 such that u is fibrewise holomorphic. E.g. one for every chosen lowest Fourier mode!

→ Tensor tomography problem on closed Anosov surfaces (PATERNAIN–SALO–UHLMANN 2014, GUILLARMOU 2017)

Problem 2: Matrix holomorphic integrating factors

For which A does (X + A)F = 0 admit a $GL(n, \mathbb{C})$ -valued solution F that is fibrewise holomorphic?

 \sim Range characterisation for the non-Abelian X-ray transform on simple surfaces (B.-PATERNAIN 2021)

The twistor space of \mathbb{R}^2

Let $M = \mathbb{R}^2$, then $SM = \{(z, \mu) \in \mathbb{C}^2 : |\mu| = 1\}$. Write z = x + iy and $\mu = \cos \theta + i \sin \theta$, then

$$X = \cos\theta \cdot \partial_x + \sin\theta \cdot \partial_y = \mu \partial_z + \bar{\mu} \partial_{\bar{z}} = \bar{\mu} \left(\mu^2 \partial_z + \partial_{\bar{z}} \right).$$

Definition

The twistor space of \mathbb{R}^2 is $Z = \{(z, \mu) \in \mathbb{C}^2 : |\mu| \leq 1\}$, with (degenerate) complex structure given in terms of the *Cauchy–Riemann* equations

$$(\mu^2 \partial_z + \partial_{\bar{z}})f = 0$$
 and $\partial_{\bar{\mu}}f = 0$.

▶ Have a 1:1-correspondence:

$$f \in C^{\infty}(Z)$$
 holomorphic \leftrightarrow

fibrewise holomorphic solution $u \in C^{\infty}(SM)$ to Xu = 0.

▶ Have a holomorphic blow-down map

$$\beta \colon Z \to \mathbb{C}^2, \quad \beta(z,\mu) = (z - \mu^2 \bar{z}, \mu),$$

maps Z° diffeomorphically to a poly-disk in \mathbb{C}^2 .

Twistor space of an oriented Riemannian surface

The Cauchy–Riemann equations can be encoded in complex vector bundle

$$D = \operatorname{span}_{\mathbb{C}}(\mu^2 \partial_z + \partial_{\bar{z}}, \partial_{\bar{\mu}}) \subset T_{\mathbb{C}}Z = TZ \otimes \mathbb{C}.$$

This has the following properties:

- (i) *D* is involutive (that is, $[D, D] \subset D$); $[\mu^2 \partial_z + \partial_{\bar{z}}, \partial_{\bar{\mu}}] = 0 \checkmark$
- (ii) $D \cap \overline{D} = 0$ on $Z \setminus SM$ and $D \cap \overline{D} = \operatorname{span}_{\mathbb{C}} X$ on SM;
- (iii) the fibres of $Z \to M$ are holomorphic. $\partial_{\bar{\mu}} \in D \checkmark$

Theorem (Existence and uniqueness of twistor space) Let (M,g) be an oriented Riemannian surface and

$$Z = \{(x, v) \in TM : g(v, v) \le 1\}.$$

Then there exists a unique subbundle $D \subset T_{\mathbb{C}}Z$ of rank 2 with the properties (i), (ii) and (iii). In particular, Z° is a complex surface with $T^{0,1}Z^{\circ} = D$.

- ▶ Quotient Z/\sim is well known (O'BRYAN-RAWLSNEY, LEBRUN-MASON, ...), but Z itself seems to have gone unnoticed;
- ▶ there are also versions for magnetic flows, etc.

Holomorphic functions on ${\cal Z}$

Three algebras of holomorphic functions: $\mathcal{A}(Z) \subset \mathcal{A}_{\text{pol}}(Z) \subset \mathcal{A}(Z^{\circ})$

A(Z°) = {f ∈ C∞(Z°) : f holomorphic} (that is, df|_D = 0)
A_{pol}(Z) = {f ∈ A(Z°) : f has at most polynomial growth (†)}

$$\exists C, p > 0: \quad \sup_{(x,v) \in SM} |f(x,rv)| \le C(1-r)^{-p} \tag{\dagger}$$

$$\blacktriangleright \ \mathcal{A}(Z) = \mathcal{A}(Z^{\circ}) \cap C^{\infty}(Z)$$

Theorem

$$\mathcal{A}(Z) \cong \{ u \in C^{\infty}(SM) : Xu = 0, u \text{ fibrewise holomorphic} \}$$

▶ If (M, g) is simple, then $\mathcal{A}(Z)$ is large. By [PESTOV-UHLMANN 2005]:

 $\mathcal{A}(Z) \to \mathcal{A}(M), \quad f \mapsto f|_M, \quad \text{ is onto.}$

▶ If (M, g) is closed and the geodesic flow is ergodic (e.g. if $K_g < 0$), then $\mathcal{A}(Z) \cong \mathbb{C}$. Theorem (B.-LEFEUVRE-PATERNAIN)

Let (M, g) be an oriented closed surface. Then

 $\mathcal{A}_{\text{pol}}(Z) \cong \{ u \in \mathcal{D}'(SM) : Xu = 0, u \text{ fibrewise holomorphic} \}.$

In particular, fibrewise holomorphic invariant distributions form an algebra.

Proof. For u as above, we want to control $||u_k||_{C^N}$ as $k \to \infty$. For this we determine WF(u); in pictures:

Moduli space of holomorphic rank n-vector bundles

$$\mathfrak{M}_n(Z) = \left\{ \begin{array}{l} \text{Holomorphic vector bundle structures} \\ \text{on } Z \times \mathbb{C}^n, \text{ smooth up to the boundary} \end{array} \right\} / \sim$$

Define

$$\mathcal{U} = \{ \mathbb{A} \in C^{\infty}(SM, \mathbb{C}^{n \times n}) : \mathbb{A}_k = 0 \text{ for } k < -1) \}$$
$$\mathbb{G} = \{ F \in C^{\infty}(SM, GL(n, \mathbb{C})) : F_k = 0 \text{ for } k < 0 \}$$

Theorem

Let (M, g) be an oriented surface. Then

 $\mathfrak{M}_n(Z) \cong \mathfrak{V}/\mathbb{G},$

where we quotient by the group action $(\mathbb{A}, F) \mapsto F^{-1}(X + \mathbb{A})F$.

▶ $\mathfrak{M}_n = \{*\} \Leftrightarrow \exists$ holomorphic integrating factors for all $\mathbb{A} \in \mathcal{O}$.

Theorem (TOG principle)	
Let (M, g) be a simple surface. Then:	
(i) $\mathfrak{M}_1(Z) = \{*\}$	[Salo–Uhlmann 2011]
(ii) $\mathfrak{M}_n(Z) = \{*\}$ for all $n \ge 2$	[B.–Paternain]

Proof. Need to show that $\mathbb G$ acts transitively on \mho :

- ▶ Reduce to linear problem with Nash-Moser IFT;
- ▶ solve linear problem (+tame estimates) using results on attenuated X-ray transform and microlocal analysis;
- ▶ conclude that all orbits are open \Rightarrow action on \mho must be transitive.

Slogan

The twistor space of a simple surface behaves like a contractible Stein surface.

Ongoing work with MONARD–PATERNAIN

Produce blow-downs $\beta \colon Z \to \mathbb{C}^2$ for (M, g) nearly Euclidean.

Open questions

- ▶ Is Z° a Stein surface if (M, g) is simple?
- ▶ For which (M, g_1) and (M, g_2) do we have $Z_1 \cong Z_2$?
- ▶ Can we deal with the non-ellipticity of CR-equations intrinsically?
- ▶ Twistor spaces as a tool?
- ▶ ...