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Outline

Motivation

I Geometric inverse problems in 2 dimensions are often best understood
via the following interplay:

transport equations ↔ fibrewise Fourier analysis

I Transport twistor spaces are complex 2-dimensional manifolds that put
these aspects on the same footing.

This talk

I Twistor correspondences – novel point of view for old theorems
I two new theorems that were inspired by twistor considerations

Future

I Twistor spaces as a tool?
I Many intriguing questions about twistor spaces!
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Transport equations vs. vertical Fourier analysis

Let (M, g) be an orientable Riemannian surface with (possibly empty)
boundary ∂M . Define the unit tangent bundle

SM = {(x, v) ∈ TM : g(v, v) = 1}.

I Transport equations. Let X be the geodesic vector field,
A ∈ C∞(SM,Cn×n) and consider:

(X + A)u = f on SM (TE)

Equivalent to a family of ODE:

∀ geodesics γ(t) : u̇(t) + A(γ(t), γ̇(t)) · u(t) = 0 (TE’)

I Fibrewise Fourier Analysis. Any f ∈ C∞(SM) has a unique
decomposition into vertical Fourier modes:

f =
∑
k∈Z

fk

We say that f is fibrewise holomorphic, if fk = 0 for k < 0.
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Examples of the interplay

It is often key to find solutions of the transport equation whose Fourier
modes have special properties.

Problem 1: Invariant holomorphic distributions
Find many (distributional) solutions to Xu = 0 such that u is fibrewise
holomorphic. E.g. one for every chosen lowest Fourier mode!
; Tensor tomography problem on closed Anosov surfaces
(Paternain–Salo–Uhlmann 2014, Guillarmou 2017)

Problem 2: Matrix holomorphic integrating factors
For which A does (X + A)F = 0 admit a GL(n,C)-valued solution F that is
fibrewise holomorphic?
; Range characterisation for the non-Abelian X-ray transform on simple
surfaces (B.-Paternain 2021)
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The twistor space of R2

Let M = R2, then SM = {(z, µ) ∈ C2 : |µ| = 1}.
Write z = x+ iy and µ = cos θ + i sin θ, then

X = cos θ · ∂x + sin θ · ∂y = µ∂z + µ̄∂z̄ = µ̄
(
µ2∂z + ∂z̄

)
.

Definition
The twistor space of R2 is Z = {(z, µ) ∈ C2 : |µ| ≤ 1}, with (degenerate)
complex structure given in terms of the Cauchy–Riemann equations

(µ2∂z + ∂z̄)f = 0 and ∂µ̄f = 0.

I Have a 1:1-correspondence:

f ∈ C∞(Z) holomorphic ↔ fibrewise holomorphic solution
u ∈ C∞(SM) to Xu = 0.

I Have a holomorphic blow-down map

β : Z → C2, β(z, µ) = (z − µ2z̄, µ),

maps Z◦ diffeomorphically to a poly-disk in C2.
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Twistor space of an oriented Riemannian surface

The Cauchy–Riemann equations can be encoded in complex vector bundle

D = spanC(µ2∂z + ∂z̄, ∂µ̄) ⊂ TCZ = TZ ⊗ C.

This has the following properties:

(i) D is involutive (that is, [D,D] ⊂ D); [µ2∂z + ∂z̄, ∂µ̄] = 0 X

(ii) D ∩ D̄ = 0 on Z\SM and D ∩ D̄ = spanCX on SM ; X

(iii) the fibres of Z →M are holomorphic. ∂µ̄ ∈ D X

Theorem (Existence and uniqueness of twistor space)

Let (M, g) be an oriented Riemannian surface and

Z = {(x, v) ∈ TM : g(v, v) ≤ 1}.

Then there exists a unique subbundle D ⊂ TCZ of rank 2 with the properties
(i),(ii) and (iii). In particular, Z◦ is a complex surface with T 0,1Z◦ = D.

I Quotient Z/ ∼ is well known (O’Bryan–Rawlsney,
LeBrun–Mason, . . . ), but Z itself seems to have gone unnoticed;

I there are also versions for magnetic flows, etc.
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Holomorphic functions on Z

Three algebras of holomorphic functions:
A(Z) ⊂ Apol(Z) ⊂ A(Z◦)

I A(Z◦) = {f ∈ C∞(Z◦) : f holomorphic} (that is, df |D = 0)
I Apol(Z) = {f ∈ A(Z◦) : f has at most polynomial growth (†)}

∃C, p > 0 : sup
(x,v)∈SM

|f(x, rv)| ≤ C(1− r)−p (†)

I A(Z) = A(Z◦) ∩ C∞(Z)

Theorem
A(Z) ∼= {u ∈ C∞(SM) : Xu = 0, u fibrewise holomorphic}

I If (M, g) is simple, then A(Z) is large. By [Pestov–Uhlmann 2005]:

A(Z)→ A(M), f 7→ f |M , is onto.

I If (M, g) is closed and the geodesic flow is ergodic (e.g. if Kg < 0), then

A(Z) ∼= C.



8/11

Holomorphic functions on Z - closed case

Theorem (B.–Lefeuvre–Paternain)

Let (M, g) be an oriented closed surface. Then

Apol(Z) ∼= {u ∈ D′(SM) : Xu = 0, u fibrewise holomorphic}.

In particular, fibrewise holomorphic invariant distributions form an algebra.

Proof. For u as above, we want to control ‖uk‖CN as k →∞. For this we
determine WF(u); in pictures:
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Flow invariant:
WF(u) ⊂ Char(X)
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Fibrewise holomorphic:
u = Su, WF′(S) known
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Twist property & POS:
WF(u) ∩ H∗ = ∅
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Holomorphic vector bundles on Z

Moduli space of holomorphic rank n-vector bundles

Mn(Z) =

{
Holomorphic vector bundle structures
on Z × Cn, smooth up to the boundary

}
/ ∼

Define

0 = {A ∈ C∞(SM,Cn×n) : Ak = 0 for k < −1)}
G = {F ∈ C∞(SM,GL(n,C)) : Fk = 0 for k < 0}.

Theorem
Let (M, g) be an oriented surface. Then

Mn(Z) ∼= 0/G,

where we quotient by the group action (A, F ) 7→ F−1(X + A)F .

I Mn = {∗} ⇔ ∃ holomorphic integrating factors for all A ∈ 0.
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The transport Oka-Grauert principle

Theorem (TOG principle)

Let (M, g) be a simple surface. Then:
(i) M1(Z) = {∗} [Salo–Uhlmann 2011]

(ii) Mn(Z) = {∗} for all n ≥ 2 [B.–Paternain]

Proof. Need to show that G acts transitively on 0:
I Reduce to linear problem with Nash-Moser IFT;
I solve linear problem (+tame estimates) using results on attenuated

X-ray transform and microlocal analysis;
I conclude that all orbits are open ⇒ action on 0 must be transitive.

Slogan
The twistor space of a simple surface behaves like a contractible Stein
surface.



11/11

Future directions

Ongoing work with Monard–Paternain

Produce blow-downs β : Z → C2 for (M, g) nearly Euclidean.

Open questions

I Is Z◦ a Stein surface if (M, g) is simple?
I For which (M, g1) and (M, g2) do we have Z1

∼= Z2?
I Can we deal with the non-ellipticity of CR-equations intrinsically?
I Twistor spaces as a tool?
I . . .


