ON TRANSPORT TWISTOR SPACES

Jan Bohr
Joint work with T. Lefeuvre and G. Paternain

Linz 2022

UNIVERSITÄT BONN

Outline

Motivation

- Geometric inverse problems in 2 dimensions are often best understood via the following interplay:
transport equations \leftrightarrow fibrewise Fourier analysis
- Transport twistor spaces are complex 2-dimensional manifolds that put these aspects on the same footing.

This talk

- Twistor correspondences - novel point of view for old theorems
- two new theorems that were inspired by twistor considerations

Future

- Twistor spaces as a tool?
- Many intriguing questions about twistor spaces!

Transport equations vs. vertical Fourier analysis

Let (M, g) be an orientable Riemannian surface with (possibly empty) boundary ∂M. Define the unit tangent bundle

$$
S M=\{(x, v) \in T M: g(v, v)=1\}
$$

- Transport equations. Let X be the geodesic vector field, $\mathbb{A} \in C^{\infty}\left(S M, \mathbb{C}^{n \times n}\right)$ and consider:

$$
\begin{equation*}
(X+\mathbb{A}) u=f \quad \text { on } S M \tag{TE}
\end{equation*}
$$

Equivalent to a family of ODE:

$$
\begin{equation*}
\forall \text { geodesics } \gamma(t): \quad \dot{u}(t)+\mathbb{A}(\gamma(t), \dot{\gamma}(t)) \cdot u(t)=0 \tag{TE'}
\end{equation*}
$$

- Fibrewise Fourier Analysis. Any $f \in C^{\infty}(S M)$ has a unique decomposition into vertical Fourier modes:

$$
f=\sum_{k \in \mathbb{Z}} f_{k}
$$

We say that f is fibrewise holomorphic, if $f_{k}=0$ for $k<0$.

Examples of the interplay

It is often key to find solutions of the transport equation whose Fourier modes have special properties.

Problem 1: Invariant holomorphic distributions
Find many (distributional) solutions to $X u=0$ such that u is fibrewise holomorphic. E.g. one for every chosen lowest Fourier mode!
\sim Tensor tomography problem on closed Anosov surfaces
(Paternain-Salo-Uhlmann 2014, Guillarmou 2017)
Problem 2: Matrix holomorphic integrating factors
For which \mathbb{A} does $(X+\mathbb{A}) F=0$ admit a $G L(n, \mathbb{C})$-valued solution F that is fibrewise holomorphic?
\sim Range characterisation for the non-Abelian X-ray transform on simple surfaces (B.-Paternain 2021)

The twistor space of \mathbb{R}^{2}

Let $M=\mathbb{R}^{2}$, then $S M=\left\{(z, \mu) \in \mathbb{C}^{2}:|\mu|=1\right\}$.
Write $z=x+i y$ and $\mu=\cos \theta+i \sin \theta$, then

$$
X=\cos \theta \cdot \partial_{x}+\sin \theta \cdot \partial_{y}=\mu \partial_{z}+\bar{\mu} \partial_{\bar{z}}=\bar{\mu}\left(\mu^{2} \partial_{z}+\partial_{\bar{z}}\right)
$$

Definition

The twistor space of \mathbb{R}^{2} is $Z=\left\{(z, \mu) \in \mathbb{C}^{2}:|\mu| \leq 1\right\}$, with (degenerate) complex structure given in terms of the Cauchy-Riemann equations

$$
\left(\mu^{2} \partial_{z}+\partial_{\bar{z}}\right) f=0 \quad \text { and } \quad \partial_{\bar{\mu}} f=0
$$

- Have a 1:1-correspondence:

$$
f \in C^{\infty}(Z) \text { holomorphic } \leftrightarrow \quad \begin{aligned}
& \text { fibrewise holomorphic solution } \\
& u \in C^{\infty}(S M) \text { to } X u=0
\end{aligned}
$$

- Have a holomorphic blow-down map

$$
\beta: Z \rightarrow \mathbb{C}^{2}, \quad \beta(z, \mu)=\left(z-\mu^{2} \bar{z}, \mu\right)
$$

maps Z° diffeomorphically to a poly-disk in \mathbb{C}^{2}.

Twistor space of an oriented Riemannian surface

The Cauchy-Riemann equations can be encoded in complex vector bundle

$$
D=\operatorname{span}_{\mathbb{C}}\left(\mu^{2} \partial_{z}+\partial_{\bar{z}}, \partial_{\bar{\mu}}\right) \subset T_{\mathbb{C}} Z=T Z \otimes \mathbb{C}
$$

This has the following properties:
(i) D is involutive (that is, $[D, D] \subset D$);

$$
\left[\mu^{2} \partial_{z}+\partial_{\bar{z}}, \partial_{\bar{\mu}}\right]=0
$$

(ii) $D \cap \bar{D}=0$ on $Z \backslash S M$ and $D \cap \bar{D}=\operatorname{span}_{\mathbb{C}} X$ on $S M$;
(iii) the fibres of $Z \rightarrow M$ are holomorphic.

$$
\partial_{\bar{\mu}} \in D
$$

Theorem (Existence and uniqueness of twistor space)

Let (M, g) be an oriented Riemannian surface and

$$
Z=\{(x, v) \in T M: g(v, v) \leq 1\}
$$

Then there exists a unique subbundle $D \subset T_{\mathbb{C}} Z$ of rank 2 with the properties (i),(ii) and (iii). In particular, Z° is a complex surface with $T^{0,1} Z^{\circ}=D$.

- Quotient Z / \sim is well known (O'Bryan-Rawlsney, LeBrun-Mason, ...), but Z itself seems to have gone unnoticed;
- there are also versions for magnetic flows, etc.

Holomorphic functions on Z

Three algebras of holomorphic functions:

$$
\mathcal{A}(Z) \subset \mathcal{A}_{\mathrm{pol}}(Z) \subset \mathcal{A}\left(Z^{\circ}\right)
$$

- $\mathcal{A}\left(Z^{\circ}\right)=\left\{f \in C^{\infty}\left(Z^{\circ}\right): f\right.$ holomorphic $\}$
(that is, $\left.d f\right|_{D}=0$)
- $\mathcal{A}_{\text {pol }}(Z)=\left\{f \in \mathcal{A}\left(Z^{\circ}\right): f\right.$ has at most polynomial growth $\left.(\dagger)\right\}$

$$
\exists C, p>0: \quad \sup _{(x, v) \in S M}|f(x, r v)| \leq C(1-r)^{-p}
$$

- $\mathcal{A}(Z)=\mathcal{A}\left(Z^{\circ}\right) \cap C^{\infty}(Z)$

Theorem

$$
\mathcal{A}(Z) \cong\left\{u \in C^{\infty}(S M): X u=0, u \text { fibrewise holomorphic }\right\}
$$

- If (M, g) is simple, then $\mathcal{A}(Z)$ is large. By [Pestov-Uhlmann 2005]:

$$
\mathcal{A}(Z) \rightarrow \mathcal{A}(M),\left.\quad f \mapsto f\right|_{M}, \quad \text { is onto. }
$$

- If (M, g) is closed and the geodesic flow is ergodic (e.g. if $\left.K_{g}<0\right)$, then

$$
\mathcal{A}(Z) \cong \mathbb{C} .
$$

Holomorphic functions on Z - closed case

Theorem (B.-LEFEUVRE-PATERNAIN)

Let (M, g) be an oriented closed surface. Then

$$
\mathcal{A}_{\mathrm{pol}}(Z) \cong\left\{u \in \mathcal{D}^{\prime}(S M): X u=0, u \text { fibrewise holomorphic }\right\}
$$

In particular, fibrewise holomorphic invariant distributions form an algebra.
Proof. For u as above, we want to control $\left\|u_{k}\right\|_{C^{N}}$ as $k \rightarrow \infty$. For this we determine $\mathrm{WF}(u)$; in pictures:

Flow invariant:
$\mathrm{WF}(u) \subset \operatorname{Char}(X)$

Fibrewise holomorphic: $u=\mathcal{S} u, \mathrm{WF}^{\prime}(\mathcal{S})$ known

Twist property ${ }^{8}$ POS: $\mathrm{WF}(u) \cap \mathbb{H}^{*}=\emptyset$

Holomorphic vector bundles on Z

Moduli space of holomorphic rank n-vector bundles

$$
\mathfrak{M}_{n}(Z)=\left\{\begin{array}{l}
\text { Holomorphic vector bundle structures } \\
\text { on } Z \times \mathbb{C}^{n}, \text { smooth up to the boundary }
\end{array}\right\} / \sim
$$

Define

$$
\begin{aligned}
& \left.\mathcal{\mho}=\left\{\mathbb{A} \in C^{\infty}\left(S M, \mathbb{C}^{n \times n}\right): \mathbb{A}_{k}=0 \text { for } k<-1\right)\right\} \\
& \mathbb{G}=\left\{F \in C^{\infty}(S M, G L(n, \mathbb{C})): F_{k}=0 \text { for } k<0\right\}
\end{aligned}
$$

Theorem

Let (M, g) be an oriented surface. Then

$$
\mathfrak{M}_{n}(Z) \cong \mho / \mathbb{G}
$$

where we quotient by the group action $(\mathbb{A}, F) \mapsto F^{-1}(X+\mathbb{A}) F$.

- $\mathfrak{M}_{n}=\{*\} \Leftrightarrow \exists$ holomorphic integrating factors for all $\mathbb{A} \in \mathcal{J}$.

The transport Oka-Grauert principle

Theorem (TOG principle)
Let (M, g) be a simple surface. Then:
(i) $\mathfrak{M}_{1}(Z)=\{*\}$
(ii) $\mathfrak{M}_{n}(Z)=\{*\}$ for all $n \geq 2$
[Salo-Uhlmann 2011]
[B.-Paternain]

Proof. Need to show that \mathbb{G} acts transitively on \mho :

- Reduce to linear problem with Nash-Moser IFT;
- solve linear problem (+tame estimates) using results on attenuated X-ray transform and microlocal analysis;
- conclude that all orbits are open \Rightarrow action on \mho must be transitive.

Slogan

The twistor space of a simple surface behaves like a contractible Stein surface.

Future directions

Ongoing work with Monard-Paternain

Produce blow-downs $\beta: Z \rightarrow \mathbb{C}^{2}$ for (M, g) nearly Euclidean.
Open questions

- Is Z° a Stein surface if (M, g) is simple?
- For which $\left(M, g_{1}\right)$ and (M, g_{2}) do we have $Z_{1} \cong Z_{2}$?
- Can we deal with the non-ellipticity of CR-equations intrinsically?
- Twistor spaces as a tool?
- ...

