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Geometric inverse problems, Linz, 8 November 2022

Finnish Centre of Excellence in
Inverse Modelling and Imaging   
2018-20252018-2025



Outline

1. Single measurement problems

2. Main results

3. Methods



Calderón problem

Schrödinger equation{
(−∆+ q)u = 0 in Ω,

u = f on ∂Ω

where Ω ⊂ Rn bounded domain and q ∈ L∞(Ω) (potential).

Boundary measurements given by the
Dirichlet-to-Neumann (DN) map

Λq : H1/2(∂Ω) → H−1/2(∂Ω), f 7→ ∂νu|∂Ω.

Inverse problem: given Λq, recover q.



Calderón problem

Infinitely many measurements (know Λqf for all f ):
[Sylvester-Uhlmann 1987, Bukhgeim 2007, Guillarmou-Tzou 2011, . . . ]

Finitely many measurements (know Λqf1, . . . ,ΛqfN):
[Alberti-Santacesaria 2019, Harrach 2019, . . . ]

We are interested in the single measurement case, where we
know Λqf for a single function f ̸≡ 0.



Single measurement case

The data Λqf depends on n − 1 variables, and q depends on n
variables. The inverse problem is formally underdetermined.

Consider a penetrable obstacle D with

q = hχD

where D ⊂ Ω, and the contrast h(x) satisfies |h| ≥ c > 0 near
∂D.

Inverse problem: given Λqf for fixed f , recover D.



Invisible obstacles

The obstacle D is invisible (for data f ̸≡ 0) if Λqf = Λ0f for
some contrast h. Such an obstacle looks like empty space, and
cannot be recovered from Λqf .

Question: which obstacles D can be invisible (for some f and
for some contrast h)?

(All this extends to inverse scattering in Rn, i.e. to

(−∆− k2η(x))u = 0 (acoustic)

(−∆− k2 + V (x))u = 0 (quantum)

where k > 0 is a fixed frequency, η = 1 + hχD , and V = hχD .

Cf. non-scattering energies and interior transmission eigenvalues.)



Some earlier results

Corners always scatter, i.e. D is never invisible if

▶ D has a 90◦ corner [Bl̊asten-Päivärinta-Sylvester 2014]

▶ n = 2 and D has a < 90◦ corner
[Päivärinta-S-Vesalainen 2017]

▶ D has high curvature points [Bl̊asten-Liu 2021, . . . ]

Based on CGO solutions + Laplace transforms on cones.
Implies single measurement results.

Another approach based on BVPs in corner domains:

▶ n = 2, 3 and D has a curvilinear corner or edge
[Elschner-Hu 2018]

▶ n = 2 and ∂D is piecewise analytic [Li-Hu-Yang 2021]



Some earlier results

On the other hand, D can be invisible if

▶ D is a ball [Colton-Monk 1988]

▶ D is a union of balls [Gell-Redman-Hassell 2012]

Based on these results, the question of which obstacles D can
or cannot be invisible remained mysterious.
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Free boundary methods

New observation: the boundary of an invisible obstacle is a
free boundary [Cakoni-Vogelius 2021, S-Shahgholian 2021].
Also true in the Calderón problem [Alessandrini-Isakov 1996].
Powerful methods from free boundary literature can be applied.



Assumptions

Let Ω ⊂ Rn be a bounded domain, k ≥ 0 a fixed frequency,
and D (the obstacle) an open set with D ⊂ Ω such that

▶ D and Rn \ D connected, int(D) = D (solid domain),

▶ Dirichlet problem for ∆ + k2 in D is well-posed.

This excludes holes in D and obstacles like the slit disk.

We let u0 = uf
0 (incident wave) be the solution of{

(∆ + k2)u0 = 0 in Ω,

u0 = f on ∂Ω.

If Ω = Rn, we let uf
0 be the Herglotz wave1 for f ∈ L2(Sn−1).

1uf0(x) =
∫
Sn−1 e

ikx·ωf (ω) dω



Main results

Theorem 1 (S-Shahgholian 2021)
Let D have real-analytic boundary. Then D is invisible for any
Dirichlet data f such that uf

0 |∂D > 0 (with some contrast h).

Note: h depends of f and may have varying sign.



Main results

Theorem 2 (Kow-Larson-S-Shahgholian 2022)
Let D be a quadrature domain for ∆ + k2. Then D is invisible
for any Dirichlet data f such that uf

0 |∂D > 0.

D is a quadrature domain if there is µ ∈ E ′(D) such that∫
D

w dx = ⟨µ,w⟩, w ∈ L1(D), (∆ + k2)w = 0.

Basic case: D = Br and µ = ck,rδ0 (mean value theorem).
Includes domains with inward cusps and double points.



Quadrature domain

Figure from [Petrosyan-Shahgholian-Uraltseva 2012].



Main results

Theorem 3 (S-Shahgholian 2021)
Let D be invisible for f . Near each x0 ∈ ∂D with uf

0(x0) ̸= 0,
either

(a) D is C 1 near x0, or

(b) Rn \ D is thin near x0 (e.g. inward cusp).

If h is C k,α/analytic and (a) holds, then D is C k+1,α/analytic.

This follows from free boundary regularity results.
Proved earlier for Lipschitz domains D [Cakoni-Vogelius 2021].
Related results: [Cakoni-Vogelius-Xiao 2022, . . . ]



Main results

Compared to earlier approaches, free boundary methods

▶ apply to general sets D (not just curvilinear polyhedra)

▶ apply in any dimension (not just n = 2, 3)

▶ characterize what invisible obstacles can look like

However, they require the positivity condition uf
0 |∂D > 0.

Since real solutions to (∆ + k2)u = 0 have many zeros, this
condition may be nontrivial. In this direction:

Theorem 4 (Kow-S-Shahgholian 2022)
Suppose D is a bounded Lipschitz domain. There is a Herglotz
wave satisfying uf

0 |∂D > 0.
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We first explain methods in [Bl̊asten-Päivärinta-Sylvester 2014],
[Päivärinta-S-Vesalainen 2017] based on CGO solutions and
Laplace transforms.

Let k = 0, and let D have a corner at 0 ∈ ∂D modelled by a
cone C .



1. If Λqf = Λ0f for fixed f ̸≡ 0, Alessandrini identity and
q = hχD give ∫

D

huf
0w dx = 0.

Here uf
0 is fixed, but can vary w solving (−∆+ q)w = 0.

2. Choose w as a CGO solution with ρ ∈ Cn, ρ · ρ = 0:

w = e−ρ·x(1 + r)

Since ∆uf
0 = 0, expand uf

0 = H +O(|x |N+1) near 0 where
H = HN ̸≡ 0 is a harmonic homog. polynomial. Get

0 =

∫
D

huf
0w dx =

∫
D

e−ρ·xh(0)H(x) dx︸ ︷︷ ︸
main term

+ error terms.



3. Homogeneity (blowup x → x/|ρ|) =⇒ main term
contains Laplace transform (χCH )̂ (ρ/|ρ|). Prove

(χCH )̂ (ρ/|ρ|) ≡ 0 (∗)

for certain ρ, by showing |error terms| ≲ |ρ|−δ|main term|
via Lp estimates for CGO solutions.

4. For n = 2, use that H(re iθ) = rN(ae iNθ + be−iNθ) to
derive a contradiction with (∗) unless C has angle 180◦.



We proceed to free boundary methods. Assume, for simplicity,
that ∂D is Lipschitz and k = 0. Let q = hχD and

Λqf = Λ0f . (∗)

Let u, u0 ∈ H1(Ω) solve1
(−∆+ q)u = ∆u0 = 0 in Ω,

u = u0 = f on ∂Ω,

∂νu = ∂νu0 on ∂Ω.

The last equality used (∗).

Since q = 0 outside D and Rn \ D is connected, unique
continuation implies u = u0 outside D.

1Cf. interior transmission problem, where u, u0 ∈ L2(Ω) instead.



Setting w = u − u0 gives{
−∆w = huχD in Ω,

w = 0 in Ω \ D.

Writing f = hu and using the assumption that h|∂D ̸= 0 and
u|∂D = u0|∂D > 0, this can be rewritten as

−∆w = f χ{w ̸=0} near ∂D.

In this equation D has disappeared, and the solution w
remains.



The equation
−∆w = f χ{w ̸=0} in U

appears in (no-sign) obstacle problems. The free boundary is

∂{w = |∇w | = 0} = ∂D.

Properties of w lead to regularity of ∂D. (Blowup analysis,
[Caffarelli 1980, . . . , Petrosyan-Shahgholian-Uraltseva 2012].)



Steps for studying the equation

−∆w = f χ{w ̸=0} in U .

1. Optimal C 1,1 regularity of w . Nontrivial since RHS is only
in L∞, and Calderón-Zygmund estimates fail at p = ∞.
Scale-invariant estimates

|∇2w | ≤ C . (∗)

2. Blowup analysis: if 0 ∈ ∂D, consider

wλj
(x) =

w(λjx)

λ2
j

, x ∈ B1,

where λj → 0. By compactness and (∗), there is a C 1,1

limit w0 (blowup solution).



Blowup

Blowup near the cusp point of a cardioid domain.

Figure from [Petrosyan-Shahgholian-Uraltseva 2012].



3. Classification of blowup solutions. Two possibilities:

w0 =
1
2(xn)

2
+ (regular point) w0 = Ax · x (singular point)

4. Directional monotonicity of blowups near regular points

=⇒ Lipschitz / C 1 / analytic regularity of ∂D.

Requires uf
0 |∂D > 0. What happens in general?


