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Calderén problem

Schrodinger equation

(-A+qu=0 inQ,
u=rf on 0f2

where Q C R” bounded domain and g € L*>°(Q2) (potential).

Boundary measurements given by the Q
Dirichlet-to-Neumann (DN) map

Ng : HY2(0Q) — H=Y2(8Q), f +— 8, u|sq.

Inverse problem: given A, recover q.



Calderén problem

Infinitely many measurements (know A,f for all f):

[Sylvester-Uhlmann 1987, Bukhgeim 2007, Guillarmou-Tzou 2011, ...

Finitely many measurements (know A,fy, ..., Ayfy):
[Alberti-Santacesaria 2019, Harrach 2019, ...]

We are interested in the single measurement case, where we
know Ag4f for a single function f # 0.



Single measurement case

The data A;f depends on n — 1 variables, and g depends on n
variables. The inverse problem is formally underdetermined.

Consider a penetrable obstacle D with @

q = hxp @

where D C , and the contrast h(x) satisfies |h| > ¢ > 0 near
oD.

Inverse problem: given A,f for fixed f, recover D.



Invisible obstacles

The obstacle D is invisible (for data f # 0) if A,f = Aof for
some contrast h. Such an obstacle looks like empty space, and
cannot be recovered from Aqf.

Question: which obstacles D can be invisible (for some f and
for some contrast h)?

(All this extends to inverse scattering in R”, i.e. to
(—A — K*n(x))u=0 (acoustic)
(~A - K+ V(x)u=0 (quantum)
where k > 0 is a fixed frequency, n = 1+ hxp, and V = hxp.

Cf. non-scattering energies and interior transmission eigenvalues.)



Some earlier results

Corners always scatter, i.e. D is never invisible if
» D has a 90° corner [Blasten-Paivarinta-Sylvester 2014]

» n=2and D has a < 90° corner
[Paivarinta-S-Vesalainen 2017]

» D has high curvature points [Blasten-Liu 2021, ...]

Based on CGO solutions + Laplace transforms on cones.
Implies single measurement results.

Another approach based on BVPs in corner domains:

» n=2,3 and D has a curvilinear corner or edge
[Elschner-Hu 2018]

» n =2 and dD is piecewise analytic [Li-Hu-Yang 2021]



Some earlier results

On the other hand, D can be invisible if
» D is a ball [Colton-Monk 1988]
» D is a union of balls [Gell-Redman-Hassell 2012]

Based on these results, the question of which obstacles D can
or cannot be invisible remained mysterious.
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Free boundary methods

New observation: the boundary of an invisible obstacle is a
free boundary [Cakoni-Vogelius 2021, S-Shahgholian 2021].

Also true in the Calderén problem [Alessandrini-Isakov 1996].
Powerful methods from free boundary literature can be applied.




Assumptions
Let Q C R"” be a bounded domain, k 2_0 a fixed frequency,
and D (the obstacle) an open set with D C € such that

» D and R"\ D connected, int(D) = D (solid domain),
» Dirichlet problem for A + k2 in D is well-posed.

This excludes holes in D and obstacles like the slit disk.

We let up = uf (incident wave) be the solution of

(A + k2)U0 = 0 in Q,
u = f on 0L.

If Q =TR", we let u} be the Herglotz wave! for f € L?(S"71).

L (x) = [eros 9 f(w) dw



Main results

Theorem 1 (S-Shahgholian 2021)

Let D have real-analytic boundary. Then D is invisible for any
Dirichlet data f such that uf|sp > 0 (with some contrast h).

Q

@

Note: h depends of f and may have varying sign.



Main results

Theorem 2 (Kow—Larson—S—ShahghoIian 2022)
Let D be a quadrature domain for A + k2. Then D is invisible

for any Dirichlet data f such that uf|sp > 0.
D is a quadrature domain if there is u € &’(D) such that

/de:(u,w>, w e LX(D), (A + k2w =0,

Basic case: D = B, and j = ¢ 09 (mean value theorem).
Includes domains with inward cusps and double points.



Quadrature domain

fnh = ?%h(o) 4 ;-razh(o)

Figure from [Petrosyan-Shahgholian-Uraltseva 2012].



Main results

Theorem 3 (S—Shahgholian 2021)

Let D be invisible for f. Near each xo € D with uj(xo) # 0,
either

(a) D is C! near xg, or
(b) R"\ D is thin near xo (e.g. inward cusp).
If his C*“/analytic and (a) holds, then D is C**1:%/analytic.

This follows from free boundary regularity results.
Proved earlier for Lipschitz domains D [Cakoni-Vogelius 2021].
Related results: [Cakoni-Vogelius-Xiao 2022, .. .]



Main results

Compared to earlier approaches, free boundary methods

» apply to general sets D (not just curvilinear polyhedra)
» apply in any dimension (not just n = 2, 3)

» characterize what invisible obstacles can look like

However, they require the positivity condition u|sp > 0.
Since real solutions to (A + k?)u = 0 have many zeros, this
condition may be nontrivial. In this direction:

Theorem 4 (Kow—S—ShahghoIian 2022)

Suppose D is a bounded Lipschitz domain. There is a Herglotz
wave satisfying uf|op > 0.



Outline

2.

3. Methods



We first explain methods in [Blasten-Paivarinta-Sylvester 2014],
[Paivarinta-S-Vesalainen 2017] based on CGO solutions and
Laplace transforms.

Let k =0, and let D have a corner at 0 € 9D modelled by a
cone C.

Q



L. If Agf = Aof for fixed f # 0, Alessandrini identity and

g = hxp give
/ hufw dx = 0.
D

Here uf is fixed, but can vary w solving (—A + q)w = 0.

2. Choose w as a CGO solution with p € C", p- p = 0:
w=e"(1+r)

Since Auf = 0, expand uf = H + O(|x|"*!) near 0 where
H = Hy # 0 is a harmonic homog. polynomial. Get

0= / hubw dx = / e "*h(0)H(x) dx + error terms.
D D

J/

vV
main term



3. Homogeneity (blowup x — x/|p|) == main term
contains Laplace transform (xcH) (p/|p|). Prove

(xcH) (p/Ipl) =0 (%)

for certain p, by showing |error terms| < |p|=°|main term|
via LP estimates for CGO solutions.

4. For n =2, use that H(re®) = rV(ae™? + be="N?) to
derive a contradiction with (*) unless C has angle 180°.



We proceed to free boundary methods. Assume, for simplicity,
that 0D is Lipschitz and k = 0. Let ¢ = hxp and

Aof = Aof (%)
Let u, up € H*(Q) solve!

(—A+q)u=Auy=0in Q,
u=uy="f on 0,
o, u = 0,ug on 0S2.

The last equality used ().

Since ¢ = 0 outside D and R” \5 is connected, unique
continuation implies u = ug outside D.

LCf. interior transmission problem, where u, ug € L2(Q) instead.



Setting w = u — ug gives

—Aw = huyp in €,
w =0 in Q\ D.

Writing f = hu and using the assumption that h|gp # 0 and
ulpp = uplap > 0, this can be rewritten as

—Aw = fX{uz0y near D.

In this equation D has disappeared, and the solution w
remains.



The equation
—Aw = fxiwzoy in U

appears in (no-sign) obstacle problems. The free boundary is

H{w = |Vw| =0} =0D.

Properties of w lead to regularity of 9D. (Blowup analysis,
[Caffarelli 1980, ..., Petrosyan-Shahgholian-Uraltseva 2012].)



Steps for studying the equation
—Aw = fX{w;éO} in U.

1. Optimal C*! regularity of w. Nontrivial since RHS is only
in L*°, and Calderén-Zygmund estimates fail at p = oo.
Scale-invariant estimates

|V2w| < C. (%)
2. Blowup analysis: if 0 € 9D, consider

w(\ix
W)\j(X) = ()\QJ )7 X € Bla
J

where \; — 0. By compactness and (x), there is a C**
limit wy (blowup solution).



Uo

Blowup near the cusp point of a cardioid domain.
Figure from [Petrosyan-Shahgholian-Uraltseva 2012].



3. Classification of blowup solutions. Two possibilities:

wy = %(X,,)i (regular point) wp = Ax - x (singular point)
4. Directional monotonicity of blowups near regular points
— Lipschitz / C! / analytic regularity of 9D.
Requires u|op > 0. What happens in general?



