Mode stability and shallow quasinormal modes of Kerr–de Sitter black holes

Peter Hintz

Workshop on *Scattering and Inverse Scattering*

RICAM

November 4, 2022
Introduction and motivation

Goal: study long time asymptotics of linear waves propagating on certain black hole spacetimes of General Relativity (GR).

1. Do waves decay at all? (‘Linear stability.’) Highly nontrivial in the absence of (coercive) conserved energies.

2. If yes, what is the decay rate? Can one prove asymptotic expansions?

Typical applications:

1. global existence results for nonlinear wave equations;

2. in the context of Einstein’s field equations: nonlinear stability of the (family of) spacetime(s) under consideration.
Black holes in de Sitter space

Fix the cosmological constant $\Lambda > 0$.

Schwarzschild–de Sitter (SdS). Black hole mass $m \in (0, (9\Lambda)^{-1/2})$.

1. **Metric:** $g = -F(r)\,dt^2 + F(r)^{-1}\,dr^2 + r^2g_{S^2}$, where

 $$F(r) = 1 - \frac{2m}{r} - \frac{\Lambda r^2}{3}$$

 ![Graph showing r_+ and r_C]

2. **Manifold:** $\mathbb{R}_t \times (r_+, r_C) \times S^2$. Have $r_+ \simeq 2m$, $r_C \simeq \sqrt{\frac{3}{\Lambda}}$.

3. Metric is stationary, spherically symmetric. $\text{Ric}(g) - \Lambda g = 0$.

Kerr–de Sitter (KdS). Angular momentum $|a| \lesssim m$. Explicit metric (Carter '68), same manifold; stationary, axisymmetric. SdS is special case $a = 0$.
Geometry of Schwarzschild–de Sitter black holes

\[g = -F(r) \, dt^2 + F(r)^{-1} \, dr^2 + r^2 g_{S^2}. \]

Conformal embedding into \((\mathbb{R}^2, -dz_0^2 + dz_1^2)\) (‘Penrose diagram’):

![Penrose diagram]

Better coordinates: \(t_* = t - T(r), \ T \sim |\log F| \) near \(r = r_+, r_C \).

Metric extends (analytically) across horizons.

\[r = \frac{1}{2} r_+ \quad \quad r = 2r_C \]

\[\Omega = [0, \infty)_{t_*} \times X, \quad X = [\frac{1}{2} r_+, 2r_C] \times S^2. \]
Linear waves on SdS and KdS spacetimes

\[r = \frac{1}{2} r_+ \quad r = 2r_C \]

\[\Omega = [0, \infty) \times X, \quad X = [\frac{1}{2} r_+, 2r_C] \times S^2. \]

Initial value problem for the wave equation on \((\Omega, g, m, a)\):

\[
\begin{cases}
\Box g, m, a \phi = 0, \\
(\phi, \partial_{t^*} \phi)|_{t^*=0} \in C^\infty (X) \oplus C^\infty (X).
\end{cases}
\]

Theorem (authors on the next slide...)

The solution \(\phi\) has an asymptotic expansion:

\[\phi(t^*, x) \sim \sum e^{-i \omega_j t^*} a_j(x), \quad t^* \to \infty. \quad (\text{Ignoring multiplicities.}) \]

That is, \(|\phi(t^*, x) - \sum_{\text{Im} \omega_j \geq -C} e^{-i \omega_j t^*} a_j(x)| \lesssim e^{-C t^*} \) for any \(C\).
Resonance expansions on Kerr–de Sitter

Theorem (2000s–2021)

If \(\phi \) solves \(\Box_{g_{\Lambda,m,a}} \phi = 0 \) with smooth initial data, then

\[
\phi(t_*, x) \sim \sum e^{-i\omega_j t_*} a_j(x), \quad t_* \to \infty.
\]

Bony–Häfner '08 (SdS case: \(a = 0 \)), using Sá Barreto–Zworski '98 (information about \(\omega_j \) when \(a = 0 \)). See also Sá Barreto–Melrose–Vasy '09, '14.

Dyatlov '11–'13 (slowly rotating KdS: \(|a| \ll m \))

Vasy '13 (not too fast rotating KdS: \(|a| < \frac{\sqrt{3}}{2} m \), fixed \(C > 0 \))

Petersen–Vasy '21 (full subextremal range, fixed \(C > 0 \))

\(\text{QNM}(\Lambda, m, a) := \{ \omega_j \} \): set of resonances/quasinormal modes,

\(\text{QNM}(\Lambda, m, a) = \{ \omega \in \mathbb{C} : \exists a \in C^\infty(X), \Box_{g_{\Lambda,m,a}} (e^{-i\omega t_*} a(x)) = 0 \} \).
Quasinormal modes of Kerr–de Sitter spacetimes

Subextremal KdS spacetime, parameters \(\Lambda > 0, m > 0, |a| \lesssim m \).

\[
\phi(t_*, x) \sim \sum e^{-i\omega_j t_*} a_j(x), \quad \text{QNM}(\Lambda, m, a) := \{\omega_j\}
\]

- Mode stability: \(\omega_j = 0 \) or \(\text{Im} \omega_j < 0 \). Easy for \(a = 0 \). Known for \(|a| \ll m \) (via perturbation theory)—see Dyatlov, Vasy.
- High energy regime \(|\text{Re} \omega| \gg 1 \):
 - Sá Barreto–Zworski: \(\omega_{ln} \approx (2l+1-i(n+\frac{1}{2}))\frac{(1-9\Lambda m^2)^{1/2}}{2\sqrt{27m}}, \ l \gg 1, \ n \in \mathbb{N} \). QNMs lie approximately on a lattice.
 - Dyatlov ’13: asymptotic distribution of QNMs for \(|a| \ll m \).

In general: at most finitely many in \(\text{Im} \omega \geq 0 \)—Petersen–Vasy.
QNMs of Kerr–de Sitter spacetimes

Why should one care?

▶ QNMs with $\text{Im}\omega > 0$ (and typically also $\omega \in \mathbb{R} \setminus \{0\}$) are
disastrous for nonlinear problems (e.g. nonlinear stability).

▶ dinner with Maciej Zworski (2017 review article)

Theorem (H., 2021)

Fix $\Lambda > 0$ and $|a/m| < 1$. When $m > 0$ is sufficiently small:

▶ *Mode stability holds for KdS black holes;*

▶ *QNMs in $\text{Im}\omega > -C$ approximately lie in the set $-i\sqrt{\Lambda/3N_0}$. (Convergence to this set, and convergence of mode solutions, as $m \searrow 0$).*
QNMs of Kerr–de Sitter spacetimes

Why should one care?

- QNMs with \(\text{Im}\, \omega > 0 \) (and typically also \(\omega \in \mathbb{R} \setminus \{0\} \)) are disastrous for nonlinear problems (e.g. nonlinear stability).

- 🌸 dinner with Maciej Zworski (2017 review article)

Theorem (H., 2021)

Fix \(\Lambda > 0 \) and \(|a/m| < 1 \). When \(m > 0 \) is sufficiently small:

- **Mode stability** holds for KdS black holes;

- **QNMs in** \(\text{Im}\, \omega > -C \) approximately lie in the set \(-i \sqrt{\Lambda/3} N_0 \).

* (Convergence to this set, and convergence of mode solutions, as \(m \searrow 0 \).)
Numerics for QNMs, $|\alpha| = 0$ [H.–Xie 2021]
The singular limit $m \downarrow 0$: 1

Recall: Schwarzschild–de Sitter metric (for $\Lambda = 3$)

$$g_{\Lambda,m,0} = -(1 - \frac{2m}{r} - r^2) \, dt^2 + \left(1 - \frac{2m}{r} - r^2\right)^{-1} \, dr + r^2 g_{S^2},$$

horizons at $r_+ \simeq 2m$ and $r_C \simeq 1$.

Limit #1: $m \downarrow 0$ for fixed $r > 0$:

▸ limit is the de Sitter metric

$$g_{\Lambda,dS} = -(1 - r^2) \, dt^2 + (1 - r^2)^{-1} \, dr^2 + r^2 g_{S^2}.$$

▸ the black hole has completely disappeared: $g_{\Lambda,dS}$ is smooth across $r = 0!$

▸ Set of quasinormal modes is $-i \sqrt{\Lambda/3} N_0$.
The singular limit \(m \searrow 0 \): II

Recall: Schwarzschild–de Sitter metric (for \(\Lambda = 3 \))

\[
g_{\Lambda,m,0} = -\left(1 - \frac{2m}{r} - r^2\right)dt^2 + \left(1 - \frac{2m}{r} - r^2\right)^{-1}dr + r^2g_{S^2},
\]

horizons at \(r_+ \approx 2m \) and \(r_C \approx 1 \).

Limit #2: \(\hat{r} := r/m \), \(\hat{t} := t/m \). Take \(m \searrow 0 \) for fixed \(\hat{r}, \hat{t} \):

- limit of \(m^{-2}g_{\Lambda,m,0} \) is mass 1 Schwarzschild spacetime

\[
\hat{g} = -\left(1 - \frac{2}{\hat{r}}\right)d\hat{t}^2 + \left(1 - \frac{2}{\hat{r}}\right)^{-1}d\hat{r}^2 + \hat{r}^2g_{S^2}.
\]

Event horizon at \(\hat{r} = 2 \). Cosmological horizon has disappeared; instead, have asymptotically flat infinity.

- \(e^{-i\omega t} = e^{-i(m\omega)\hat{t}} \). \(\text{Im}\omega \geq -C \Rightarrow \liminf_{m \searrow 0} \text{Im}(m\omega) \geq 0 \).

- in Kerr–de Sitter case (\(\hat{a} = a/m \) fixed), the limit is the Kerr spacetime (mass 1, angular momentum \(\hat{a} \)). Mode stability known (Whiting '89, Shlapentokh-Rothman '15, Casals–Teixeira da Costa '21).
The singular limit $m \searrow 0$: II

Recall: Schwarzschild–de Sitter metric (for $\Lambda = 3$)

$$g_{\Lambda,m,0} = -\left(1 - \frac{2m}{r} - r^2\right) dt^2 + \left(1 - \frac{2m}{r} - r^2\right)^{-1} dr + r^2 g_{S^2},$$

horizons at $r_+ \approx 2m$ and $r_C \approx 1$.

Limit #2: $\hat{r} := r/m$, $\hat{t} := t/m$. Take $m \searrow 0$ for fixed \hat{r}, \hat{t}:
- limit of $m^{-2} g_{\Lambda,m,0}$ is mass 1 Schwarzschild spacetime

$$\hat{g} = -\left(1 - \frac{2}{\hat{r}}\right) d\hat{t}^2 + \left(1 - \frac{2}{\hat{r}}\right)^{-1} d\hat{r}^2 + \hat{r}^2 g_{S^2}.$$

Event horizon at $\hat{r} = 2$. Cosmological horizon has disappeared; instead, have asymptotically flat infinity.
- $e^{-i\omega t} = e^{-i(m\omega)\hat{t}}$. $\Im \omega \geq -C \Rightarrow \liminf_{m \searrow 0} \Im(m\omega) \geq 0$.
- in Kerr–de Sitter case ($\hat{a} = a/m$ fixed), the limit is the Kerr spacetime (mass 1, angular momentum \hat{a}). Mode stability known (Whiting '89, Shlapentokh-Rothman '15, Casals–Teixeira da Costa '21).
Geometry and analysis in the singular limit $m \searrow 0$

For fixed ω, work on total space $[[0, 1)_m \times [0, 2)_r \times \mathbb{S}^2; \{m=r=0\}]$.

Study spectral family $\widehat{\square g_m}(\omega) = e^{i\omega t}\square g_m e^{-i\omega t}$ (g_m: KdS metric with fixed Λ and specific angular momentum a/m).

Prove uniform a priori estimates for $\widehat{\square g_m}(\omega)u = f$.

- Use invertibility of Schwarzschild/Kerr model, and
- Use invertibility of de Sitter model (away from its QNMs), to prove injectivity of $\widehat{\square g_m}(\omega)$ for small m (on function spaces adapted to the singular limit).

Delicate caveat: analytically, the de Sitter model has a conic singularity where the black hole used to be!
Outlook

- Prove analogue of the main Theorem for other equations of interest (Teukolsky, Maxwell, linearized Einstein).
- Prove **nonlinear stability** of Kerr–de Sitter black holes in the ‘almost full subextremal range’ covered by the Theorem.
- **Inverse problem:** can one recover the black hole parameters from knowing a few QNMs or even just one? Cf. Uhlmann–Wang ’22 (local injectivity away from ‘trivial’ QNMs).
Outlook

- Prove analogue of the main Theorem for other equations of interest (Teukolsky, Maxwell, linearized Einstein).
- Prove nonlinear stability of Kerr–de Sitter black holes in the ‘almost full subextremal range’ covered by the Theorem.
- Inverse problem: can one recover the black hole parameters from knowing a few QNMs or even just one? Cf. Uhlmann–Wang ’22 (local injectivity away from ‘trivial’ QNMs).

Thank you for your attention!