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Introduction and motivation

Goal: study long time asymptotics of linear waves propagating on
certain black hole spacetimes of General Relativity (GR).

1. Do waves decay at all? (‘Linear stability.’) Highly nontrivial in
the absence of (coercive) conserved energies.

2. If yes, what is the decay rate? Can one prove asymptotic
expansions?

Typical applications:

1. global existence results for nonlinear wave equations;

2. in the context of Einstein’s field equations: nonlinear stability
of the (family of) spacetime(s) under consideration.



Black holes in de Sitter space

Fix the cosmological constant Λ > 0.

Schwarzschild–de Sitter (SdS). Black hole mass m ∈ (0, (9Λ)−1/2).

1. Metric: g = −F (r) dt2 + F (r)−1 dr2 + r2gS2 , where

r

F (r) = 1− 2m
r −

Λr2

3

r+ rC

2. Manifold: Rt × (r+, rC )r × S2. Have r+ ' 2m, rC '
√

3
Λ .

3. Metric is stationary, spherically symmetric. Ric(g)− Λg = 0.

Kerr–de Sitter (KdS). Angular momentum |a| . m. Explicit metric
(Carter ’68), same manifold; stationary, axisymmetric. SdS is
special case a = 0.



Geometry of Schwarzschild–de Sitter black holes

g = −F (r) dt2 + F (r)−1 dr2 + r2gS2 .

Conformal embedding into (R2,−dz2
0 + dz2

1 ) (‘Penrose diagram’):

t = c
r = r+ r = rCz0
z1

Better coordinates: t∗ = t − T (r), T ∼ | log F | near r = r+, rC .
Metric extends (analytically) across horizons.

r = 1
2r+ r = 2rC

t∗ = 0
Ω

Ω = [0,∞)t∗ × X , X = [ 1
2 r+, 2rC ]× S2.



Linear waves on SdS and KdS spacetimes

r = 1
2r+ r = 2rC

t∗ = 0
Ω

Ω = [0,∞)t∗ × X , X = [ 1
2 r+, 2rC ]× S2.

Initial value problem for the wave equation on (Ω, gΛ,m,a):{
�gΛ,m,a

φ = 0,

(φ, ∂t∗φ)|t∗=0 ∈ C∞(X )⊕ C∞(X ).

Theorem (authors on the next slide...)

The solution φ has an asymptotic expansion:

φ(t∗, x) ∼
∑

e−iωj t∗aj(x), t∗ →∞. (Ignoring multiplicities.)

That is, |φ(t∗, x)−
∑

Imωj≥−C e−iωj t∗aj(x)| . e−Ct∗ for any C.



Resonance expansions on Kerr–de Sitter

Theorem (2000s–2021)

If φ solves �gΛ,m,a
φ = 0 with smooth initial data, then

φ(t∗, x) ∼
∑

e−iωj t∗aj(x), t∗ →∞.

I Bony–Häfner ’08 (SdS case: a = 0), using Sá Barreto–
Zworski ’98 (information about ωj when a = 0). See also
Sá Barreto–Melrose–Vasy ’09, ’14.

I Dyatlov ’11–’13 (slowly rotating KdS: |a| � m)

I Vasy ’13 (not too fast rotating KdS: |a| <
√

3
2 m, fixed C > 0)

I Petersen–Vasy ’21 (full subextremal range, fixed C > 0)

QNM(Λ,m, a) := {ωj}: set of resonances/quasinormal modes,

QNM(Λ,m, a) = {ω ∈ C : ∃a ∈ C∞(X ), �gΛ,m,a
(e−iωt∗a(x)) = 0}.



Quasinormal modes of Kerr–de Sitter spacetimes
Subextremal KdS spacetime, parameters Λ > 0, m > 0, |a| . m.

φ(t∗, x) ∼
∑

e−iωj t∗aj(x), QNM(Λ,m, a) := {ωj}

I Mode stability: ωj = 0 or Imωj < 0. Easy for a = 0. Known
for |a| � m (via perturbation theory)—see Dyatlov, Vasy.

I High energy regime |Reω| � 1:

I Sá Barreto–Zworski: ωln ≈ (2l+1−i(n+ 1
2 )) (1−9Λm2)1/2

2
√

27m
, l � 1,

n ∈ N. QNMs lie approximately on a lattice.
I Dyatlov ’13: asymptotic distribution of QNMs for |a| � m.

In general: at most finitely many in Imω ≥ 0—Petersen–Vasy.

?

∅ Cω

QNM(Λ,m, a)



QNMs of Kerr–de Sitter spacetimes

?

∅ Cω

QNM(Λ,m, a)

Why should one care?

I QNMs with Imω > 0 (and typically also ω ∈ R \ {0}) are
disastrous for nonlinear problems (e.g. nonlinear stability).

I dinner with Maciej Zworski (2017 review article)

Theorem (H., 2021)

Fix Λ > 0 and |a/m| < 1. When m > 0 is sufficiently small:

I Mode stability holds for KdS black holes;

I QNMs in Imω > −C approximately lie in the set −i
√

Λ/3N0.
(Convergence to this set, and convergence of mode solutions,
as m↘ 0.)
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Numerics for QNMs, |a| = 0 [H.–Xie 2021]



The singular limit m↘ 0: I

Recall: Schwarzschild–de Sitter metric (for Λ = 3)

gΛ,m,0 = −
(

1− 2m

r
− r2

)
dt2 +

(
1− 2m

r
− r2

)−1
dr + r2gS2 ,

horizons at r+ ' 2m and rC ' 1.

Limit #1: m↘ 0 for fixed r > 0:

I limit is the de Sitter metric

gΛ,dS = −(1− r2) dt2 + (1− r2)−1 dr2 + r2gS2 .

I the black hole has completely disappeared: gΛ,dS is smooth
across r = 0!

I Set of quasinormal modes is −i
√

Λ/3N0.



The singular limit m↘ 0: II
Recall: Schwarzschild–de Sitter metric (for Λ = 3)

gΛ,m,0 = −
(

1− 2m

r
− r2

)
dt2 +

(
1− 2m

r
− r2

)−1
dr + r2gS2 ,

horizons at r+ ' 2m and rC ' 1.

Limit #2: r̂ := r/m, t̂ := t/m. Take m↘ 0 for fixed r̂ , t̂:
I limit of m−2gΛ,m,0 is mass 1 Schwarzschild spacetime

ĝ = −
(

1− 2

r̂

)
dt̂2 +

(
1− 2

r̂

)−1
dr̂2 + r̂2gS2 .

Event horizon at r̂ = 2. Cosmological horizon has
disappeared; instead, have asymptotically flat infinity.

I e−iωt = e−i(mω)t̂ . Imω ≥ −C ⇒ lim infm↘0 Im(mω) ≥ 0.
I in Kerr–de Sitter case (â = a/m fixed), the limit is the Kerr

spacetime (mass 1, angular momentum â). Mode stability
known (Whiting ’89, Shlapentokh-Rothman ’15,
Casals–Teixeira da Costa ’21).
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Geometry and analysis in the singular limit m↘ 0
For fixed ω, work on total space [[0, 1)m×[0, 2)r×S2; {m=r=0}].

r+(m)

rC(m)

0
r

1

0

m

r̂
0

∞

m = c

I Study spectral family �̂gm(ω) = e iωt∗�gme
−iωt∗ (gm: KdS

metric with fixed Λ and specific angular momentum a/m).
I Prove uniform a priori estimates for �̂gm(ω)u = f .

I Use invertibility of Schwarzschild/Kerr model, and
I use invertibility of de Sitter model (away from its QNMs),

to prove injectivity of �̂gm(ω) for small m (on function spaces
adapted to the singular limit).

I Delicate caveat: analytically, the de Sitter model has a conic
singularity where the black hole used to be!



Outlook

I Prove analogue of the main Theorem for other equations of
interest (Teukolsky, Maxwell, linearized Einstein).

I Prove nonlinear stability of Kerr–de Sitter black holes in the
‘almost full subextremal range’ covered by the Theorem.

I Inverse problem: can one recover the black hole parameters
from knowing a few QNMs or even just one? Cf. Uhlmann–
Wang ’22 (local injectivity away from ‘trivial’ QNMs).

Thank you for your attention!
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