Mode stability and shallow quasinormal modes of Kerr-de Sitter black holes

Peter Hintz

ETH zürich

Workshop on *Scattering and Inverse Scattering* RICAM

November 4, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction and motivation

Goal: study long time asymptotics of linear waves propagating on certain black hole spacetimes of General Relativity (GR).

- 1. Do waves decay at all? ('Linear stability.') Highly nontrivial in the absence of (coercive) conserved energies.
- 2. If yes, what is the decay rate? Can one prove asymptotic expansions?

Typical applications:

- 1. global existence results for nonlinear wave equations;
- 2. in the context of Einstein's field equations: nonlinear stability of the (family of) spacetime(s) under consideration.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Black holes in de Sitter space

Fix the cosmological constant $\Lambda > 0$.

Schwarzschild–de Sitter (SdS). Black hole mass $\mathfrak{m} \in (0, (9\Lambda)^{-1/2})$.

1. Metric: $g = -F(r) \operatorname{d} t^2 + F(r)^{-1} \operatorname{d} r^2 + r^2 g_{\mathbb{S}^2}$, where

2. Manifold: $\mathbb{R}_t \times (r_+, r_C)_r \times \mathbb{S}^2$. Have $r_+ \simeq 2\mathfrak{m}$, $r_C \simeq \sqrt{\frac{3}{\Lambda}}$.

3. Metric is stationary, spherically symmetric. $\operatorname{Ric}(g) - \Lambda g = 0$.

Kerr–de Sitter (KdS). Angular momentum $|\mathfrak{a}| \lesssim \mathfrak{m}$. Explicit metric (Carter '68), same manifold; stationary, axisymmetric. SdS is special case $\mathfrak{a} = 0$.

Geometry of Schwarzschild-de Sitter black holes

$$g = -F(r) \,\mathrm{d}t^2 + F(r)^{-1} \,\mathrm{d}r^2 + r^2 g_{\mathbb{S}^2}.$$

Conformal embedding into $(\mathbb{R}^2, -dz_0^2 + dz_1^2)$ ('Penrose diagram'):

Better coordinates: $t_* = t - T(r)$, $T \sim |\log F|$ near $r = r_+, r_C$. Metric extends (analytically) across horizons.

Linear waves on SdS and KdS spacetimes

$$\Omega = [0,\infty)_{t_*} \times X, \qquad X = [\frac{1}{2}r_+, 2r_C] \times \mathbb{S}^2.$$

Initial value problem for the wave equation on $(\Omega, g_{\Lambda,\mathfrak{m},\mathfrak{a}})$:

$$\begin{cases} \Box_{g_{\Lambda,\mathfrak{m},\mathfrak{a}}}\phi=0,\\ (\phi,\partial_{t_*}\phi)|_{t_*=0}\in\mathcal{C}^\infty(X)\oplus\mathcal{C}^\infty(X). \end{cases}$$

Theorem (authors on the next slide...) The solution ϕ has an asymptotic expansion:

$$\begin{split} \phi(t_*, x) &\sim \sum e^{-i\omega_j t_*} a_j(x), \qquad t_* \to \infty. \quad (\text{Ignoring multiplicities.}) \\ \text{That is, } |\phi(t_*, x) - \sum_{\lim \omega_j \geq -C} e^{-i\omega_j t_*} a_j(x)| \lesssim e^{-Ct_*} \text{ for any } C. \\ &\quad \forall m \in \mathbb{R} \text{ for any } C. \end{split}$$

Resonance expansions on Kerr-de Sitter

Theorem (2000s-2021)

If ϕ solves $\Box_{{\rm g}_{\Lambda,{\mathfrak m},{\mathfrak a}}}\phi={\bf 0}$ with smooth initial data, then

$$\phi(t_*,x)\sim \sum e^{-i\omega_j t_*} \mathsf{a}_j(x), \qquad t_* o\infty.$$

- Bony–Häfner '08 (SdS case: a = 0), using Sá Barreto– Zworski '98 (information about ω_j when a = 0). See also Sá Barreto–Melrose–Vasy '09, '14.
- **•** Dyatlov '11–'13 (slowly rotating KdS: $|\mathfrak{a}| \ll \mathfrak{m}$)
- ▶ Vasy '13 (not too fast rotating KdS: $|\mathfrak{a}| < \frac{\sqrt{3}}{2}\mathfrak{m}$, fixed C > 0)
- ▶ Petersen–Vasy '21 (full subextremal range, fixed C > 0)

 $QNM(\Lambda, \mathfrak{m}, \mathfrak{a}) := \{\omega_j\}: \text{ set of resonances/quasinormal modes,}$ $QNM(\Lambda, \mathfrak{m}, \mathfrak{a}) = \{\omega \in \mathbb{C}: \exists a \in \mathcal{C}^{\infty}(X), \ \Box_{g_{\Lambda,\mathfrak{m},\mathfrak{a}}}(e^{-i\omega t_*}a(x)) = 0\}.$

Quasinormal modes of Kerr–de Sitter spacetimes Subextremal KdS spacetime, parameters $\Lambda > 0$, $\mathfrak{m} > 0$, $|\mathfrak{a}| \lesssim \mathfrak{m}$.

$$\phi(t_*, x) \sim \sum e^{-i\omega_j t_*} a_j(x), \qquad \text{QNM}(\Lambda, \mathfrak{m}, \mathfrak{a}) := \{\omega_j\}$$

- Mode stability: ω_j = 0 or Im ω_j < 0. Easy for a = 0. Known for |a| ≪ m (via perturbation theory)—see Dyatlov, Vasy.
 High energy regime | Re ω| ≫ 1:
 - ► Sá Barreto-Zworski: $\omega_{ln} \approx (2l+1-i(n+\frac{1}{2}))\frac{(1-9\Lambda\mathfrak{m}^2)^{1/2}}{2\sqrt{27}\mathfrak{m}}$, $l \gg 1$, $n \in \mathbb{N}$. QNMs lie approximately on a lattice.

▶ Dyatlov '13: asymptotic distribution of QNMs for $|\mathfrak{a}| \ll \mathfrak{m}$.

In general: at most finitely many in Im $\omega \ge 0$ —Petersen–Vasy.

QNMs of Kerr-de Sitter spacetimes

Why should one care?

- ► QNMs with Im ω > 0 (and typically also ω ∈ ℝ \ {0}) are disastrous for nonlinear problems (e.g. nonlinear stability).
- State of the second second

Theorem (H., 2021)

Fix $\Lambda > 0$ and $|\mathfrak{a}/\mathfrak{m}| < 1$. When $\mathfrak{m} > 0$ is sufficiently small:

- Mode stability holds for KdS black holes;
- ▶ QNMs in Im $\omega > -C$ approximately lie in the set $-i\sqrt{\Lambda/3}\mathbb{N}_0$. (Convergence to this set, and convergence of mode solutions, as $\mathfrak{m} \searrow 0$.)

QNMs of Kerr-de Sitter spacetimes

Why should one care?

- QNMs with Im ω > 0 (and typically also ω ∈ ℝ \ {0}) are disastrous for nonlinear problems (e.g. nonlinear stability).
- State of the second second

Theorem (H., 2021)

- Fix $\Lambda>0$ and $|\mathfrak{a}/\mathfrak{m}|<1.$ When $\mathfrak{m}>0$ is sufficiently small:
 - Mode stability holds for KdS black holes;
 - ► QNMs in $\text{Im } \omega > -C$ approximately lie in the set $-i\sqrt{\Lambda/3}\mathbb{N}_0$. (Convergence to this set, and convergence of mode solutions, as $\mathfrak{m} \searrow 0$.)

Numerics for QNMs, |a| = 0 [H.–Xie 2021]

The singular limit $\mathfrak{m} \searrow 0$: I

Recall: Schwarzschild–de Sitter metric (for $\Lambda = 3$)

$$g_{\Lambda,\mathfrak{m},0} = -\left(1 - \frac{2\mathfrak{m}}{r} - r^2\right) \mathrm{d}t^2 + \left(1 - \frac{2\mathfrak{m}}{r} - r^2\right)^{-1} \mathrm{d}r + r^2 g_{\mathbb{S}^2},$$

horizons at $r_+ \simeq 2\mathfrak{m}$ and $r_C \simeq 1$.

Limit #1: $\mathfrak{m} \searrow 0$ for fixed r > 0:

limit is the de Sitter metric

$$g_{\Lambda,\mathrm{dS}} = -(1-r^2)\,\mathrm{d}t^2 + (1-r^2)^{-1}\,\mathrm{d}r^2 + r^2 g_{\mathbb{S}^2}.$$

- the black hole has completely disappeared: g_{Λ,dS} is smooth across r = 0!
- Set of quasinormal modes is $-i\sqrt{\Lambda/3}\mathbb{N}_0$.

The singular limit $\mathfrak{m} \searrow 0$: II Recall: Schwarzschild–de Sitter metric (for $\Lambda = 3$)

$$g_{\Lambda,\mathfrak{m},0} = -\left(1 - \frac{2\mathfrak{m}}{r} - r^2\right) \mathrm{d}t^2 + \left(1 - \frac{2\mathfrak{m}}{r} - r^2\right)^{-1} \mathrm{d}r + r^2 g_{\mathbb{S}^2},$$

horizons at $r_+ \simeq 2\mathfrak{m}$ and $r_C \simeq 1$.

Limit #2: $\hat{r} := r/\mathfrak{m}$, $\hat{t} := t/\mathfrak{m}$. Take $\mathfrak{m} \searrow 0$ for fixed \hat{r}, \hat{t} : limit of $\mathfrak{m}^{-2}g_{\Lambda,\mathfrak{m},0}$ is mass 1 Schwarzschild spacetime

$$\hat{g} = -\left(1-rac{2}{\hat{r}}
ight)\mathrm{d}\hat{t}^2 + \left(1-rac{2}{\hat{r}}
ight)^{-1}\mathrm{d}\hat{r}^2 + \hat{r}^2g_{\mathbb{S}^2}.$$

Event horizon at $\hat{r} = 2$. Cosmological horizon has disappeared; instead, have asymptotically flat infinity.

► $e^{-i\omega t} = e^{-i(\mathfrak{m}\omega)\hat{t}}$. $\operatorname{Im} \omega \ge -C \Rightarrow \operatorname{liminf}_{\mathfrak{m}\searrow 0} \operatorname{Im}(\mathfrak{m}\omega) \ge 0$.

▶ in Kerr-de Sitter case (â = a/m fixed), the limit is the Kerr spacetime (mass 1, angular momentum â). Mode stability known (Whiting '89, Shlapentokh-Rothman '15, Casals-Teixeira da Costa '21).

The singular limit $\mathfrak{m} \searrow 0$: II Recall: Schwarzschild–de Sitter metric (for $\Lambda = 3$)

$$g_{\Lambda,\mathfrak{m},0} = -\left(1 - \frac{2\mathfrak{m}}{r} - r^2\right) \mathrm{d}t^2 + \left(1 - \frac{2\mathfrak{m}}{r} - r^2\right)^{-1} \mathrm{d}r + r^2 g_{\mathbb{S}^2},$$

horizons at $r_+ \simeq 2\mathfrak{m}$ and $r_C \simeq 1$.

Limit #2: $\hat{r} := r/\mathfrak{m}$, $\hat{t} := t/\mathfrak{m}$. Take $\mathfrak{m} \searrow 0$ for fixed \hat{r}, \hat{t} : limit of $\mathfrak{m}^{-2}g_{\Lambda,\mathfrak{m},0}$ is mass 1 Schwarzschild spacetime

$$\hat{g} = -\left(1-rac{2}{\hat{r}}
ight)\mathrm{d}\hat{t}^2 + \left(1-rac{2}{\hat{r}}
ight)^{-1}\mathrm{d}\hat{r}^2 + \hat{r}^2g_{\mathbb{S}^2}.$$

Event horizon at $\hat{r} = 2$. Cosmological horizon has disappeared; instead, have asymptotically flat infinity.

► $e^{-i\omega t} = e^{-i(\mathfrak{m}\omega)\hat{t}}$. $\operatorname{Im}\omega \ge -C \Rightarrow \liminf_{\mathfrak{m}\searrow 0} \operatorname{Im}(\mathfrak{m}\omega) \ge 0$.

▶ in Kerr-de Sitter case (â = a/m fixed), the limit is the Kerr spacetime (mass 1, angular momentum â). Mode stability known (Whiting '89, Shlapentokh-Rothman '15, Casals-Teixeira da Costa '21).

Geometry and analysis in the singular limit $\mathfrak{m} \searrow 0$ For fixed ω , work on total space $[[0,1)_{\mathfrak{m}} \times [0,2)_r \times \mathbb{S}^2; \{\mathfrak{m}=r=0\}]$.

- Study spectral family D_{g_m}(ω) = e^{iωt}_{*} D_{g_m} e^{-iωt}_{*} (g_m: KdS metric with fixed Λ and specific angular momentum α/m).
- Prove uniform a priori estimates for $\widehat{\Box_{g_m}}(\omega)u = f$.
 - Use invertibility of Schwarzschild/Kerr model, and
 - use invertibility of de Sitter model (away from its QNMs), to prove injectivity of $\widehat{\Box_{g_m}}(\omega)$ for small \mathfrak{m} (on function spaces adapted to the singular limit).

Outlook

- Prove analogue of the main Theorem for other equations of interest (Teukolsky, Maxwell, linearized Einstein).
- Prove nonlinear stability of Kerr-de Sitter black holes in the 'almost full subextremal range' covered by the Theorem.
- Inverse problem: can one recover the black hole parameters from knowing a few QNMs or even just one? Cf. Uhlmann– Wang '22 (local injectivity away from 'trivial' QNMs).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outlook

- Prove analogue of the main Theorem for other equations of interest (Teukolsky, Maxwell, linearized Einstein).
- Prove nonlinear stability of Kerr-de Sitter black holes in the 'almost full subextremal range' covered by the Theorem.
- Inverse problem: can one recover the black hole parameters from knowing a few QNMs or even just one? Cf. Uhlmann– Wang '22 (local injectivity away from 'trivial' QNMs).

Thank you for your attention!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・