# X-ray computed tomography with transverse truncation: focus on the DBP method 

Nicolas Gindrier

Tomography Across the Scales, RICAM, Linz
21st October 2022

## Scanner C-Arm

Context: medical X-ray tomography, image reconstruction

[Siemens image]

## Motivation

In medical tomography, having reduced FOV can arise due to material and dose reduction issues.

For a given (reduced) FOV, is it possible to have accurate reconstructions?


1. State of the art
1.1 2D (fan-beam)
1.2 DBP
1.3 3D (cone-beam)
1.4 Introduction to $n$-sin trajectories
2. Geometrical results about 2 -sin and 3 -sin trajectories
3. Tomographic contributions: DBP applied to $n$-sin
3.1 DBP applied to 2 -sin with transverse truncation
3.2 3-sin results

## Radon transform

1.1 State of the art: 2D


## Radon transform

1.1 State of the art: 2D


Radon transform:

$$
\mathcal{R} f(L)=\int_{\boldsymbol{x} \in L} f(\boldsymbol{x}) \mathrm{d} L
$$

$f$ : density function

## Geometries

Parallel geometry


Fan-beam geometry (2D) or cone-beam (3D) for a circular trajectory

fan-beam/cone-beam projection

$$
g\left(\boldsymbol{S}_{\lambda}, \boldsymbol{\eta}\right)=\int_{0}^{+\infty} f\left(\boldsymbol{S}_{\lambda}+s \boldsymbol{\eta}\right) \mathrm{d} s
$$

$\Omega_{O}$ : object (support)
$S_{\Lambda}$ : X-rays source trajectory

## FOV in fan-beam/cone-beam geometry



In the whole 2D part, we consider a complete circular trajectory.


$$
\Omega_{O} \not \subset \mathrm{FOV}
$$



No truncation
Truncation
We are interested in reconstructions with truncation.

## Types of reconstruction method

In tomography, especially CT, some methods exist to reconstruct:

- Analytical methods (FBP, DBP, etc)
- Iterative methods:
- Algebraic methods (least squares, etc)
- Statistical methods (ML-EM, etc)


## Types of reconstruction method

In tomography, especially CT, some methods exist to reconstruct:

- Analytical methods (FBP, DBP, etc)
- Iterative methods:
- Algebraic methods (least squares, etc)
- Statistical methods (ML-EM, etc)

In X-rays tomography, deep learning methods can be used for some steps or for post processing, but not (yet) for the whole reconstruction.

We chose to investigate analytical methods, because we want to have exact and stable reconstruction. We want to determine sufficient conditions of reconstruction.

## Reconstruction: FBP method

FBP (Filtered BackProjection) (1970s). For fan-beam geometry:

$$
f(\boldsymbol{x})=\frac{1}{2} \int_{0}^{2 \pi} \frac{1}{\left\|\boldsymbol{x}-\boldsymbol{S}_{\lambda}\right\|^{2}} \int_{-\gamma_{m}}^{\gamma_{m}} g\left(\lambda, \boldsymbol{\beta}_{\gamma^{\prime}, \lambda}\right) \widetilde{k_{R}}\left(\gamma-\gamma^{\prime}\right) R \cos \gamma^{\prime} \mathrm{d} \gamma^{\prime} \mathrm{d} \lambda
$$

$$
\begin{gathered}
\gamma=\arg \left(\boldsymbol{S}_{\lambda}-\boldsymbol{x}\right)-\lambda \\
\widetilde{k_{R}}(\gamma) \stackrel{\text { def }}{=}\left(\frac{\gamma}{\sin \gamma}\right)^{2} k_{R}(\gamma)
\end{gathered}
$$

$k_{R}$ ramp filter: $\mathcal{F}\left(k_{R}\right)(\rho)=|\rho|$
If FBP was local, we would only need the lines passing through $\boldsymbol{x}$.


$$
\Omega_{O} \subset \mathrm{FOV}
$$



$$
\Omega_{O} \not \subset \mathrm{FOV}
$$



No truncation: we can apply FBP
Truncation: we cannot apply FBP

## Introduction to DBP

DBP: Differentiated Backprojection

- derivative instead of ramp filter
- but needs post processing of Hilbert transform


## Introduction to DBP

DBP: Differentiated Backprojection

- derivative instead of ramp filter
- but needs post processing of Hilbert transform

A chord $C_{i, j}$ is a line segment linking $S_{\lambda_{i}}$ to $S_{\lambda_{j}}$.


The DBP method allows the reconstruction of $\boldsymbol{x} \in C_{1,2}$.

Tools for DBP (Differentiated Backprojection, 2000s)
1.2 State of the art: DBP

- (Directional) Hilbert transform:

$$
\mathcal{H}_{\boldsymbol{\eta}} f(\boldsymbol{x}) \stackrel{\text { def }}{=} \int_{-\infty}^{+\infty} \frac{f(\boldsymbol{x}-s \boldsymbol{\eta})}{\pi s} \mathrm{~d} s
$$

Tools for DBP (Differentiated Backprojection, 2000s)
1.2 State of the art: DBP

- (Directional) Hilbert transform:

$$
\mathcal{H}_{\boldsymbol{\eta}} f(\boldsymbol{x}) \stackrel{\text { def }}{=} \int_{-\infty}^{+\infty} \frac{f(\boldsymbol{x}-s \boldsymbol{\eta})}{\pi s} \mathrm{~d} s
$$

- Backprojection of the derivatives of projections (along the trajectory):
$\left.b_{i, j}(\boldsymbol{x}) \stackrel{\text { def }}{=} \int_{\lambda_{i}}^{\lambda_{j}} \frac{1}{\left\|\boldsymbol{x}-\boldsymbol{S}_{\lambda}\right\|} \frac{\partial}{\partial \lambda} g(\lambda, \boldsymbol{\beta})\right|_{\boldsymbol{\beta}=\frac{\boldsymbol{x}-\boldsymbol{S}_{\lambda}}{\left\|\boldsymbol{x}-\boldsymbol{S}_{\lambda}\right\|}} \mathrm{d} \lambda$

Tools for DBP (Differentiated Backprojection, 2000s)
1.2 State of the art: DBP

- (Directional) Hilbert transform:

$$
\mathcal{H}_{\boldsymbol{\eta}} f(\boldsymbol{x}) \stackrel{\text { def }}{=} \int_{-\infty}^{+\infty} \frac{f(\boldsymbol{x}-s \boldsymbol{\eta})}{\pi s} \mathrm{~d} s
$$

- Backprojection of the derivatives of projections (along the trajectory):
$\left.b_{i, j}(\boldsymbol{x}) \stackrel{\text { def }}{=} \int_{\lambda_{i}}^{\lambda_{j}} \frac{1}{\left\|\boldsymbol{x}-\boldsymbol{S}_{\lambda}\right\|} \frac{\partial}{\partial \lambda} g(\lambda, \boldsymbol{\beta})\right|_{\boldsymbol{\beta}=\frac{\boldsymbol{x}-\boldsymbol{S}_{\lambda}}{\left\|\boldsymbol{x}-\boldsymbol{S}_{\lambda}\right\|}} \mathrm{d} \lambda$
- Link between $b$ and $\mathcal{H}: b_{i, j}(\boldsymbol{x})=\pi\left(\mathcal{H}_{\boldsymbol{\beta}_{j}} f(\boldsymbol{x})-\mathcal{H}_{\boldsymbol{\beta}_{i}} f(\boldsymbol{x})\right)$


## DBP method

For $\boldsymbol{x}$ on a chord $C_{1,2}$, the equation $b_{i, j}(\boldsymbol{x})=\pi\left(\mathcal{H}_{\boldsymbol{\beta}_{j}} f(\boldsymbol{x})-\mathcal{H}_{\boldsymbol{\beta}_{i}} f(\boldsymbol{x})\right)$ becomes: $b_{1,2}(\boldsymbol{x})=2 \pi \mathcal{H}_{\boldsymbol{\beta}_{1,2}} f(\boldsymbol{x})$


Now we want to invert $\mathcal{H} f(\boldsymbol{x})$

## Inversion of the Hilbert transform

1. 


2.

3.

${ }^{1}$ F. Noo, R. Clackdoyle, and J. D. Pack. A two-step Hilbert transform method for 2D image reconstruction. Physics in Medicine and Biology, 49(17) :3903-3923, 2004
${ }^{2}$ M. Defrise, F. Noo, R. Clackdoyle, and H. Kudo. Truncated Hilbert transform and image reconstruction from limited tomographic data, 2006

## Inversion of the Hilbert transform

1. 


2.

3.


1. analytical inversion of the Hilbert transform (in the direction of $\left.C_{i, j}\right)^{1}$
2. numerical inversion ${ }^{2}$
3. no possible inversion in the direction of $C_{i, j} \ldots$ we must use another method
${ }^{1}$ F. Noo, R. Clackdoyle, and J. D. Pack. A two-step Hilbert transform method for 2D image reconstruction. Physics in Medicine and Biology, 49(17) :3903-3923, 2004
${ }^{2}$ M. Defrise, F. Noo, R. Clackdoyle, and H. Kudo. Truncated Hilbert transform and image reconstruction from limited tomographic data, 2006

## M-lines method



[^0]

## M-lines method



$$
\begin{aligned}
& b_{1, M}(x)=\pi\left(\mathcal{H}_{\beta_{M}} f(x)-\mathcal{H}_{\boldsymbol{\beta}_{1}} f(x)\right) \\
& b_{2, M}(x)=\pi\left(\mathcal{H}_{\beta_{M}} f(x)-\mathcal{H}_{\beta_{2}} f(x)\right) \\
& \Rightarrow b_{1, M}(\boldsymbol{x})+b_{2, M}(\boldsymbol{x})=2 \mathcal{H}_{\boldsymbol{\beta}_{M}} f(\boldsymbol{x})
\end{aligned}
$$

## M-lines method



Inversion of the Hilbert transform in the direction of $\boldsymbol{\beta}_{M}$ instead of $C_{1,2}$.

[^1]
## Conclusion for 2D DBP

For a circular trajectory, if a part of the FOV is outside $\Omega_{O}$, then the 2D DBP can always be used.


## Introduction to the cone-beam geometry

### 1.3 State of the art: 3D



Cone-beam projections $g(\lambda, \boldsymbol{\eta}) \stackrel{\text { def }}{=} \int_{0}^{+\infty} f\left(\boldsymbol{S}_{\lambda}+\boldsymbol{l} \boldsymbol{\eta}\right) \mathrm{d} l$

## Classical trajectories for CB



Circular trajectory


Helical trajectory

## Tuy and Finch results

Tuy condition ${ }^{5}$ : Without truncation, we have stable reconstruction of an object in the convex hull $\Omega_{S_{\Lambda}}$ of a continuous, simply-connected, and bounded trajectory $S_{\Lambda}$.

[^2]
## Tuy and Finch results

Tuy condition ${ }^{5}$ : Without truncation, we have stable reconstruction of an object in the convex hull $\Omega_{S_{\Lambda}}$ of a continuous, simply-connected, and bounded trajectory $S_{\Lambda}$.

Finch result ${ }^{6}$ : Tuy condition is necessary (there is no stable reconstruction outside $\Omega_{S_{\Lambda}}$ ).

[^3]
## Tuy and Finch results

Tuy condition ${ }^{5}$ : Without truncation, we have stable reconstruction of an object in the convex hull $\Omega_{S_{\Lambda}}$ of a continuous, simply-connected, and bounded trajectory $S_{\Lambda}$.

Finch result ${ }^{6}$ : Tuy condition is necessary (there is no stable reconstruction outside $\Omega_{S_{\Lambda}}$ ).
Example: for a circular trajectory, the only exact reconstruction is in the circle plane

[^4]
## Closed trajectories with a circular basis and FOV

$$
\boldsymbol{S}_{\Lambda}=\{R \cos \lambda, R \sin \lambda, Z(\lambda) \mid \lambda \in \Lambda\}
$$

$R>0, Z(\lambda)$ function with period $2 \pi$

## Closed trajectories with a circular basis and FOV

$$
\boldsymbol{S}_{\Lambda}=\{R \cos \lambda, R \sin \lambda, Z(\lambda) \mid \lambda \in \Lambda\}
$$

$R>0, Z(\lambda)$ function with period $2 \pi$
For these trajectories, we can define a cylindrical FOV (with a rigid source-detector assembly).

$\Omega_{O}$ is a cylinder
No truncation (detector big enough)

FOV

Transverse truncation


Axial truncation


1. "Historical" methods (1980-90, Tuy, Grangeat/Smith...): no possible truncation
2. Methods of "filtering lines on a detector" ( $\approx 2000$, Katsevich...): possible axial truncation
3. DBP ( $\approx 2000$, Pan, Sidky, Noo, Pack...): various possible truncation

## Subtlety of the 3D DBP

In 3D, a point of the convex envelope of a trajectory, even a closed one, might belong to only one chord, or even none! The 3D DBP is more "subtle" than in 2D

$x_{1}$ only intersected by one chord, no chord for $\boldsymbol{x}_{2}$

## $n$-sin trajectories

1.4 State of the art: introduction to $n$-sin trajectories

$$
\begin{equation*}
\boldsymbol{S}_{\Lambda}^{n}=\left\{(R \cos \lambda, R \sin \lambda, H \cos (n \lambda))^{T} \mid \lambda \in \Lambda=\left[0,2 \pi[ \}, n \in \mathbb{N}, n>1,(H, R) \in \mathbb{R}_{+}^{2}\right.\right. \tag{1}
\end{equation*}
$$



## Known results about 2-sin trajectory

To perform reconstruction with DBP, we must know convex hull and location of chords.
$C_{S_{\Lambda}^{n}}$ : union of chords for the trajectory $\boldsymbol{S}_{\Lambda}^{n}$
$C_{S_{\Lambda}^{2}}=\Omega_{S_{\Lambda}^{2}}{ }^{7}$ : the convex hull of the 2-sin trajectory is the set of chords


[^5]
## Contributions



$$
N_{S_{\Lambda}^{3}}=\Omega_{S_{\Lambda}^{3}} \backslash C_{S_{\Lambda}^{3}}
$$



## Configuration for the 2-sin trajectory

### 3.1 Tomographic contributions: DBP for 2-sin

Configuration: only transverse truncation and $x \in \mathrm{FOV} \cap \Omega_{S_{\Lambda}^{2}} \cap \Omega_{O}$


## Use of DBP for the 2-sin trajectory



- $C_{1}$ : possible reconstruction (explicit formula)
- $C_{2}$ : possible reconstruction (iterative method)
- $C_{3}$ : impossible reconstruction only with the chord...but we can use the M-lines method



## M-lines for 2-sin



Therefore we can use DBP for the 2-sin trajectory with transverse truncation.

## Convex hulls and set of chords

### 3.2 Tomographic contributions: "good" results for 3-sin



## Convex hulls and set of chords

### 3.2 Tomographic contributions: "good" results for 3-sin



For the 3-sin trajectory some chords are "missing". With a centered FOV it is impossible to use DBP for all points

Simulations: the Forbild thorax phantom



## Reconstruction characteristics

We perform an iterative reconstruction:

- least squares method with conjugate gradient (minimizing $\|(R f-p)\|_{2}^{2}+\gamma\|\nabla f\|_{2}^{2}$ )
- $\gamma=100$
- image size: $380 \times 152 \times 382$
- 120 iterations
- 200 source positions
- $R=250 \mathrm{~mm}, H=100 \mathrm{~mm}$


## Reconstruction results


$z=90 \mathrm{~mm}$


No (apparent) difference between 2-sin and 3-sin!



Projections with Poisson noise added

- Can we consider more truncation for the 2 -sin trajectory?
- How can we justify the results for the $3-\sin$ ?
- Can we consider more truncation for the 2-sin trajectory? Yes, this was presented at MIC 2020: sufficient conditions for a reconstruction with axial AND transverse truncation ${ }^{8}$
- How to justify the results for the 3 -sin? Partially, a restricted configuration has been presented at Fully3D $2021{ }^{9}$

[^6]
# Conclusion 

- DBP is the predominant method to manage transverse truncation...
- ...but to reconstruct a point by this method, it must be on a chord.
- Any point $\boldsymbol{x}$ of the convex hull of the 2 -sin trajectory is crossed by a chord: $\boldsymbol{x}$ can be often reconstructed by DBP, despite important truncation


## Conclusion

- DBP is the predominant method to manage transverse truncation...
- ...but to reconstruct a point by this method, it must be on a chord.
- Any point $\boldsymbol{x}$ of the convex hull of the 2 -sin trajectory is crossed by a chord: $\boldsymbol{x}$ can be often reconstructed by DBP, despite important truncation
- Some points of the convex hull of the 3-sin trajectory are not intersected by a chord, yet reconstructions with transverse truncation seem possible
- It is possible to justify it for some restricted configurations...
- ...but the general case remains unsolved


## Conclusion

- DBP is the predominant method to manage transverse truncation...
- ...but to reconstruct a point by this method, it must be on a chord.
- Any point $\boldsymbol{x}$ of the convex hull of the 2 -sin trajectory is crossed by a chord: $\boldsymbol{x}$ can be often reconstructed by DBP, despite important truncation
- Some points of the convex hull of the 3-sin trajectory are not intersected by a chord, yet reconstructions with transverse truncation seem possible
- It is possible to justify it for some restricted configurations...
- ...but the general case remains unsolved

THANK YOU. TIME FOR QUESTIONS

Annexes: utilité des lignes $M$ en 2D


Contexte: Trajectoire 2-sin avec troncations axiales ET transverses
Objectif: Donner des conditions suffisantes pour appliquer la méthode DBP à cette configuration


## Rappels DBP et lignes M



Corde $C$ : reconstruction impossible (de $\boldsymbol{x}$ )
Ligne $\mathrm{M} L_{2}$ : reconstruction impossible ( $L_{2}$ n'intersecte pas la région gris foncé $\mathrm{FOV} \backslash \Omega_{O}$ ) Lignes $\mathrm{M} L_{1}$ et $L_{1}^{\prime}$ : reconstruction possible


Un exemple de FOV non utilisable pour la méthode des lignes $M$, parce que les (deux) cônes de lignes (gris clair) de $x$ qui intersectent FOV $\backslash \Omega_{O}$ (gris foncé) n'intersectent pas latrajectoire $2-\sin S_{\Lambda}^{2}$.


FOV suffisant de type 1: la projection du FOV semi-circulaire doit intersecter la trajectoire de source


FOV suffisant de type 2 : conditions concernant la hauteur du FOV Le FOV doit dépasser l'enveloppe convexe ou l'objet des deux côtés.

| FOV | $R_{F}$ | $H_{F}$ | $C_{F}$ | suffisant | dim_det |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 18 | $(0,30,78)$ | not | $92 \times 69$ |
| 2 | 50 | 18 | $(0,30,78)$ | type 1 | $92 \times 437$ |
| 3 |  | 380 | $(0,67,-190)$ | type 2 | $92 \times 69$ |



3 FOV avec le fantôme Forbild thorax

## Simulations et résultats



Les 3 FOV donnent des bonnes reconstructions mais les FOV non suffisant ont une convergence plus lente.

## 3-sin trajectory and transverse truncation

### 3.3 Tomographic contributions: partial explanation of the results

Context: As we have seen, the 3 -sin trajectory with transverse truncation is not suitable for the DBP method, but "exact" reconstructions seems to be possible.

Goal: Provide a configuration using a method (including DBP) to do such reconstructions

[^7]
## 3-sin trajectory and transverse truncation

### 3.3 Tomographic contributions: partial explanation of the results

Context: As we have seen, the 3 -sin trajectory with transverse truncation is not suitable for the DBP method, but "exact" reconstructions seems to be possible.

Goal: Provide a configuration using a method (including DBP) to do such reconstructions Reconstruction method in 4 steps (inspired by ${ }^{10}$ for another trajectory with axial truncation) :

1. Reconstruction of $\Omega_{\mathrm{DBP}} \subseteq \mathrm{FOV} \cap \Omega_{O} \cap C_{S_{\Lambda}^{3}}$ with the DBP method
2. Reprojection of reconstructed points
3. Subtraction of reprojections from original conebeam data, which gives a new configuration with a smaller object, $\Omega_{O} \backslash \Omega_{\mathrm{DBP}}=\Omega_{\mathrm{in}} \cup \Omega_{\mathrm{out}}$, with $\Omega_{\text {out }} \stackrel{\text { def }}{=} \Omega_{O} \backslash\left(\Omega_{\mathrm{DBP}} \cup \Omega_{\mathrm{in}}\right)$
4. Reconstruction of $\Omega_{\mathrm{in}}$ with one of various methods for conebeam reconstruction for non-truncated projections
[^8]
## Notations



$$
\Omega_{\mathrm{in}} \stackrel{\text { def }}{=} \Omega_{O} \cap N_{S_{\Lambda}^{3}} \cap \mathrm{FOV}
$$

$$
\Omega_{\mathrm{out}} \stackrel{\text { def }}{=} \Omega_{O} \backslash\left(\Omega_{\mathrm{DBP}} \cup \Omega_{\mathrm{in}}\right)
$$ FOV



## Proposed configuration



Firstly, we reconstruct $\Omega_{\mathrm{DBP}}$, then we reproject and subtract, so we have $\Omega_{\mathrm{in}}$ and $\Omega_{\text {out }}$. Then we reconstruct $\Omega_{\mathrm{in}}$.

## Simulations



The phantom used and its reconstruction ( 60 iterations with the method of least squares with conjugate gradient in a volume of $162 \times 82 \times 8$ voxels).



Figure 1: Gauche : Une configuration avec deux lignes contaminées. Droite : Un profil de reconstruction $y=0 \mathrm{~mm}$ et $z=16 \mathrm{~mm}$, la ligne orange représente la reconstruction tronquée sans lignes contaminées et la ligne violette représente la reconstruction tronquée avec lignes contaminées.

## Union des cordes de $S_{\Lambda}^{3}$

On engendre une surface avec certaines cordes en faisant varier $\tilde{z}$.


## Vérification des lignes contaminées



Tracé des lignes intersectant à la fois $\Omega_{\mathrm{in}}$ et $\Omega_{\text {out }}$

## Vérification des lignes contaminées



Tracé des lignes intersectant à la fois $\Omega_{\mathrm{in}}$ et $\Omega_{\text {out }}$
Aucune de ces lignes n'intersecte la trajectoire : pas de ligne contaminée


[^0]:    $\ddagger$ J. D. Pack, F. Noo, and R. Clackdoyle. Cone-beam reconstruction using the back- projection of locally filtered projections. IEEE Transactions on Medical Imaging, 24(1) :70-85, 2005

[^1]:    §J. D. Pack, F. Noo, and R. Clackdoyle. Cone-beam reconstruction using the back- projection of locally filtered projections. IEEE Transactions on Medical Imaging, 24(1) :70-85, 2005

[^2]:    ${ }^{5}$ Tuy, Heang K. 1983. "Inversion Formula For Cone-Beam Reconstruction." SIAM Journal on Applied Mathematics 43 (3): 546-552
    ${ }^{6}$ Finch, David V. 1985. "Cone Beam Reconstruction with Sources on a Curve". SIAM Journal on Applied Mathematics 45 (4): 665-673

[^3]:    ${ }^{5}$ Tuy, Heang K. 1983. "Inversion Formula For Cone-Beam Reconstruction." SIAM Journal on Applied Mathematics 43 (3): 546-552
    ${ }^{6}$ Finch, David V. 1985. "Cone Beam Reconstruction with Sources on a Curve". SIAM Journal on Applied Mathematics 45 (4): 665-673

[^4]:    ${ }^{5}$ Tuy, Heang K. 1983. "Inversion Formula For Cone-Beam Reconstruction." SIAM Journal on Applied Mathematics 43 (3): 546-552
    ${ }^{6}$ Finch, David V. 1985. "Cone Beam Reconstruction with Sources on a Curve". SIAM Journal on Applied Mathematics 45 (4): 665-673

[^5]:    ${ }^{7}$ J. D. Pack, F. Noo, and H. Kudo. Investigation of saddle trajectories for cardiac CT imaging in cone-beam geometry, 2004

[^6]:    ${ }^{8}$ N. Gindrier, R. Clackdoyle, S. Rit, and L. Desbat. Sufficient field-of-view for the M-line method in cone-beam CT. In 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Boston (virtual), United States, 2020
    ${ }^{9}$ N. Gindrier, L. Desbat, and R. Clackdoyle. CB reconstruction for the 3-sin trajectory with transverse truncation. In 6th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, Leuven, 2021

[^7]:    ${ }^{10}$ F. Noo, A. Wunderlich, L. Günter, and H. Kudo. On the problem of axial data truncation in the reverse helix geometry. In 10th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, pages 90-93, 2009

[^8]:    ${ }^{10}$ F. Noo, A. Wunderlich, L. Günter, and H. Kudo. On the problem of axial data truncation in the reverse helix geometry. In 10th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, pages 90-93, 2009

