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Context: medical X-ray tomography, image reconstruction
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Motivation

In medical tomography, having reduced FOV can arise due to material and dose reduction

issues.

For a given (reduced) FOV, is it possible to have accurate reconstructions?

source 1

source 2
source 3

detector

FOV

object
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Plan

1. State of the art

1.1 2D (fan-beam)

1.2 DBP

1.3 3D (cone-beam)

1.4 Introduction to n-sin trajectories

2. Geometrical results about 2-sin and 3-sin trajectories

3. Tomographic contributions: DBP applied to n-sin

3.1 DBP applied to 2-sin with transverse truncation

3.2 3-sin results
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Radon transform

1.1 State of the art: 2D

source
x

detector
L

object

Radon transform:

Rf(L) =

∫
x∈L

f(x)dL

f : density function
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Geometries

ΩO

Parallel geometry

ΩO

Fan-beam geometry (2D)

or cone-beam (3D) for a

circular trajectory

SΛ

Sλ1

η

Sλ2

fan-beam/cone-beam projection

g(Sλ,η) =
∫ +∞
0

f(Sλ + sη)ds

ΩO: object (support)

SΛ: X-rays source trajectory



6

FOV

FOV

Sλ2

Sλ3Sλ1

detector

FOV in fan-beam/cone-beam geometry

In the whole 2D part, we consider a complete circular trajectory.
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FOV and truncation

ΩO ⊂ FOV

ΩO

FOV

No truncation

ΩO ̸⊂ FOV

ΩO

FOV

Truncation

We are interested in reconstructions with truncation.
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Types of reconstruction method

In tomography, especially CT, some methods exist to reconstruct:

� Analytical methods (FBP, DBP, etc)

� Iterative methods:

� Algebraic methods (least squares, etc)

� Statistical methods (ML-EM, etc)

In X-rays tomography, deep learning methods can be used for some steps or for post

processing, but not (yet) for the whole reconstruction.

We chose to investigate analytical methods, because we want to have exact and stable

reconstruction. We want to determine sufficient conditions of reconstruction.
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Reconstruction: FBP method

FBP (Filtered BackProjection) (1970s). For fan-beam geometry:

f(x) =
1

2

∫ 2π

0

1

∥x− Sλ∥2

∫ γm

−γm

g(λ,βγ′,λ)k̃R(γ − γ′)R cos γ′dγ′dλ

γ = arg(Sλ − x)− λ

k̃R(γ)
def
=

(
γ

sin γ

)2

kR(γ)

kR ramp filter: F(kR)(ρ) = |ρ|
If FBP was local, we would only need the

lines passing through x.

λ

γm

γm

x

γ

SΛ

FOV

Sλ
βγ,λ
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FBP and truncation

ΩO ⊂ FOV

ΩO

FOV

No truncation: we can apply FBP

ΩO ̸⊂ FOV

ΩO

FOV

Truncation: we cannot apply FBP
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Introduction to DBP

DBP: Differentiated Backprojection

� derivative instead of ramp filter

� but needs post processing of Hilbert transform

A chord Ci,j is a line segment linking Sλi
to Sλj

.

S1 S2

S3 S4

C1,2

β1,2β2,1

β4
β3

ΩO

FOV

x

The DBP method allows the reconstruction of x ∈ C1,2.
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Tools for DBP (Differentiated Backprojection, 2000s)

1.2 State of the art: DBP

� (Directional) Hilbert transform:

Hηf(x)
def
=

∫ +∞

−∞

f(x− sη)

πs
ds

� Backprojection of the derivatives of projections (along the trajectory):

bi,j(x)
def
=

∫ λj

λi

1

∥x− Sλ∥
∂

∂λ
g(λ,β)

∣∣∣∣
β=

x−Sλ
∥x−Sλ∥

dλ

� Link between b and H: bi,j(x) = π(Hβj
f(x)−Hβi

f(x))
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DBP method

For x on a chord C1,2, the equation bi,j(x) = π(Hβj
f(x)−Hβi

f(x)) becomes:

b1,2(x) = 2πHβ1,2
f(x)

S1 S2

S3 S4

C1,2

β1,2β2,1

β4
β3

ΩO

FOV

x

Now we want to invert Hf(x)
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Inversion of the Hilbert transform

1. Ci,j

Oi,j

Fi,j

2.

3.

1. analytical inversion of the Hilbert transform (in the direction of Ci,j)
1

2. numerical inversion 2

3. no possible inversion in the direction of Ci,j ...we must use another method

1F. Noo, R. Clackdoyle, and J. D. Pack. A two-step Hilbert transform method for 2D image reconstruction.

Physics in Medicine and Biology, 49(17) :3903–3923, 2004
2M. Defrise, F. Noo, R. Clackdoyle, and H. Kudo. Truncated Hilbert transform and image reconstruction from

limited tomographic data, 2006
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M-lines method

�

SM

S2

S1

C1,2

x

FOV

M-line

ΩO

βM

�J. D. Pack, F. Noo, and R. Clackdoyle. Cone-beam reconstruction using the back- projection of locally filtered

projections. IEEE Transactions on Medical Imaging, 24(1) :70–85, 2005
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M-lines method

SM

S2

S1

C1,2

x

FOV

M-line

ΩO

βM

β2

β1

b1,M (x) = π(HβM
f(x)−Hβ1f(x))

b2,M (x) = π(HβM
f(x)−Hβ2f(x))

⇒ b1,M (x) + b2,M (x) = 2HβM
f(x)
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M-lines method

SM

S2

S1

C1,2

x

FOV

M-line

ΩO

βM

β2

β1

b1,M (x) = π(HβM
f(x)−Hβ1f(x))

b2,M (x) = π(HβM
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M-lines method

§

SM

S2

S1

C1,2

x

FOV

M-line

ΩO

βM

Inversion of the Hilbert transform in the direction of βM instead of C1,2.

§J. D. Pack, F. Noo, and R. Clackdoyle. Cone-beam reconstruction using the back- projection of locally filtered

projections. IEEE Transactions on Medical Imaging, 24(1) :70–85, 2005
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Conclusion for 2D DBP

For a circular trajectory, if a part of the FOV is outside ΩO, then the 2D DBP can always be

used.

ΩO

FOV

SΛ

S1

S2

C1,2

x
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Introduction to the cone-beam geometry

1.3 State of the art: 3D

eu

ev

ew

Sλ

Oλ

detector

η

SΛ

Cone-beam projections g(λ,η)
def
=

∫ +∞
0

f(Sλ + lη)dl
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Classical trajectories for CB

SΛ ez
ey

ex

Circular trajectory

SΛ

S3π x
ez

ey
ex

eu

ev

Helical trajectory
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Tuy and Finch results

Tuy condition 5 : Without truncation, we have stable reconstruction of an object in the convex

hull ΩSΛ
of a continuous, simply-connected, and bounded trajectory SΛ.

Finch result 6: Tuy condition is necessary (there is no stable reconstruction outside ΩSΛ).

Example: for a circular trajectory, the only exact reconstruction is in the circle plane

5Tuy, Heang K. 1983. “Inversion Formula For Cone-Beam Reconstruction.” SIAM Journal on Applied Mathematics 43 (3):

546–552
6Finch, David V. 1985. “Cone Beam Reconstruction with Sources on a Curve”. SIAM Journal on Applied Mathematics 45 (4):

665–673
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Closed trajectories with a circular basis and FOV

SΛ = {R cosλ,R sinλ, Z(λ)|λ ∈ Λ}

R > 0, Z(λ) function with period 2π

For these trajectories, we can define a cylindrical FOV (with a rigid source-detector assembly).

detector

ey

ex

SΛ

FOV

Sλ

ey

ex

ez

ex
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3D FOV and truncation

ΩO is a cylinder

No truncation (detector big

enough)

ΩO
FOV

FOV

ΩO

Transverse truncation
ΩO

FOV

Axial truncation
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Some methods of cone-beam reconstruction

1. “Historical” methods (1980-90, Tuy, Grangeat/Smith...): no possible truncation

2. Methods of “filtering lines on a detector” (≈2000, Katsevich...): possible axial truncation

3. DBP (≈2000, Pan, Sidky, Noo, Pack...): various possible truncation
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Subtlety of the 3D DBP

In 3D, a point of the convex envelope of a trajectory, even a closed one, might belong to only

one chord, or even none! The 3D DBP is more “subtle” than in 2D

x2x1

x1 only intersected by one chord, no chord for x2
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n-sin trajectories

1.4 State of the art: introduction to n-sin trajectories

Sn
Λ = {(R cosλ,R sinλ,H cos(nλ))T |λ ∈ Λ = [0, 2π[}, n ∈ N, n > 1, (H,R) ∈ R2

+ (1)

S2
Λ

2-sin

S3
Λ

3-sin

S4
Λ

4-sin
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Known results about 2-sin trajectory

To perform reconstruction with DBP, we must know convex hull and location of chords.

CSn
Λ
: union of chords for the trajectory Sn

Λ

CS2
Λ
= ΩS2

Λ

7: the convex hull of the 2-sin trajectory is the set of chords

ΩS2
Λ

CS2
Λ

7J. D. Pack, F. Noo, and H. Kudo. Investigation of saddle trajectories for cardiac CT imaging in cone-beam

geometry, 2004
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Contributions

Geometrical contributions: 3-sin trajectory

ΩS3
Λ

CS3
Λ

NS3
Λ
= ΩS3

Λ
\ CS3

Λ
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Configuration for the 2-sin trajectory

3.1 Tomographic contributions : DBP for 2-sin

Configuration: only transverse truncation and x ∈ FOV ∩ ΩS2
Λ
∩ ΩO

ΩO

FOV

S2
Λ
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Use of DBP for the 2-sin trajectory

S2
Λ

C1

C3

C2

FOV

2-sin trajectory from above

ΩO

x1

x2 x3

� C1: possible reconstruction (explicit formula)

� C2: possible reconstruction (iterative method)

� C3: impossible reconstruction only with the chord...but we can use the M-lines method
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M-lines for 2-sin

C3

CyΩO

FOV

x

λM

y

C3

LηM ,x

ηM

Cy

x
y FOV

Therefore we can use DBP for the 2-sin trajectory with transverse truncation.
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M-lines for 2-sin

C3

CyΩO

FOV

x

λM

y

C3

LηM ,x

ηM

Cy

x
y FOV

Therefore we can use DBP for the 2-sin trajectory with transverse truncation.
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Convex hulls and set of chords

3.2 Tomographic contributions: “good” results for 3-sin

Convex hull

2-sin

Chords union

3-sin

For the 3-sin trajectory some chords are “missing”. With a centered FOV it is impossible to use

DBP for all points
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Convex hulls and set of chords

3.2 Tomographic contributions: “good” results for 3-sin

Convex hull

2-sin

Chords union

3-sin

For the 3-sin trajectory some chords are “missing”. With a centered FOV it is impossible to use

DBP for all points
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Simulations: the Forbild thorax phantom

FOV

300 mm

SΛ

500 mm

90 mm

0 mm

FOV
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Simulations: both sections

FOV

0 mm

90 mm

S3
Λ

No chord

FOV

chords
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Reconstruction characteristics

We perform an iterative reconstruction:

� least squares method with conjugate gradient (minimizing ∥(Rf − p)∥22 + γ∥∇f∥22)
� γ = 100

� image size: 380 x 152 x 382

� 120 iterations

� 200 source positions

� R = 250 mm, H = 100 mm
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Reconstruction results

2-sin

z = 0 mm z = 90 mm

3-sin

No (apparent) difference between 2-sin and 3-sin!
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90 mm

0 mm

2-sin

3-sin

Forbild thorax with 3 high density cylinders.
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2-sin 3-sin

Projections with Poisson noise added
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New questions

� Can we consider more truncation for the 2-sin trajectory? Yes, this was presented at MIC

2020: sufficient conditions for a reconstruction with axial AND transverse truncation

� How can we justify the results for the 3-sin?Partially, this is the last part of the

presentation, presented at Fully3D 2021
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New questions

� Can we consider more truncation for the 2-sin trajectory? Yes, this was presented at MIC

2020: sufficient conditions for a reconstruction with axial AND transverse truncation8

� How to justify the results for the 3-sin? Partially, a restricted configuration has been

presented at Fully3D 20219

8N. Gindrier, R. Clackdoyle, S. Rit, and L. Desbat. Sufficient field-of-view for the M-line method in cone-beam

CT. In 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Boston (virtual),

United States, 2020
9N. Gindrier, L. Desbat, and R. Clackdoyle. CB reconstruction for the 3-sin trajectory with transverse

truncation. In 6th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear

Medicine, Leuven, 2021
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Conclusion

� DBP is the predominant method to manage transverse truncation...

� ...but to reconstruct a point by this method, it must be on a chord.

� Any point x of the convex hull of the 2-sin trajectory is crossed by a chord: x can be

often reconstructed by DBP, despite important truncation

� Some points of the convex hull of the 3-sin trajectory are not intersected by a chord, yet

reconstructions with transverse truncation seem possible

� It is possible to justify it for some restricted configurations...

� ...but the general case remains unsolved

THANK YOU. TIME FOR QUESTIONS
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Annexes : utilité des lignes M en 2D

FOV

x

S1 S2

ΩO

ΩSΛ

Lx,λM

S1 S2

ΩO

ΩSΛ

SM

Sa

Sb

x
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Troncations axiales et transverses avec la trajectoire 2-sin : MIC

Contexte: Trajectoire 2-sin avec troncations axiales ET transverses

Objectif: Donner des conditions suffisantes pour appliquer la méthode DBP à cette

configuration

FOV

ΩO
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Rappels DBP et lignes M

S
ΩO

x

FOV

C

L1

L′
1

L2

Corde C: reconstruction impossible (de x)

Ligne M L2: reconstruction impossible (L2 n’intersecte pas la région gris foncé FOV \ ΩO)

Lignes M L1 et L′
1: reconstruction possible
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FOV non utilisable

x

ΩO

FOV
S2
Λ

ez

ey

S2
Λ

ΩO

ez

exx

Un exemple de FOV non utilisable pour la méthode des lignes M, parce que les (deux) cônes de

lignes (gris clair) de x qui intersectent FOV \ ΩO (gris foncé) n’intersectent pas latrajectoire

2-sin S2
Λ.
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Condition suffisante de type 1

x ΩO

F2F1

S2
Λ

FOV

Sλ
Ωo

FOV

Sλ

x

S2
Λ

FOV suffisant de type 1 : la projection du FOV semi-circulaire doit intersecter la trajectoire de

source
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Condition suffisante de type 2

xa

Sa

Sb

xb

La

Lb

FOV
Ωo

FOV

Ωo La

Lb
xa

Sa

Sb
xb

FOV suffisant de type 2 : conditions concernant la hauteur du FOV

Le FOV doit dépasser l’enveloppe convexe ou l’objet des deux côtés.
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MIC conference: simulations et résultats

FOV RF HF CF suffisant dim det

1 18 (0,30,78) not 92× 69

2 50 18 (0,30,78) type 1 92× 437

3 380 (0,67,-190) type 2 92× 69

300mm

FOV 1 FOV 3

FOV 2

380

mm

FOV 1

FOV 3

FOV 2

3 FOV avec le fantôme Forbild thorax
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Simulations et résultats

FOV 1 40 iter. 260 iter.

FOV 2

FOV 3

Les 3 FOV donnent des bonnes reconstructions mais les FOV non suffisant ont une

convergence plus lente.
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3-sin trajectory and transverse truncation

3.3 Tomographic contributions: partial explanation of the results

Context: As we have seen, the 3-sin trajectory with transverse truncation is not suitable for

the DBP method, but “exact” reconstructions seems to be possible.

Goal: Provide a configuration using a method (including DBP) to do such reconstructions

Reconstruction method in 4 steps (inspired by 10 for another trajectory with axial truncation) :

1. Reconstruction of ΩDBP ⊆ FOV ∩ ΩO ∩ CS3
Λ
with the DBP method

2. Reprojection of reconstructed points

3. Subtraction of reprojections from original conebeam data, which gives a new configuration

with a smaller object, ΩO \ ΩDBP = Ωin ∪ Ωout, with Ωout
def
= ΩO \ (ΩDBP ∪ Ωin)

4. Reconstruction of Ωin with one of various methods for conebeam reconstruction for

non-truncated projections

10F. Noo, A. Wunderlich, L. Günter, and H. Kudo. On the problem of axial data truncation in the reverse helix

geometry. In 10th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and

Nuclear Medicine, pages 90–93, 2009
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Notations

CS3
Λ NS3

Λ

ΩinΩO

FOV

Ωin
def
= ΩO ∩NS3

Λ
∩ FOV Ωout

def
= ΩO \ (ΩDBP ∪ Ωin)

Ωin

ΩO

ΩDBP

Ωout
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Proposed configuration

FOV S3
Λ

ΩO

ΩoutΩin

ΩDBP

FOV S3
Λ

Ωin
Ωout

Firstly, we reconstruct ΩDBP, then we reproject and subtract, so we have Ωin and Ωout. Then

we reconstruct Ωin.
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Simulations

The phantom used and its reconstruction (60 iterations with the method of least squares with

conjugate gradient in a volume of 162× 82× 8 voxels).

Ωin
FOV

0 20 40 60 80 100 120 140 160

x (pixels)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

G
ra

y
le

ve
l

y = 0mm z = 16mm

Ωin FOV
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0 20 40 60 80 100 120 140 160

x (pixels)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
iv

ea
u

de
gr

is

y = 0mm z = 16mm

Ωin FOV

Figure 1: Gauche : Une configuration avec deux lignes contaminées. Droite : Un profil de

reconstruction y = 0 mm et z = 16 mm, la ligne orange représente la reconstruction tronquée sans

lignes contaminées et la ligne violette représente la reconstruction tronquée avec lignes contaminées.



55

Union des cordes de S3
Λ

On engendre une surface avec certaines cordes en faisant varier z̃.
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Vérification des lignes contaminées

S3
Λ

FOV

ΩO

Tracé des lignes intersectant à la fois Ωin et Ωout

Aucune de ces lignes n’intersecte la trajectoire : pas de ligne contaminée
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