X-ray computed tomography with transverse truncation: focus on the DBP method

Nicolas Gindrier

Tomography Across the Scales, RICAM, Linz 21st October 2022

Context: medical X-ray tomography, image reconstruction

[Siemens image]

Motivation

In medical tomography, having reduced FOV can arise due to material and dose reduction issues.

For a given (reduced) FOV, is it possible to have accurate reconstructions?

- 1. State of the art
 - 1.1 2D (fan-beam)
 - 1.2 DBP
 - 1.3 3D (cone-beam)
 - 1.4 Introduction to n-sin trajectories
- 2. Geometrical results about 2-sin and 3-sin trajectories
- 3. Tomographic contributions: DBP applied to n-sin
 - 3.1 DBP applied to 2-sin with transverse truncation
 - 3.2 3-sin results

Radon transform

1.1 State of the art: 2D

Radon transform

1.1 State of the art: 2D

Radon transform:

$$\mathcal{R}f(L) = \int_{\boldsymbol{x}\in L} f(\boldsymbol{x}) \mathrm{d}L$$

f: density function

Parallel geometry

Fan-beam geometry (2D) or *cone-beam* (3D) for a circular trajectory

fan-beam/cone-beam projection $g(\mathbf{S}_{\lambda}, \boldsymbol{\eta}) = \int_{0}^{+\infty} f(\mathbf{S}_{\lambda} + s\boldsymbol{\eta}) \mathrm{d}s$

 Ω_O : object (support)

 \boldsymbol{S}_{Λ} : X-rays source *trajectory*

FOV in *fan-beam/cone-beam* geometry

In the whole 2D part, we consider a *complete circular trajectory*.

No truncation

Truncation

We are interested in reconstructions with truncation.

In tomography, especially CT, some methods exist to reconstruct:

- Analytical methods (FBP, DBP, etc)
- Iterative methods:
 - Algebraic methods (least squares, etc)
 - Statistical methods (ML-EM, etc)

In tomography, especially CT, some methods exist to reconstruct:

- Analytical methods (FBP, DBP, etc)
- Iterative methods:
 - Algebraic methods (least squares, etc)
 - Statistical methods (ML-EM, etc)

In X-rays tomography, deep learning methods can be used for some steps or for post processing, but not (yet) for the whole reconstruction.

We chose to investigate **analytical methods**, because we want to have **exact and stable reconstruction**. We want to determine **sufficient conditions of reconstruction**.

Reconstruction: FBP method

FBP (Filtered BackProjection) (1970s). For *fan-beam* geometry:

$$f(\boldsymbol{x}) = \frac{1}{2} \int_0^{2\pi} \frac{1}{\|\boldsymbol{x} - \boldsymbol{S}_\lambda\|^2} \int_{-\boldsymbol{\gamma}_m}^{\boldsymbol{\gamma}_m} g(\lambda, \boldsymbol{\beta}_{\boldsymbol{\gamma}', \lambda}) \widetilde{k_R}(\boldsymbol{\gamma} - \boldsymbol{\gamma}') R \cos \boldsymbol{\gamma}' \mathrm{d} \boldsymbol{\gamma}' \mathrm{d} \lambda$$

$$\gamma = \arg(\mathbf{S}_{\lambda} - \mathbf{x}) - \lambda$$

 $\widetilde{k_R}(\gamma) \stackrel{\text{def}}{=} \left(\frac{\gamma}{\sin\gamma}\right)^2 k_R(\gamma)$

 k_R ramp filter: $\mathcal{F}(k_R)(\rho) = |\rho|$ If FBP was local, we would only need the lines passing through x.

No truncation: we can apply FBP

Truncation: we cannot apply FBP

Introduction to DBP

DBP: Differentiated Backprojection

- derivative instead of ramp filter
- but needs post processing of Hilbert transform

Introduction to DBP

DBP: Differentiated Backprojection

- derivative instead of ramp filter
- but needs post processing of Hilbert transform

A chord $C_{i,j}$ is a line segment linking S_{λ_i} to S_{λ_j} .

The DBP method allows the reconstruction of $x \in C_{1,2}$.

Tools for DBP (Differentiated Backprojection, 2000s)

1.2 State of the art: DBP

• (Directional) Hilbert transform:

$$\mathcal{H}_{\boldsymbol{\eta}} f(\boldsymbol{x}) \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} \frac{f(\boldsymbol{x} - s\boldsymbol{\eta})}{\pi s} \mathrm{d}s$$

Tools for DBP (Differentiated Backprojection, 2000s)

1.2 State of the art: DBP

• (Directional) Hilbert transform:

$$\mathcal{H}_{\boldsymbol{\eta}} f(\boldsymbol{x}) \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} \frac{f(\boldsymbol{x} - s\boldsymbol{\eta})}{\pi s} \mathrm{d}s$$

• Backprojection of the derivatives of projections (along the trajectory): $b_{i,j}(\boldsymbol{x}) \stackrel{\text{def}}{=} \int_{\lambda_i}^{\lambda_j} \frac{1}{\|\boldsymbol{x} - \boldsymbol{S}_{\lambda}\|} \left. \frac{\partial}{\partial \lambda} g(\lambda, \boldsymbol{\beta}) \right|_{\boldsymbol{\beta} = \frac{\boldsymbol{x} - \boldsymbol{S}_{\lambda}}{\|\boldsymbol{x} - \boldsymbol{S}_{\lambda}\|}} \, \mathrm{d}\lambda$

Tools for DBP (Differentiated Backprojection, 2000s)

1.2 State of the art: DBP

• (Directional) Hilbert transform:

$$\mathcal{H}_{\boldsymbol{\eta}} f(\boldsymbol{x}) \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} \frac{f(\boldsymbol{x} - s\boldsymbol{\eta})}{\pi s} \mathrm{d}s$$

- Backprojection of the derivatives of projections (along the trajectory): $b_{i,j}(\boldsymbol{x}) \stackrel{\text{def}}{=} \int_{\lambda_i}^{\lambda_j} \frac{1}{\|\boldsymbol{x} - \boldsymbol{S}_{\lambda}\|} \left. \frac{\partial}{\partial \lambda} g(\lambda, \boldsymbol{\beta}) \right|_{\boldsymbol{\beta} = \frac{\boldsymbol{x} - \boldsymbol{S}_{\lambda}}{\|\boldsymbol{x} - \boldsymbol{S}_{\lambda}\|}} \, \mathrm{d}\lambda$
- Link between b and $\mathcal{H}:$ $b_{i,j}({\bm x})=\pi(\mathcal{H}_{{\bm \beta}_j}f({\bm x})-\mathcal{H}_{{\bm \beta}_i}f({\bm x}))$

DBP method

For x on a chord $C_{1,2}$, the equation $b_{i,j}(x) = \pi(\mathcal{H}_{\beta_j}f(x) - \mathcal{H}_{\beta_i}f(x))$ becomes: $\boxed{b_{1,2}(x) = 2\pi\mathcal{H}_{\beta_{1,2}}f(x)}$

Now we want to invert $\mathcal{H}f(\boldsymbol{x})$

Inversion of the Hilbert transform

 ¹F. Noo, R. Clackdoyle, and J. D. Pack. A two-step Hilbert transform method for 2D image reconstruction.
Physics in Medicine and Biology, 49(17) :3903–3923, 2004
²M. Defrise, F. Noo, R. Clackdoyle, and H. Kudo. Truncated Hilbert transform and image reconstruction from limited tomographic data, 2006

Inversion of the Hilbert transform

- 1. analytical inversion of the Hilbert transform (in the direction of $C_{i,j}$)¹
- 2. numerical inversion ²

3. no possible inversion in the direction of $C_{i,j}$...we must use another method

 ¹F. Noo, R. Clackdoyle, and J. D. Pack. A two-step Hilbert transform method for 2D image reconstruction. Physics in Medicine and Biology, 49(17) :3903–3923, 2004
²M. Defrise, F. Noo, R. Clackdoyle, and H. Kudo. Truncated Hilbert transform and image reconstruction from limited tomographic data, 2006

[‡]J. D. Pack, F. Noo, and R. Clackdoyle. Cone-beam reconstruction using the back- projection of locally filtered projections. IEEE Transactions on Medical Imaging, 24(1) :70–85, 2005

$$b_{1,M}(\boldsymbol{x}) = \pi(\mathcal{H}_{\boldsymbol{\beta}_M}f(\boldsymbol{x}) - \mathcal{H}_{\boldsymbol{\beta}_1}f(\boldsymbol{x}))$$
$$b_{2,M}(\boldsymbol{x}) = \pi(\mathcal{H}_{\boldsymbol{\beta}_M}f(\boldsymbol{x}) - \mathcal{H}_{\boldsymbol{\beta}_2}f(\boldsymbol{x}))$$
$$\Rightarrow b_{1,M}(\boldsymbol{x}) + b_{2,M}(\boldsymbol{x}) = 2\mathcal{H}_{\boldsymbol{\beta}_M}f(\boldsymbol{x})$$

Inversion of the Hilbert transform in the direction of β_M instead of $C_{1,2}$.

[§]J. D. Pack, F. Noo, and R. Clackdoyle. Cone-beam reconstruction using the back- projection of locally filtered projections. IEEE Transactions on Medical Imaging, 24(1):70–85, 2005

Conclusion for 2D DBP

For a circular trajectory, if a part of the FOV is outside Ω_O , then the 2D DBP can always be used.

Introduction to the cone-beam geometry

1.3 State of the art: 3D

Cone-beam projections
$$g(\lambda, \eta) \stackrel{\text{def}}{=} \int_0^{+\infty} f(\mathbf{S}_{\lambda} + l\boldsymbol{\eta}) d\boldsymbol{x}$$

Classical trajectories for CB

Circular trajectory

Helical trajectory

Tuy condition ⁵: Without truncation, we have stable reconstruction of an object in the convex hull $\Omega_{S_{\Lambda}}$ of a continuous, simply-connected, and bounded trajectory S_{Λ} .

 $^{^{5}}$ Tuy, Heang K. 1983. "Inversion Formula For Cone-Beam Reconstruction." SIAM Journal on Applied Mathematics 43 (3): 546–552

⁶Finch, David V. 1985. "Cone Beam Reconstruction with Sources on a Curve". SIAM Journal on Applied Mathematics 45 (4): 665–673

Tuy condition ⁵ : Without truncation, we have stable reconstruction of an object in the convex hull $\Omega_{S_{\Lambda}}$ of a continuous, simply-connected, and bounded trajectory S_{Λ} .

Finch result ⁶: Tuy condition is necessary (there is no stable reconstruction outside $\Omega_{S_{\Lambda}}$).

 $^{^{5}}$ Tuy, Heang K. 1983. "Inversion Formula For Cone-Beam Reconstruction." SIAM Journal on Applied Mathematics 43 (3): 546–552

⁶Finch, David V. 1985. "Cone Beam Reconstruction with Sources on a Curve". SIAM Journal on Applied Mathematics 45 (4): 665–673

Tuy condition ⁵ : Without truncation, we have stable reconstruction of an object in the convex hull $\Omega_{S_{\Lambda}}$ of a continuous, simply-connected, and bounded trajectory S_{Λ} . Finch result ⁶: Tuy condition is necessary (there is no stable reconstruction outside $\Omega_{S_{\Lambda}}$).

Example: for a circular trajectory, the only exact reconstruction is in the circle plane

 $^{^{5}}$ Tuy, Heang K. 1983. "Inversion Formula For Cone-Beam Reconstruction." SIAM Journal on Applied Mathematics 43 (3): 546–552

⁶Finch, David V. 1985. "Cone Beam Reconstruction with Sources on a Curve". SIAM Journal on Applied Mathematics 45 (4): 665–673

$$\mathbf{S}_{\Lambda} = \{R \cos \lambda, R \sin \lambda, Z(\lambda) | \lambda \in \Lambda\}$$

R > 0, $Z(\lambda)$ function with period 2π

$$\boldsymbol{S}_{\Lambda} = \{R\cos\lambda, R\sin\lambda, Z(\lambda) | \lambda \in \Lambda\}$$

R > 0, $Z(\lambda)$ function with period 2π

For these trajectories, we can define a cylindrical FOV (with a rigid source-detector assembly).

 Ω_O is a cylinder

- 1. "Historical" methods (1980-90, Tuy, Grangeat/Smith...): no possible truncation
- 2. Methods of "filtering lines on a detector" (≈2000, Katsevich...): possible axial truncation
- 3. DBP (\approx 2000, Pan, Sidky, Noo, Pack...): various possible truncation

In 3D, a point of the convex envelope of a trajectory, even a closed one, might belong to only one chord, or even none! The 3D DBP is more "subtle" than in 2D

 $oldsymbol{x}_1$ only intersected by one chord, no chord for $oldsymbol{x}_2$
n-sin trajectories

1.4 State of the art: introduction to *n*-sin trajectories

 $\boldsymbol{S}^{n}_{\Lambda} = \{ (R \cos \lambda, R \sin \lambda, H \cos(n\lambda))^{T} | \lambda \in \Lambda = [0, 2\pi[\}, n \in \mathbb{N}, n > 1, (H, R) \in \mathbb{R}^{2}_{+} \quad (1)$

To perform reconstruction with DBP, we must know convex hull and location of chords. $C_{S^n_{\Lambda}}$: union of chords for the trajectory S^n_{Λ} $C_{S^2_{\Lambda}} = \Omega_{S^2_{\Lambda}}$ ⁷: the convex hull of the 2-sin trajectory is the set of chords

 $^{^7 {\}rm J.}$ D. Pack, F. Noo, and H. Kudo. Investigation of saddle trajectories for cardiac CT imaging in cone-beam geometry, 2004

Contributions

Geometrical contributions: 3-sin trajectory

Configuration for the 2-sin trajectory

3.1 Tomographic contributions : DBP for 2-sin

Configuration: only transverse truncation and $x \in \mathrm{FOV} \cap \Omega_{\boldsymbol{S}^2_{\boldsymbol{\lambda}}} \cap \Omega_O$

Use of DBP for the 2-sin trajectory

2-sin trajectory from above

- C₁: possible reconstruction (explicit formula)
- C₂: possible reconstruction (iterative method)
- C_3 : impossible reconstruction only with the chord...but we can use the M-lines method

Therefore we can use DBP for the 2-sin trajectory with transverse truncation.

Convex hulls and set of chords

3.2 Tomographic contributions: "good" results for 3-sin

Convex hulls and set of chords

3.2 Tomographic contributions: "good" results for 3-sin

For the 3-sin trajectory some chords are "missing". With a centered FOV it is impossible to use DBP for all points

Simulations: the Forbild thorax phantom

Simulations: both sections

We perform an *iterative reconstruction*:

- least squares method with conjugate gradient (minimizing $||(Rf-p)||_2^2 + \gamma ||\nabla f||_2^2$)
- $\gamma = 100$
- image size: 380 × 152 × 382
- 120 iterations
- 200 source positions
- $R=250~\mathrm{mm},~H=100~\mathrm{mm}$

Reconstruction results

No (apparent) difference between 2-sin and 3-sin!

3-sin

Projections with Poisson noise added

- Can we consider more truncation for the 2-sin trajectory?
- How can we justify the results for the 3-sin?

- Can we consider more truncation for the 2-sin trajectory? Yes, this was presented at MIC 2020: sufficient conditions for a reconstruction with axial AND transverse truncation⁸
- How to justify the results for the 3-sin? *Partially, a restricted configuration has been presented at Fully3D 2021*⁹

⁸N. Gindrier, R. Clackdoyle, S. Rit, and L. Desbat. Sufficient field-of-view for the M-line method in cone-beam CT. In 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Boston (virtual), United States, 2020

⁹N. Gindrier, L. Desbat, and R. Clackdoyle. CB reconstruction for the 3-sin trajectory with transverse truncation. In 6th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, Leuven, 2021

- DBP is the predominant method to manage transverse truncation...
- ...but to reconstruct a point by this method, it must be on a **chord**.
- Any point x of the **convex hull** of the **2-sin trajectory** is crossed by a chord: x can be often reconstructed by DBP, despite important truncation

- DBP is the predominant method to manage transverse truncation...
- ...but to reconstruct a point by this method, it must be on a **chord**.
- Any point x of the **convex hull** of the **2-sin trajectory** is crossed by a chord: x can be often reconstructed by DBP, despite important truncation
- Some points of the convex hull of the **3-sin trajectory** are not intersected by a chord, yet reconstructions with transverse truncation seem possible
- It is possible to justify it for some restricted configurations...
- ...but the general case remains unsolved

- DBP is the predominant method to manage transverse truncation...
- ...but to reconstruct a point by this method, it must be on a **chord**.
- Any point x of the **convex hull** of the **2-sin trajectory** is crossed by a chord: x can be often reconstructed by DBP, despite important truncation
- Some points of the convex hull of the **3-sin trajectory** are not intersected by a chord, yet reconstructions with transverse truncation seem possible
- It is possible to justify it for some restricted configurations...
- ...but the general case remains unsolved

THANK YOU. TIME FOR QUESTIONS

Annexes : utilité des lignes M en 2D

Contexte: Trajectoire 2-sin avec troncations axiales ET transverses

Objectif: Donner des *conditions suffisantes* pour appliquer la méthode DBP à cette configuration

Rappels DBP et lignes M

Corde C: reconstruction impossible (de x)

Ligne M L_2 : reconstruction impossible (L_2 n'intersecte pas la région gris foncé FOV $\setminus \Omega_O$) Lignes M L_1 et L'_1 : reconstruction possible

Un exemple de FOV non utilisable pour la méthode des lignes M, parce que les (deux) cônes de lignes (gris clair) de x qui intersectent FOV $\setminus \Omega_O$ (gris foncé) n'intersectent pas latrajectoire 2-sin S^2_{Λ} .

Condition suffisante de type 1

FOV suffisant de type 1 : la projection du FOV semi-circulaire doit intersecter la trajectoire de source

Condition suffisante de type 2

FOV suffisant de type 2 : conditions concernant la hauteur du FOV Le FOV doit dépasser l'enveloppe convexe ou l'objet des deux côtés.

FOV	R_F	H_F	C_F	suffisant	dim_det
1		18	(0,30,78)	not	92×69
2	50	18	(0,30,78)	type 1	92×437
3		380	(0,67,-190)	type 2	92×69

3 FOV avec le fantôme Forbild thorax

Simulations et résultats

Les 3 FOV donnent des bonnes reconstructions mais les FOV non suffisant ont une convergence plus lente.

3.3 Tomographic contributions: partial explanation of the results

Context: As we have seen, the 3-sin trajectory with transverse truncation is not suitable for the DBP method, but "exact" reconstructions seems to be possible.

Goal: Provide a configuration using a method (including DBP) to do such reconstructions

¹⁰F. Noo, A. Wunderlich, L. Günter, and H. Kudo. On the problem of axial data truncation in the reverse helix geometry. In 10th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, pages 90–93, 2009

3.3 Tomographic contributions: partial explanation of the results

Context: As we have seen, the 3-sin trajectory with transverse truncation is not suitable for the DBP method, but "exact" reconstructions seems to be possible.

Goal: Provide a configuration using a method (including DBP) to do such reconstructions

Reconstruction method in 4 steps (inspired by ¹⁰ for another trajectory with axial truncation) :

- 1. Reconstruction of $\Omega_{\text{DBP}} \subseteq \text{FOV} \cap \Omega_O \cap C_{S^3_{\lambda}}$ with the DBP method
- 2. Reprojection of reconstructed points
- 3. Subtraction of reprojections from original conebeam data, which gives a new configuration with a smaller object, $\Omega_O \setminus \Omega_{\text{DBP}} = \Omega_{\text{in}} \cup \Omega_{\text{out}}$, with $\Omega_{\text{out}} \stackrel{\text{def}}{=} \Omega_O \setminus (\Omega_{\text{DBP}} \cup \Omega_{\text{in}})$
- 4. Reconstruction of $\Omega_{\rm in}$ with one of various methods for conebeam reconstruction for non-truncated projections

¹⁰F. Noo, A. Wunderlich, L. Günter, and H. Kudo. On the problem of axial data truncation in the reverse helix geometry. In 10th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, pages 90–93, 2009

Notations

$$\Omega_{\rm out} \stackrel{\mathsf{def}}{=} \Omega_O \setminus (\Omega_{\rm DBP} \cup \Omega_{\rm in})$$

Proposed configuration

Firstly, we reconstruct Ω_{DBP} , then we reproject and subtract, so we have Ω_{in} and Ω_{out} . Then we reconstruct Ω_{in} .

The phantom used and its reconstruction (60 iterations with the method of least squares with conjugate gradient in a volume of $162 \times 82 \times 8$ voxels).

Figure 1: Gauche : Une configuration avec deux lignes contaminées. Droite : Un profil de reconstruction y = 0 mm et z = 16 mm, la ligne orange représente la reconstruction tronquée sans lignes contaminées et la ligne violette représente la reconstruction tronquée avec lignes contaminées.

Union des cordes de S^3_{Λ}

On engendre une surface avec certaines cordes en faisant varier \tilde{z} .

Vérification des lignes contaminées

Tracé des lignes intersectant à la fois $\Omega_{\rm in}$ et $\Omega_{\rm out}$
Vérification des lignes contaminées

Tracé des lignes intersectant à la fois $\Omega_{\rm in}$ et $\Omega_{\rm out}$

Aucune de ces lignes n'intersecte la trajectoire : pas de ligne contaminée