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Backstory

This talk is about a problem I encountered many years go, when I was a

medical student in neurosurgery, rotating on the epilepsy service. At the

time, I was just becoming interested in inverse problems and discovered

that they were everywhere.

The problem is also connected to my recent work in multiwave (hybrid)

inverse problems such as acousto-optic imaging.
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Epilepsy

Epilepsy is a common neurological disorder that is characterized by

recurrent seizures. The prevalence of epilepsy is approximately 1% in

the US population. It is among the most treatable of neurological

diseases.

Diagnosis is based on patient history and the results of tests, including

electroencephalography (EEG) and imaging studies.

Medications achieve complete remission of seizures in 80% of patients.

Of the remaining 20%, about half are candidates for various surgical

procedures. Surgery substantially reduces the occurrence of seizures in

70% of these cases.



EEG

The EEG records electrical activity originating in the brain. In a typical

clinical setting, the electrical signal is recorded from electrodes that are

placed either on the scalp or surgically implanted in the brain.

The objective is to localize the current source that produces the mea-

sured signal.



Scalp electrodes



Normal EEG



Temporal lobe seizure



Cortical EEG

Surgical patients usually require intracranial EEG for seizure

localization



Frontal lobe seizure



Challenges of epilepsy surgery

Surgical treatment of epilepsy requires precise localization of the seizure

focus.

The goal of surgery is maximize the volume of resection while minimizing

postoperative neurological deficits.

The most common cause of surgical failure is incomplete resection of

the focus.

The problem of localizing the seizure focus can be viewed an inverse

source problem.



Forward problem

Consider the flow of current from a source in a bounded domain. The

total current has contributions from the source and volume:

J = J0 + σE ,

where J0 is the source current, σ is the conductivity and E is the electric

field. Under static conditions, the conservation of charge takes the form

∇·J = 0. In addition, E = −∇u, where u is the potential. The potential

then obeys the equation

∇ · σ(x)∇u = ∇ · J0 in Ω ,
∂u

∂n
= 0 on ∂Ω ,

where the Neumann boundary condition prevents the outward flow of

current through ∂Ω.



Inverse problem

∇ · σ(x)∇u = S in Ω ,
∂u

∂n
= 0 on ∂Ω ,

Assuming σ is know, the inverse source problem is to determine S

from boundary measurements of u. This problem is underdetermined

and does not have a unique solution.

Uniqueness can be restored if a priori information about the source is

known. For instance, if the source consists of a single current dipole

(or even a fixed number of dipoles), then its position and strength can

be uniquely determined.



Breaking the rules

Measurements of the potential are generally taken outside the conduct-

ing medium. The availability of internal measurements fundamentally

alters the inverse problem.

The source can be determined directly from the governing PDE.

Unfortunately, the necessary measurements of the potential cannot gen-

erally be acquired in practice.



Acousto-electric source imaging

To overcome the problem of nonuniqueness requires a new physical idea.

Replace inverse boundary value problem by inverse problem with internal

data.

Internal data obtained from control of boundary measurements by an

acoustic wave.



Inverse problem

Acousto-electric imaging utilizes two interacting fields. The electric

current density is spatially modulated by an acoustic wave, while mea-

surements of the potential are recorded.

The inverse problem consists of two steps.

1. Recover an internal functional of the source from boundary mea-

surements. The internal functional is defined at every point of the

medium and serves as a proxy for measurements of the potential

within the medium.

2. Reconstruct the source from the internal functional.



Outline

• Acousto-electric effect

— mechanics

— electrical conduction

• Internal functional

• Stability and inversion



Mechanics

Consider a system of charge carriers in a conducting fluid. If a small-
amplitude acoustic wave is incident on the system, the particles will
oscillate about their local equilibrium positions. It is then possible to
treat the motion of each particle as independent, neglecting hydrody-
namic interactions.

The equation of motion of a single particle is of the form

ρ
dv

dt
= −∇p .

Here v is the velocity of the particle, ρ is its mass density, and p is the
pressure in the fluid. We consider a standing time-harmonic plane wave
of frequency ω with

p = A cos(ωt) cos(k · x + ϕ) ,

where A is the amplitude of the wave, k is the wave vector and ϕ is the
phase. For simplicity, we have assumed that the speed of sound cs is
constant with |k| = ω/cs.



The oscillatory solution to the equation of motion is given by

v =
A

ρω
sin(ωt) sin(k · x + ϕ)k .

Thus apart from a transient, the particle moves with the fluid.

In the presence of an applied field, the charge carriers move and generate

a current. The current density is of the form
∑
i qiviδ(x−Ri(t)), where

Ri is the position of the ith charge carrier, vi is the velocity and qi
is the charge. Since each particle is independent, it follows that the

modulated current Jδ is given by

Jδ(x) = J0(x) [1 + δ cos(k · x + ϕ)] ,

where J0 is the current in the absence of the acoustic wave and δ =

A/(ρc2s)� 1 is a small parameter.



The conductivity σδ of the medium is proportional to the density of

conducting particles and is given by

σδ(x) = σ(x) [1 + δβ cos(k · x + ϕ)] ,

where σ is the unmodulated conductivity and β is the zero-frequency

elasto-electric constant. We conclude that the acoustic wave leads to

spatial modulation of the current and the conductivity.



Electric potential

The total current

J = Jδ + σδE ,

has contributions from the source and the volume. Since ∇ · J = 0 and

E = −∇u, the potential obeys

∇ · σδ(x)∇uδ = ∇ · Jδ in Ω ,
∂uδ
∂n

= 0 on ∂Ω .

Next we turn to the derivation of an internal functional from boundary

measurements of the potential.



Internal functional

We consider the following auxiliary boundary value problem

∇ · σ(x)∇vj = 0 in Ω ,

∂vj

∂n
= gj on ∂Ω ,

where gj are prescribed boundary sources. Since the unmodulated con-

ductivity σ is known, the solutions vj in principle can be computed. The

identity

Σ(j)
δ =

∫
Ω

[
(σδ − σ)∇uδ · ∇vj + vj∇ · Jδ

]
dx ,

follows from an integration by parts and use of the boundary conditions.

Here the surface term Σ(j)
δ is defined by

Σ(j)
δ =

∫
∂Ω

uδσgjdx .

Evidently, Σ(j)
δ can be determined from boundary measurement of uδ.



We now introduce the asymptotic expansions for uδ and Σ(j)
δ as

uδ = u0 + δu1 + · · · ,

Σ(j)
δ = Σ(j)

0 + δΣ(j)
1 + · · · .

At O(δ) we have

Σ(j)
1 =

∫
Ω

(βσ∇u0 − J0) · ∇vj cos(k · x + ϕ) dx.

Since Σ(j)
δ is determined by boundary measurements, Σ(j)

1 is known. By

varying k and ϕ and inverting a Fourier transform, we can recover the

internal functional

Hj = (βσ∇u0 − J0) · ∇vj
at every point in Ω.



Inverse problem

The inverse problem now consists of recovering the source J0 from the
internal functional Hj. We emphasize that this is an unusual inverse
problem, since the data Hj is known everywhere in Ω.

Suppose there are multiple boundary sources. We then solve the system
of linear equations

Hj = (βσ∇u0 − J0) · ∇vj
for the vector field

A = βσ∇u0 − J0 .

Here we assume that (∇vj) are linearly independent. It can be seen that
this condition holds if the boundary sources gj are appropriately chosen.
After determining u0 by solving the boundary value problem,

∇ · σ(x)∇u0 = ∇ · J0 in Ω ,
∂u0

∂n
= 0 on ∂Ω ,



we can find the source from the inversion formula

J0 = βσ∇u0 −A.

The reconstruction procedure uniquely recovers J0 with Lipschitz sta-

bility.

Theorem (Li, S, Yang, Zhong). Let J0 and J̃0 be currents recon-

structed from the corresponding internal functionals Hj and H̃j. Then

‖J0 − J̃0‖(L2(Ω))n ≤ C
∑
j

‖Hj − H̃j‖L2(Ω) .



Numerical reconstructions

scalp bone

brain white

matter

brain grey

matter

cerebrospinal

fluid

The conductivity σ



Model Reconstruction Cross section

g1(x) = (1,0) · n̂(x) and g2(x) = (0,1) · n̂(x)



Is it practical?

• Acousto-electric effect has been measured in tissue, but β � 1.

• Conductivity is unknown

— ultrasound-modulated EIT and its variants

• Band-limited approximation to internal functional

• Partial data



Partial data

Measurements and boundary sources on bottom face are not used



Maxwell equations

The preceding theory holds for static sources and fields. More generally,
the inverse source problem for electrodynamics can be considered. This
contains as a special case the problem of magnetoencephalography.

The time-harmonic Maxwell equations in a bounded domain Ω ⊂ R3 are
of the form

iωεE +∇×H = J + σE in Ω,

−iωH +∇× E = 0 in Ω .

We also impose the impedance boundary condition

H× n̂− λ(n̂× E)× n̂ = 0 on ∂Ω .

The inverse source problem is to reconstruct the source J from boundary
measurements, assuming that the coefficients ε and σ are known. A
typical measurement is the tangential electric field on the boundary:

g = (n̂× E)× n̂|∂Ω.

This problem is underdetermined and does not have a unique solution.



Acoustic modulation

We now examine the effect of acoustic modulation. As usual, the
current density Jδ is modulated according to

Jδ = J(1 + δ cos(k · x + ϕ)).

Likewise, the conductivity σδ and permittivity εδ are also modulated,

εδ = ε(1 + δγε cos(k · x + ϕ)),

σδ = σ(1 + δγσ cos(k · x + ϕ)).

It follows that the modulated electric and magnetic fields Eδ and Hδ
satisfy the modified Maxwell equations

iωεδ Eδ +∇×Hδ = Jδ + σδEδ in Ω,

−iωHδ +∇× Eδ = 0 in Ω,

together with the boundary condition

Hδ × n̂− λ(n̂× Eδ)× n̂ = 0 on ∂Ω.

The corresponding boundary measurement becomes

gδ := (n̂× Eδ)× n̂|∂Ω.



Internal functional

We consider the auxiliary fields F and G which obey the Maxwell equa-
tions

iωεF∗+∇×G∗ = σF∗ in Ω ,

−iωµG∗+∇× F∗ = 0 in Ω ,

We find that the internal functional is of the form

Q = iωγJJ +
(
ω2εγε + iωσγσ

)
E ,

which is known at every point in Ω.

The electric field E obeys

∇×∇× E− k2E =
Q

γJ
,

where k2 = ω2ε
(
1− γε

γJ

)
+iωσ

(
1− γσ

γJ

)
. Solving for E leads to the formula

for the current

J =
1

iωγJ

[
Q−

(
ω2εγε + iωσγσ

)
E
]
.



Stability

Theorem (Li, S, Yang, Zhong).

1. If γε = γJ, γσ 6= γJ, and Ω ⊆ suppσ, then the source J is uniquely
determined. If in addition |Re(k2)| is strictly bounded away from zero,
then we have the following stability estimates. If γσ/γJ < 1,

‖J− J̃‖(L2(Ω))3 ≤ C‖Q− Q̃‖(L2(Ω))3,

and if γσ/γJ > 1,

‖J− J̃‖(L2(Ω))3 ≤ C(‖Q− Q̃‖(L2(Ω))3 + ‖g − g̃‖(L2(∂Ω))3.

2. If γε 6= γJ, then the source J is uniquely determined.

3. If γε/γJ > 1, we have the following stability estimate

‖J− J̃‖(L2(Ω))3 ≤ C‖Q− Q̃‖(L2(Ω))3,

and if γε/γJ < 1,

‖J− J̃‖(L2(Ω))3 ≤ C(‖Q− Q̃‖(L2(Ω))3 + ‖g − g̃‖(L2(∂Ω))3.



Numerical simulations

ε, σ

J



Reconstructions



Conclusions

Model of acoustically-modulated electrical source problem.

Boundary measurements of the electric potential in the presence of

acoustic modulation determines an internal functional of the source.

The source current can be reconstructed from the internal functional.

The reconstruction is unique with Lipschitz stability.

Numerical implementations of the proposed method with both full and

partial boundary measurements.

Results extent to the full Maxwell system (including MEG).
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