

Motion Detection in Diffraction Tomography

Michael Quellmalz | TU Berlin | RICAM Special Semester Tomography Across the Scales, Workshop Inverse Problems on Small Scales, 20 October 2022 joint work with Robert Beinert, Peter Elbau, Clemens Kirisits, Monika Ritsch-Marte, Otmar Scherzer, Eric Setterqvist, Gabriele Steidl

Content

1 Introduction

2 Reconstruction of the object

3 Reconstructing the motion

Optical Diffraction Tomography (ODT) x_1 Measurement plane $x_3 = r_M$ f = 0 X_3 u^{inc} object ($t \neq 0$) Incident field: Plane wave with normal x_3

C Kirisits, M Quellmalz, M Ritsch-Marte, O Scherzer, E Setterqvist, G Steidl. Fourier reconstruction for diffraction tomography of an object rotated into arbitrary orientations. *Inverse Problems* 37, 2021.

Optical Diffraction

Optical diffraction occurs when the wavelength of the imaging beam is large \approx the size of the object (μm scale)

Simulation of the scattered field from spherical particles (size \approx wavelength)

Image with diffraction © Medizinische Universität Innsbruck

Arbitrary rotations

- Sample confinement, such as fixation on a surface or embedding in a gel, has substantial impact on biological cell clusters
- Contact-less tools for 3D manipulation based on optical and acoustical tweezers

[Kvåle-Løvmo, Pressl, Thalhammer, Ritsch-Marte 2020]

• Drawback: less control about the exact movement

Video of trapped specimen (pollen) © Medizinische Universität Innsbruck

Model of Optical Diffraction Tomography (for one direction)

- We have: field $u^{\text{tot}}(x_1, x_2, r_M)$ at measurement plane $x_3 = r_M$
- We want: scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{f_M} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\mathbf{x}) = e^{ik_0 x_3}$
- Total field $u^{\text{tot}}(\mathbf{x}) = u^{\text{sca}}(\mathbf{x}) + u^{\text{inc}}(\mathbf{x})$ solves the wave equation

$$-\left(\Delta+f(\boldsymbol{x})+k_0^2\right)u^{\text{tot}}(\boldsymbol{x})=0$$

• Rearranging yields

$$-\left(\Delta+k_0^2\right)u^{\mathrm{sca}}(\mathbf{x})-\underbrace{\left(\Delta+k_0^2\right)u^{\mathrm{inc}}(\mathbf{x})}_{=0}=f(\mathbf{x})\left(u^{\mathrm{sca}}(\mathbf{x})+u^{\mathrm{inc}}(\mathbf{x})\right)$$

Born approximation

Assuming $|u^{\rm sca}| \ll |u^{\rm inc}|$, we obtain

$$-\left(\Delta+k_0^2\right)u^{\rm sca}(\boldsymbol{x})=f(\boldsymbol{x})u^{\rm inc}(\boldsymbol{x})$$

Motion Detection in Diffraction Tomography | Michael Quellmalz | 20 October 2022

Model of Optical Diffraction Tomography (for one direction)

- We have: field $u^{\text{tot}}(x_1, x_2, r_M)$ at measurement plane $x_3 = r_M$
- We want: scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{f_M} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\mathbf{x}) = e^{ik_0 x_3}$
- Total field $u^{\text{tot}}(\textbf{\textit{x}}) = u^{\text{sca}}(\textbf{\textit{x}}) + u^{\text{inc}}(\textbf{\textit{x}})$ solves the wave equation

$$-\left(\Delta + f(\boldsymbol{x}) + k_0^2\right) \boldsymbol{u}^{\text{tot}}(\boldsymbol{x}) = 0$$

• Rearranging yields

$$-\left(\Delta+k_0^2\right)u^{\text{sca}}(\boldsymbol{x})-\underbrace{\left(\Delta+k_0^2\right)u^{\text{inc}}(\boldsymbol{x})}_{=0}=f(\boldsymbol{x})\left(u^{\text{sca}}(\boldsymbol{x})+u^{\text{inc}}(\boldsymbol{x})\right)$$

Born approximation

Assuming $|u^{\rm sca}| \ll |u^{\rm inc}|$, we obtain

$$-\left(\Delta+k_0^2\right)u^{\rm sca}(\boldsymbol{x})=f(\boldsymbol{x})u^{\rm inc}(\boldsymbol{x})$$

Motion Detection in Diffraction Tomography | Michael Quellmalz | 20 October 2022

Model of Optical Diffraction Tomography (for one direction)

- We have: field $u^{tot}(x_1, x_2, r_M)$ at measurement plane $x_3 = r_M$
- We want: scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{f_M} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\mathbf{x}) = e^{ik_0 x_3}$
- Total field $u^{\text{tot}}(\textbf{\textit{x}}) = u^{\text{sca}}(\textbf{\textit{x}}) + u^{\text{inc}}(\textbf{\textit{x}})$ solves the wave equation

$$-\left(\Delta + f(\boldsymbol{x}) + k_0^2\right) \boldsymbol{u}^{\text{tot}}(\boldsymbol{x}) = 0$$

• Rearranging yields

$$-\left(\Delta+k_0^2\right)u^{\mathrm{sca}}(\boldsymbol{x})-\underbrace{\left(\Delta+k_0^2\right)u^{\mathrm{inc}}(\boldsymbol{x})}_{=0}=f(\boldsymbol{x})\left(u^{\mathrm{sca}}(\boldsymbol{x})+u^{\mathrm{inc}}(\boldsymbol{x})\right)$$

Born approximation

Assuming $|u^{\rm sca}| \ll |u^{\rm inc}|$, we obtain

$$-\left(\Delta+k_0^2\right)u^{\rm sca}(\boldsymbol{x})=f(\boldsymbol{x})u^{\rm inc}(\boldsymbol{x})$$

Motion Detection in Diffraction Tomography | Michael Quellmalz | 20 October 2022

Fourier diffraction theorem

Let the previous assumptions hold, $f \in L^{p}(\mathbb{R}^{3})$, p > 1, and u^{sca} satisfy the Sommerfeld radiation condition (u is an outgoing wave).

Then

$$\sqrt{\frac{2}{\pi}} \kappa i \mathbf{e}^{-i\kappa n_{M}} \mathcal{F}_{1,2} \underbrace{u^{\text{sca}}(k_{1}, k_{2}, r_{M})}_{\text{measurements}} = \mathcal{F}f(\boldsymbol{h}(k_{1}, k_{2})), \quad (k_{1}, k_{2}) \in \mathbb{R}^{2}$$
where $\boldsymbol{h}(k_{1}, k_{2}) := \begin{pmatrix} k_{1} \\ k_{2} \\ \kappa - k_{0} \end{pmatrix}$ and $\kappa := \sqrt{k_{0}^{2} - k_{1}^{2} - k_{2}^{2}}.$

based on [Wolf 1969] [Natterer Wuebbeling 2001] [Kak Slaney 2001] this version from [Kirisits Q. Ritsch-Marte Scherzer Setterqvist Steidl 2021]

Semisphere h(k) of available data in Fourier space

Comparison with Computerized Tomography

Optical diffraction tomography (ODT)

diffraction of imaging wave Data: Fourier transform on semispheres containing ${\bf 0}$

Computerized tomography (CT)

light travels along straight lines Data: Fourier transform on planes containing ${\bf 0}$

Rigid Motion of the Object

- Scattering potential of the moved object: $f(R_t(\mathbf{x} \mathbf{d}_t))$
- Rotation $R_t \in SO(3)$ (with $R_0 := id$)
- Translation $\boldsymbol{d}_t \in \mathbb{R}^3$ (with $\boldsymbol{d}_0 \coloneqq \mathbf{0}$)

Fourier diffraction theorem (with motion)

The quantity

$$\mu_t(k_1,k_2) \coloneqq \sqrt{\frac{2}{\pi}} \kappa \mathrm{i} \mathrm{e}^{-\mathrm{i}\kappa_{f_M}} \mathcal{F}_{1,2} \underbrace{u^{\mathrm{sca}}(k_1,k_2,r_M)}_{\mathrm{measurements}} = \mathcal{F}f(\mathcal{R}_t \mathbf{h}(k_1,k_2)) \, \mathrm{e}^{-\mathrm{i}\langle \mathbf{d}_t,\mathbf{h}(k_1,k_2)\rangle}, \quad \|(k_1,k_2)\| < k_0,$$

depends only on the measurements.

- **O** Reconstruct the rotation using $\nu_t(k_1, k_2) \coloneqq |\mu_t(k_1, k_2)|^2 = |\mathcal{F}f(\mathbf{R}_t \mathbf{h}(k_1, k_2))|^2$.
- Reconstruct the translation d_t
- 8 Reconstruct #

Rigid Motion of the Object

- Scattering potential of the moved object: $f(R_t(\mathbf{x} \mathbf{d}_t))$
- Rotation $R_t \in SO(3)$ (with $R_0 := id$)
- Translation $\boldsymbol{d}_t \in \mathbb{R}^3$ (with $\boldsymbol{d}_0 \coloneqq \mathbf{0}$)

Fourier diffraction theorem (with motion)

The quantity

$$\mu_t(k_1, k_2) \coloneqq \sqrt{\frac{2}{\pi}} \kappa \mathrm{i} \mathrm{e}^{-\mathrm{i}\kappa r_{\mathrm{M}}} \mathcal{F}_{1,2} \underbrace{u^{\mathrm{sca}}(k_1, k_2, r_{\mathrm{M}})}_{\mathrm{measurements}} = \mathcal{F}f(\mathcal{R}_t \mathbf{h}(k_1, k_2)) \, \mathrm{e}^{-\mathrm{i}\langle \mathbf{d}_t, \mathbf{h}(k_1, k_2) \rangle}, \quad \|(k_1, k_2)\| < k_0,$$

depends only on the measurements.

- Reconstruct the rotation using $\nu_t(k_1, k_2) := |\mu_t(k_1, k_2)|^2 = |\mathcal{F}f(\mathcal{P}_t h(k_1, k_2))|^2$.
- **2** Reconstruct the translation d_t
- 8 Reconstruct f

Content

1 Introduction

2 Reconstruction of the object

3 Reconstructing the motion

Discretization

- Object $f(\mathbf{x}_{\mathbf{k}})$ with $\mathbf{x}_{\mathbf{k}} = \mathbf{k} \frac{2L_s}{\kappa}$, $\mathbf{k} \in \mathcal{I}_{\kappa}^3 \coloneqq \{-\kappa/2, \dots, \kappa/2 1\}^3$
- Measurements $u_{t_m}^{\text{tot}}(\pmb{y_n}, r_{\rm M})$ with $\pmb{y_n} = \pmb{n} \frac{2L_{\rm M}}{N}$, $\pmb{n} \in \mathcal{I}_{\rm N}^2$
- discrete Fourier transform (DFT)

$$\left[\mathbf{F}_{\mathsf{DFT}} \, u_{t_m}^{\mathsf{sca}} \right]_{\boldsymbol{\ell}} \coloneqq \sum_{\boldsymbol{n} \in \mathcal{I}_N^2} u_{t_m}^{\mathsf{sca}}(\boldsymbol{y}_{\boldsymbol{n}}, r_{\mathsf{M}}) \, \mathrm{e}^{-2\pi \mathrm{i} \boldsymbol{n} \cdot \boldsymbol{\ell} / N}, \qquad \boldsymbol{\ell} \in \mathcal{I}_N^2,$$

• Non-uniform discrete Fourier transform (NDFT)

$$[\mathbf{F}_{\mathsf{NDFT}}\mathbf{f}]_{m,\ell} \coloneqq \sum_{\mathbf{k}\in\mathcal{I}_{K}^{3}} f_{\mathbf{k}} \, \mathrm{e}^{-\mathrm{i}\mathbf{x}_{\mathbf{k}}\cdot\left(R_{l_{m}}\mathbf{h}(\mathbf{y}_{\ell})\right)}, \qquad m\in\mathcal{J}_{M}, \ \ell\in\mathcal{I}_{N}^{2}$$

Discretized forward operator

$$\boldsymbol{\textit{D}}^{\text{tot}} \boldsymbol{\textit{f}} \coloneqq \boldsymbol{\textit{F}}_{\text{DFT}}^{-1}(\boldsymbol{\textit{c}} \odot \boldsymbol{\textit{F}}_{\text{NDFT}} \boldsymbol{\textit{f}}) + \mathrm{e}^{\mathrm{i} k_0 \, \prime_{\text{M}}}, \qquad \boldsymbol{\textit{f}} \in \mathbb{R}^{\kappa^d},$$

where $\boldsymbol{c} = \left[\frac{\mathrm{i}}{\kappa(\boldsymbol{y}_{\ell})} \mathrm{e}^{\mathrm{i}\,\kappa(\boldsymbol{y}_{\ell})\,\eta_{\mathrm{M}}} \left(\frac{N}{L_{\mathrm{M}}}\right)^{d-1} \left(\frac{L_{\mathrm{s}}}{K}\right)^{d}\right]_{\ell \in \mathcal{I}_{\mathrm{M}}^{2}}$

1

Reconstruction of f

Inverse

$$m{r} pprox m{F}_{ extsf{NDFT}}^{-1} ig((m{F}_{ extsf{DFT}}m{u}^{ extsf{tot}} - extsf{e}^{ extsf{i}k_0m{r}_{ extsf{M}}}ig) \oslash m{c} ig)$$

Crucial part: inversion of NDFT $\mathbf{F}_{\text{NDFT}}^{-1}$

Approach 1: Filtered Backpropagation

Idea: Compute inverse Fourier transform of $\mathcal{F}f$ restricted to the set of available data \mathcal{Y} :

$$f_{\mathrm{bp}}(\boldsymbol{x}) := (2\pi)^{-rac{3}{2}} \int_{\mathcal{Y}} \mathcal{F}f(\boldsymbol{y}) \, \mathrm{e}^{\mathrm{i} \boldsymbol{y} \cdot \boldsymbol{x}} \, \mathrm{d} \boldsymbol{y}.$$

Theorem

[Kirisits, Q, Ritsch-Marte, Scherzer, Setterqvist, Steidl 2021]

Consider the rotation R_t round axis a(t) with angle $\alpha(t)$ in $C^1[0, T]$. Then

$$f_{bp}(\mathbf{x}) = (2\pi)^{-\frac{3}{2}} \int_0^T \int_{\mathcal{B}_{k_0}} \mathcal{F}f(R_t \mathbf{h}(k_1, k_2)) e^{iR_t \mathbf{h}(k_1, k_2) \cdot \mathbf{x}} \frac{|\det \nabla \mathcal{T}(\mathbf{k}_1, \mathbf{k}_2, t)|}{\operatorname{Card} \mathcal{T}^{-1}(\mathcal{T}(k_1, k_2, t))} d(k_1, k_2) dt,$$

where $T(k_1, k_2, t) \coloneqq R_t h(k_1, k_2)$ and $\left|\det \nabla T(k_1, k_2, t)\right| = \frac{k_0}{\kappa} \left| \left((1 - \cos \alpha)(a_3 \mathbf{a}' \cdot \mathbf{h} - a_3' \mathbf{a} \cdot \mathbf{h}) - a_3 \mathbf{a} \cdot (\mathbf{a}' \times \mathbf{h}) \sin \alpha \right) - \alpha' (a_1 k_2 - a_2 k_1) + (\mathbf{a} \cdot \mathbf{h})(a_1 a_2' - a_2 k_2) \right|$

Previously known only for constant axis **a**

[Devaney 1982]

Approach 1: Filtered Backpropagation

Idea: Compute inverse Fourier transform of $\mathcal{F}f$ restricted to the set of available data \mathcal{Y} :

$$f_{\mathrm{bp}}(\boldsymbol{x}) := (2\pi)^{-\frac{3}{2}} \int_{\mathcal{Y}} \mathcal{F}f(\boldsymbol{y}) \, \mathrm{e}^{\mathrm{i} \boldsymbol{y} \cdot \boldsymbol{x}} \, \mathrm{d} \boldsymbol{y}.$$

Theorem

[Kirisits, Q, Ritsch-Marte, Scherzer, Setterqvist, Steidl 2021]

Consider the rotation R_t round axis a(t) with angle $\alpha(t)$ in $C^1[0, T]$. Then

$$f_{\rm bp}(\mathbf{x}) = (2\pi)^{-\frac{3}{2}} \int_0^T \int_{\mathcal{B}_{k_0}} \mathcal{F}f(R_t \mathbf{h}(k_1, k_2)) \, \mathrm{e}^{\mathrm{i}\,R_t \mathbf{h}(k_1, k_2) \cdot \mathbf{x}} \, \frac{|\det \nabla \mathcal{T}(\mathbf{k}_1, \mathbf{k}_2, t)|}{\operatorname{Card}\,\mathcal{T}^{-1}(\mathcal{T}(k_1, k_2, t))} \, \mathrm{d}(k_1, k_2) \, \mathrm{d}t,$$

where $T(k_1, k_2, t) \coloneqq R_t \mathbf{h}(k_1, k_2)$ and $|\det \nabla T(k_1, k_2, t)| = \frac{k_0}{\kappa} \left| \left((1 - \cos \alpha)(\mathbf{a}_3 \, \mathbf{a}' \cdot \mathbf{h} - \mathbf{a}'_3 \, \mathbf{a} \cdot \mathbf{h}) - \mathbf{a}_3 \, \mathbf{a} \cdot (\mathbf{a}' \times \mathbf{h}) \sin \alpha \right) - \alpha' (\mathbf{a}_1 \mathbf{k}_2 - \mathbf{a}_2 \mathbf{k}_1) + (\mathbf{a} \cdot \mathbf{h})(\mathbf{a}_1 \mathbf{a}'_2 - \mathbf{a}_2 \mathbf{a}'_1) \sin \alpha \right|.$

Previously known only for constant axis **a**

[Devaney 1982]

Example: Rotation Around the First Axis

Backpropagation formula $f_{bp}(\boldsymbol{x}) = (2\pi)^{-\frac{3}{2}} \int_0^T \int_{\mathcal{B}_{k_0}} \mathcal{F}f(\boldsymbol{R}_l \boldsymbol{h}(k_1, k_2)) \, \mathbf{e}^{i \, \boldsymbol{R}_l \boldsymbol{h}(k_1, k_2) \cdot \boldsymbol{x}} \, \frac{k_0 \, |k_2|}{2\kappa} \, \mathbf{d}(k_1, k_2) \, \mathbf{d}t$

Set ${\mathcal Y}$ of available data in Fourier space

Approach 2: Conjugate Gradient (CG) Method

• Conjugate Gradients (CG) on the normal equations

$$\underset{\boldsymbol{f} \in \mathbb{R}^{k^3}}{\operatorname{arg\,min}} \quad \|\boldsymbol{F}_{\mathsf{NDFT}}(\boldsymbol{f}) - \boldsymbol{g}\|_2^2$$

• NFFT (Non-uniform fast Fourier transform) for computing $F_{NDFT}(f)$ in $O(N^3 \log N)$ steps [Dutt Rokhlin 93], [Beylkin 95], [Potts Steidl Tasche 01], [Potts Kunis Keiner 04+]

Approach 3: TV (Total Variation) Regularization

• Regularized inverse

$$\underset{t \in \mathbb{R}^{K^3}}{\operatorname{arg\,min}} \qquad \chi_{\mathbb{R}^{K^3}_{\geq 0}}(f) + \tfrac{1}{2} \| \mathbf{F}_{\mathsf{NDFT}}(f) - \boldsymbol{g} \|_2^2 + \lambda \mathsf{TV}(f),$$

- Primal-dual (PD) iteration [Chambolle & Pock 2010]
- Adaptive selection of step sizes [Yokota & Hontani 2017]

Approach 2: Conjugate Gradient (CG) Method

• Conjugate Gradients (CG) on the normal equations

$$\underset{\boldsymbol{f} \in \mathbb{R}^{\kappa^3}}{\operatorname{arg\,min}} \quad \|\boldsymbol{F}_{\mathsf{NDFT}}(\boldsymbol{f}) - \boldsymbol{g}\|_2^2$$

• NFFT (Non-uniform fast Fourier transform) for computing $F_{\text{NDFT}}(f)$ in $\mathcal{O}(N^3 \log N)$ steps

[Dutt Rokhlin 93], [Beylkin 95], [Potts Steidl Tasche 01], [Potts Kunis Keiner 04+]

Approach 3: TV (Total Variation) Regularization

• Regularized inverse

$$\underset{\textbf{\textit{f}} \in \mathbb{R}^{K^3}}{\arg\min} \qquad \chi_{\mathbb{R}^{K^3}_{\geq 0}}(\textbf{\textit{f}}) + \tfrac{1}{2} \|\textbf{\textit{F}}_{\text{NDFT}}(\textbf{\textit{f}}) - \textbf{\textit{g}}\|_2^2 + \lambda \mathsf{TV}(\textbf{\textit{f}}),$$

- Primal-dual (PD) iteration [Chambolle & Pock 2010]
- Adaptive selection of step sizes [Yokota & Hontani 2017]

Test Setup

- Normalized wavelength $1 \Rightarrow k_0 = 2\pi$
- Test function *f* given analytically
- Simulate data via convolution with the Green function (also based on Born approximation) to avoid the "inverse crime"
- "missing cones" around the axis of rotation

Simulated data: Fourier transform $|\mathcal{F}f|$ at 496944 nodes (constant rotation axis)

Reconstruction: Moving Axis

Ground truth f(240 × 240 × 240 grid)

Backpropagation PSNR 24.17, SSIM 0.171 CG Reconstruction PSNR 35.84, SSIM 0.962 PD with TV ($\lambda = 0.02$) PSNR 40.95, SSIM 0.972

R Beinert, M Quellmalz.

Total Variation-Based Reconstruction and Phase Retrieval for Diffraction Tomography with an Arbitrarily Moving Object.

Arxiv preprint 2210.03495

Reconstruction: Moving Axis and 5 % Gaussian Noise

Ground truth f

Backpropagation PSNR 21.19, SSIM 0.075 CG Reconstruction PSNR 24.10, SSIM 0.193 PD with TV ($\lambda = 0.05$) PSNR 38.01, SSIM 0.772

Content

1 Introduction

2 Reconstruction of the object

3 Reconstructing the motion

Formal Uniqueness Result

Theorem

[Kurlberg Zickert 2021]

Let

- the matrix of second-order moments of *f* have distinct, real eigenvalues,
- certain third-order moments do not vanish,
- the translation **d**_t be restricted to a known plane,
- the rotations R_t cover SO(3).

Then f is uniquely determined given the diffraction images u_t for all (unknown) motions.

Our goal: Find an algorithm to recover the rotations and translations

Detection of the Rotation

Goal: Estimate the rotation R_t from the transformed measurements $\nu_t(\mathbf{k}) = |\mathcal{F}f(R_t \mathbf{h}(\mathbf{k}))|^2$

Common circle approach:

- For each t we have the Fourier data $\mathcal{F}f$ on one semisphere
- $\bullet\,$ Two semispheres intersect in a circle (arc), where $\mathcal{F}f$ must agree
- Find the common circle of two semispheres

P Elbau, M Quellmalz, O Scherzer, G Steidl.

Motion detection in diffraction tomography with common circle methods.

Arxiv preprint 2209.08086

Common Circles

Theorem

[Q. Elbau Scherzer Steidl 2022]

Let $t, s \in [0, T]$ such that there uniquely exist two curves

$$\begin{split} \boldsymbol{\gamma}_{s,t}(\beta) &= \frac{k_0}{2}\sin\theta\left(\cos\beta - 1\right) \begin{pmatrix} \cos\varphi\\\sin\varphi \end{pmatrix} + k_0\cos\frac{\theta}{2}\sin\beta\begin{pmatrix} -\sin\varphi\\\cos\varphi \end{pmatrix}\\ \boldsymbol{\gamma}_{t,s}(\beta) &= \frac{k_0}{2}\sin\theta\left(\cos\beta - 1\right) \begin{pmatrix} -\cos\psi\\\sin\psi \end{pmatrix} + k_0\cos\frac{\theta}{2}\sin\beta\begin{pmatrix} -\sin\varphi\\-\cos\varphi \end{pmatrix} \end{split}$$

with some parameters $\varphi,\psi\in\mathbb{R}/(2\pi\mathbb{Z}),\,\theta\in[0,\pi]$ such that

$$\nu_s \circ \boldsymbol{\gamma}_{s,t}(\beta) = \nu_t \circ \boldsymbol{\gamma}_{t,s}(-\beta), \qquad |\beta| < \pi.$$

Then the rotation $R_s^{\top} R_t$ has the Euler angles φ, θ, ψ .

Dual Common Circles

- *f* real-valued (no absorption)
- Additional symmetry $\mathcal{F}f(\mathbf{y}) = \overline{\mathcal{F}f(-\mathbf{y})}$
- Additional pair of dual common circles

$$\begin{split} \check{\boldsymbol{\gamma}}_{s,t}(\beta) &= -\frac{k_0}{2}\sin\theta\left(\cos\beta - 1\right) \begin{pmatrix} \cos\varphi\\\sin\varphi \end{pmatrix} + k_0\sin\frac{\theta}{2}\sin\beta\begin{pmatrix} -\sin\varphi\\\cos\varphi \end{pmatrix}\\ \check{\boldsymbol{\gamma}}_{t,s}(\beta) &= -\frac{k_0}{2}\sin\theta\left(\cos\beta - 1\right) \begin{pmatrix} -\cos\psi\\\sin\psi \end{pmatrix} + k_0\sin\frac{\theta}{2}\sin\beta\begin{pmatrix} -\sin\varphi\\-\cos\varphi \end{pmatrix} \end{split}$$

Visualization of the Arcs

Infinitesimal Common Circles Method

Theorem

[Q. Elbau Scherzer Steidl 2022]

Let the rotation $R \in C^1([0, T] \to SO(3))$ and $t \in (0, T)$. We define the associated **angular velocity** as the vector $\omega_t \in \mathbb{R}^3$ satisfying

$$\mathbf{R}_t^{\top} \mathbf{R}_t' \, \mathbf{y} = \boldsymbol{\omega}_t \times \mathbf{y}, \qquad \mathbf{y} \in \mathbb{R}^3.$$

and write it in cylinder coordinates

$$\boldsymbol{\omega}_t = \begin{pmatrix} \rho_t \boldsymbol{\varphi}_t \\ \zeta_t \end{pmatrix}, \qquad \boldsymbol{\varphi}_t = \begin{pmatrix} \cos \varphi_t \\ \sin \varphi_t \end{pmatrix} \in \mathbb{S}^1,$$

Then, for all $r \in (-k_0, k_0)$, it holds that

$$- \partial_t \nu_t(r\varphi_t) = \left(\rho(t) \left(\sqrt{k_0^2 - r^2} - k_0\right) + r\zeta_t\right) \left\langle \nabla \nu_t(r\varphi_t), \begin{pmatrix} -\sin\varphi_t \\ \cos\varphi_t \end{pmatrix} \right\rangle$$

Motion Detection in Diffraction Tomography | Michael Quellmalz | 20 October 2022

Reconstructing the Translation

Recall: Data $\mu_t(k_1, k_2) = \mathcal{F}f(\mathbf{R}_t \mathbf{h}(k_1, k_2)) e^{-i\langle \mathbf{d}_t, \mathbf{h}(k_1, k_2) \rangle}$

Theorem

[Q. Elbau Scherzer Steidl 2022]

Let $s, t \in [0, T]$ be such that $R_s e^3 \neq \pm R_t e^3$ and let $t \ge 0$ with $t \ne 0$.

If $\boldsymbol{d}_0 = \boldsymbol{0}$, then \boldsymbol{d}_t can be uniquely reconstructed from the two equations:

$$e^{i\langle R_t \boldsymbol{d}_t - R_s \boldsymbol{d}_s, \boldsymbol{\sigma}_{s,t}(\beta) \rangle} = \frac{\mu_s(\boldsymbol{\gamma}_{s,t}(\beta))}{\mu_t(\boldsymbol{\gamma}_{t,s}(-\beta))}, \qquad \beta \in [-\pi, \pi], \ \mu_s(\boldsymbol{\gamma}_{s,t}(\beta)) \neq 0,$$

and

$$\mathsf{e}^{\mathsf{i}\langle \mathsf{R}_t \boldsymbol{d}_t - \mathsf{R}_s \boldsymbol{d}_s, \check{\boldsymbol{\sigma}}_{s,t}(\beta) \rangle} = \frac{\mu_s(\check{\boldsymbol{\gamma}}_{s,t}(\beta))}{\mu_t(\check{\boldsymbol{\gamma}}_{t,s}(\beta))}, \qquad \beta \in [-\pi, \pi], \ \mu_s(\check{\boldsymbol{\gamma}}_{s,t}(\beta)) \neq 0$$

Similar reconstruction result for $R_s e^3 = \pm R_t e^3$

Comparision with CT

Method of common lines in Cryo-EM

[Crowther DeRosier Klug 70] [van Heel 87] [Goncharov 88] [Wang Singer Zen 13]

- Based on different model (ray transform)
- Requires 3 common planes (instead of 2 semi-spheres)
- Ambiguities (mirroring, translation along imaging direction)

Images by [Schmutz 17]

Numerical Simulation: Test Functions (3D)

Cell phantom

Shepp-Logan phantom

Numerical Simulation: Results

The rotation is around the moving axis $(\sqrt{1-a^2}\cos(b\sin(t/2)), \sqrt{1-a^2}\sin(b\sin(t/2)), a) \in \mathbb{S}^2$ for a = 0.28 and b = 0.5. The translation is $d_t = 2(\sin t, \sin t, \sin t)$. Left: cell phantom. Right: Shepp-Logan phantom.

Reconstructed Scattering Potential f

Conclusions

- Fourier diffraction theorem on $L^{\rho}(\mathcal{B}_{r_{s}})$, p > 1
- Backpropagation formula for arbitrary rotations
- Compared image reconstruction methods
 - Backpropagation is faster
 - Conjugate Gradients and Primal-Dual show better results
- Detection of rotation is usually possible
- Detection of translation is possible

Future research

- Application to real-world data
- Combining motion detection with phase retrieval

Thank you for your attention!

Conclusions

- Fourier diffraction theorem on $L^{\rho}(\mathcal{B}_{r_{s}})$, p > 1
- Backpropagation formula for arbitrary rotations
- Compared image reconstruction methods
 - Backpropagation is faster
 - Conjugate Gradients and Primal-Dual show better results
- Detection of rotation is usually possible
- Detection of translation is possible

Future research

- Application to real-world data
- Combining motion detection with phase retrieval

Thank you for your attention!

Conclusions

- Fourier diffraction theorem on $L^{\rho}(\mathcal{B}_{r_{s}})$, p > 1
- Backpropagation formula for arbitrary rotations
- Compared image reconstruction methods
 - Backpropagation is faster
 - Conjugate Gradients and Primal-Dual show better results
- Detection of rotation is usually possible
- Detection of translation is possible

Future research

- Application to real-world data
- Combining motion detection with phase retrieval

Thank you for your attention!