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Background

Forward PDE problems: Given the PDE, including its coefficients, and
all boundary/initial data, find its solution everywhere.

Inverse problem: Given the solution to the PDE on the boundary, for
various choices of boundary data, frequencies, times, find the
coefficients.

Reduced Order Models (ROMs) for forward problems: If e.g. PDE is
linear, find a low dimensional matrix that acts like the differential
operator.

Model reduction theory is a large field, but only recently have data
driven ROMs been used for inverse problems.
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Framework

Find ROM that matches a given set of data exactly.

Orthogonalization allows one to realize the ROM as a sparse discrete
network (in 1-d , a three point finite difference scheme).

The discrete network implicitly maps the boundary data back into the
interior.

The ROM can also be viewed as a Galerkin method.

Due to sparsity, the basis functions depend only very weakly on the
coefficients. (Druskin et. al. 2016)

(Borcea, Druskin, Mamonov, Zaslavsky, M 2020) Produce a data
generated internal solution.

(Druskin, Zaslavsky, M 2021) Use data generated internal solution in
a Lippmann-Schwinger formulation.

Recent work LS in time domain (Borcea et. al 2022 archived)
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Time domain SISO problem

utt + Au = 0 in Ω× [0,∞) (1)

u(t = 0) = g in Ω (2)

ut(t = 0) = 0 in Ω (3)

where
A = A0 + q (4)

A0 ≥ 0 is known background, (for example A0 = −∆),

q(x) ≥ 0 is our unknown potential

initial data g is localized (approximate delta) source

assume homogeneous Neumann boundary conditions on the spatial
boundary ∂Ω.
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Time domain SISO problem

The exact forward solution to (1) is

u(x , t) = cos (
√
At)g(x). (5)

We measure data at the source (modeled by integration against g) for
2n − 2 evenly spaced time steps t = kτ

F (kτ) =

∫
Ω
g(x) cos (

√
Akτ)g(x)dx . (6)

The inverse problem is as follows: Given

{F (kτ)} for k = 0, . . . , 2n − 2,

reconstruct q.
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Time domain SISO problem

If uk = u(kτ, x) for k = 0, . . . , 2n − 2 are the true snapshots,

then the n × n mass matrix k , l = 0, . . . , n − 1

Mkl =

∫
Ω
ukuldx (7)

from (6)

Mkl =

∫
Ω
g(x) cos (

√
Akτ) cos (

√
Alτ)g(x)dx , (8)

from the cosine angle sum formula

Mkl =
1

2
(F ((k − l)τ) + F ((k + l)τ)) , (9)

M can be obtained directly from the data.
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Time domain SISO problem

M is positive definite, compute its Cholesky decomposition

M = U>U

where U is upper triangular.

Define ~u to be a row vector of the first n snapshots
(k = 0, . . . , n − 1), and set

vk =
∑
l

ulU
−1
lk . (10)

. The functions {vk} will be orthonormal in the L2 norm
(Gram-Schmidt).
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Time domain SISO problem

We do not know the snapshots, but from the data we know the
transformation that orthogonalizes them sequentially.

It was first noticed in (Druskin et. al. 2016) that these
orthogonalized snapshots depend very weakly on q.

This is because we start with a local source, orthogonalize
sequentially, reflections overlap with previous times.

So do all of the above for the known background problem

S. Moskow (Drexel University) L-S-L for inverse scattering Johann Radon Institute October 17, 2022 8 / 39



Time domain SISO problem

We do not know the snapshots, but from the data we know the
transformation that orthogonalizes them sequentially.

It was first noticed in (Druskin et. al. 2016) that these
orthogonalized snapshots depend very weakly on q.

This is because we start with a local source, orthogonalize
sequentially, reflections overlap with previous times.

So do all of the above for the known background problem

S. Moskow (Drexel University) L-S-L for inverse scattering Johann Radon Institute October 17, 2022 8 / 39



Time domain SISO problem

We do not know the snapshots, but from the data we know the
transformation that orthogonalizes them sequentially.

It was first noticed in (Druskin et. al. 2016) that these
orthogonalized snapshots depend very weakly on q.

This is because we start with a local source, orthogonalize
sequentially, reflections overlap with previous times.

So do all of the above for the known background problem

S. Moskow (Drexel University) L-S-L for inverse scattering Johann Radon Institute October 17, 2022 8 / 39



Time domain SISO problem

We do not know the snapshots, but from the data we know the
transformation that orthogonalizes them sequentially.

It was first noticed in (Druskin et. al. 2016) that these
orthogonalized snapshots depend very weakly on q.

This is because we start with a local source, orthogonalize
sequentially, reflections overlap with previous times.

So do all of the above for the known background problem

S. Moskow (Drexel University) L-S-L for inverse scattering Johann Radon Institute October 17, 2022 8 / 39



Time domain SISO problem

Background exact solution

u0(x , t) = cos (
√
A0t)g(x). (11)

and snapshots {u0
j }

mass matrix

M0
kl =

∫
Ω
u0
ku

0
l dx , (12)

Cholesky decomposition

M0 = (U0)>U0,

orthogonalized background snapshots

~v0 = ~u0(U0)−1. (13)
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Time domain SISO problem

Crucial step:
~v ≈ ~v0. (14)

From (10) and (14) we have that the true snapshots

~u = ~vU

≈ ~v0U.

Definition of our data generated snapshots

~u := ~v0U

= ~u0(U0)−1U. (15)
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Figure: Data generated internal snapshots
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Lippmann-Schwinger-Lanczos equation

Time domain Lippmann-Schwinger

F0(kτ)− F (kτ) =

∫ kτ

0

∫
Ω
u0(x , kτ − t)u(x , t)q(x)dxdt. (16)

Use data generated internal solution (interpolated in time)

F0(kτ)− F (kτ) =

∫ kτ

0

∫
Ω
u0(x , kτ − t)u(x , t)q(x)dxdt (17)
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Spectral domain SISO problem

Find u such that

−u′′ + q(x)u + λu = 0 for x on (0, 1)

−u′(0) = 1

u(1) = 0

Define the transfer function F (λ) := u(0;λ).

Consider the inverse problem: Given {F (λ),F ′(λ) : λ = b1, . . . bm} ,
find q(x)
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Spectral domain SISO problem.

Consider the inverse problem: Given {F (λ),F ′(λ) : λ = b1, . . . bm} ,
find q(x)

Given 2m spectral data values to reconstruct q(x)

Can do a modified version of what follows for other forms of spectral
data

We will construct a ROM that matches this data exactly
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Spectral domain SISO

Consider exact solutions to above u1, . . . , um corresponding to
spectral points λ = b1, . . . bm. and the subspace

G = span{u1, . . . , um}

Although we do not know these solutions, we can obtain the Galerkin
system (ROM) from the data

Given by the mass and stiffness matrices

Mij =

∫ 1

0
uiuj

and

Sij =

∫ 1

0
u′iu
′
j +

∫ 1

0
quiuj .
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They are given by the formulas

Mij =
F (λi )− F (λj)

λj − λi
, Mii = −dF

dλ
(λi ). (18)

and

Sij =
F (λj)λj − F (λi )λi

λj − λi
, Sii =

d(λF )

dλ
(λi ). (19)
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Spectral domain SISO

Spectral snapshots are not like in the time domain, will not
orthogonalize in the same way sequentially.

Here we orthogonalize by using the Lanczos algorithm explicitly

It is Gram-Schmidt using the M inner product (L2) on the Krylov
subspaces generated by powers of A = M−1S and initial vector M−1b
(projection of a delta function source onto G ).

in the new basis A is tridiagonal

These Krylov subspaces are the same as those generated by time
snapshots corresponding to the ROM!
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Spectral domain SISO

That is, if d ∈ Rm satisfies the Galerkin problem

Sd(t) + Md(t)tt = 0, d(0) = b, dt t=0 = 0,

which is a time-domain (the wave) variant of the ROM.

Then d(τ i) satisfy the second order finite-difference scheme

d [τ(i + 1)] = (2I − τA)d [τ i ]− d [τ(i − 1)], i = i , . . . ,m − 1,

d(0) = M−1b, d(τ) = d(−τ)

where A = M−1S .

span{d(τ i)} are the same as the above Krylov subspaces w/ powers
of A.
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Spectral domain SISO

So the entries of this orthogonalized reduced order model (which can
be obtained from the data) are the entries of the stiffness matrix

Ŝij =

∫
û′i û
′
j +

∫ 1

0
qûi ûj

and the mass matrix

M̂ij =

∫
ûi ûj .

correspond to orthogonalized projected time snapshots, which depend
only very weakly on the coefficient .
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Weak dependence of orthogonalized bases on q
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A one-dimensional example: Inversion

From the data, we have a Galerkin system (low dimensional reduced
order model) for the internal solution for any spectral value.

From the reference medium, we have a highly accurate approximation
to the orthogonalized basis.

By solving the Galerkin system, we get the coefficients

This yields boundary data generated internal solutions
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Internal solution

Internal solution for arbitrarily chosen spectral value λ = 3 generated from
data.
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Spectral domain MIMO

For higher dimensional problems, we can use multiple k
sources/receivers:

−∆uri + q(x)uri + biu
r
i = 0 in Ω (20)

∂uri
∂ν

= gr on ∂Ω

”source” (Neumann data) gr and spectral value bi

Now spectral data is in the form of a k × k block

F i
rl := Frl(bi ) =

∫
∂Ω

uri gl

and

DF i
rl :=

dFrl
dλ

(λ)|λ=bi
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Spectral domain MIMO

Galerkin system generation with basis of exact solutions

Sirjl + biMirjl = F j
lr

is again obtained directly from boundary data :

Mirjl =
F j
lr − F i

lr

bi − bj
, (21)

Miril = −DF i
lr , (22)

Sirjl =
bjF

j
lr − biF

i
lr

bj − bi
, (23)

and
Siril = (λFrl)

′(bi ). (24)
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Lippmann-Schwinger Lanczos approach

other ways to use ROM to reconstruct - recently for hyperbolic time
domain

Druskin, V. , Mamonov, A. and Zaslavsky, M., A nonlinear method
for imaging with acoustic waves via reduced order model
backprojection, SIAM Journal on Imaging Sciences, (2018).

Borcea, L., Druskin, V., and Mamonov, A., Zaslavsky, M. and
Zimmerling, J., Reduced Order Model Approach to Inverse
Scattering, SIAM Journal on Imaging Sciences, (2020).

A natural way that uses internal solutions - in the
Lippmann-Schwinger equation

Adds versatility , computationally simple
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Spectral domain Lippmann-Schwinger Lanczos approach

Consider the Lippmann-Schwinger equation

u − u0 =

∫
Ω
G (q − q0)u (25)

Integrating both sides against the Neumann data g (and integration
by parts) , one has

F0 − F =

∫
Ω
uu0(q − q0) (26)

For inverse Born one would replace u by u0

With data generated ROM u with its data generated internal solution.
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Spectral domain Lippman-Schwinger Lanczos approach

Figure: Lippmann Schwinger Lanczos: Reconstruction of 1-d medium. Two
sources total; one on each side, and four spectral values.
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Spectral domain Lippman-Schwinger Lanczos approach

Figure: Experiment 1: True medium (top left) and its reconstructions using
’Cheated IE’ (top right), Born linearization (bottom left) and our approach
(bottom right)
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Spectral domain Lippman-Schwinger Lanczos approach

Figure: Experiment 2: True medium (top left) and its reconstructions using
’Cheated IE’ (top right), Born linearization (bottom left) and our approach
(bottom right)
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Spectral domain Lippman-Schwinger Lanczos approach

Figure: Experiment 3: True medium (top left) and its reconstructions using
’Cheated IE’ (top right), Born linearization (bottom left) and our approach
(bottom right)
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symmetric data: Lippman-Schwinger Lanczos approach

Figure: Experiment 1: True medium (top left) and its reconstructions using
’Cheated IE’ (top right), Born linearization (bottom left) and our approach
(bottom right)
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Non-symmetric data: Lippman-Schwinger Lanczos
approach

Figure: Experiment 1: True medium (top left) and its reconstructions using
’Cheated IE’ (top right), Born linearization (bottom left) and our approach
(bottom right)
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Time domain MIMO problem

utt + Au = 0 in Ω× [0,∞) (27)

u(t = 0) = g in Ω (28)

ut(t = 0) = 0 in Ω (29)

operator A = A0 + q. Source/receivers modeled by {gj}, data

F ji (kτ) =

∫
Ω
gj(x) cos (

√
Akτ)gi (x)dx , (30)

receiver j from source i at time kτ .
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Time domain MIMO problem

Mass tensor can again be obtained by the extension of (9) to blocks

Block Cholesky (with m ×m blocks) decomposition,

M = U>U

where U is block upper triangular.

Orthogonalized basis
~v = ~uU−1.

similar decomposition/orthogonalization for the background mass
matrix

M0 = (U0)>U0, ~v0 = ~u0(U0)−1

data generated internal solutions directly

~u = ~u0(U0)−1U.
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Time domain multistatic problem

series of single input/single output (SISO) responses due to moving
collocated sources and receivers (SAR model)

In this case we don’t have full MIMO data matrix (only the diagonal)

ROMs are constructed to match the data for each source-receiver pair
separately,

The data from different locations is then coupled via the approximate
Lippmann-Schwinger (LSL)
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Time domain multistatic 2.5 D

Figure: 2-D varying medium in. 3-D
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Conclusions

Time domain mass matrix gives orthogonalization of time snapshots
sequentially

Spectral domain data, full ROM and Lanczos orthogonalize projected
time steps

In both cases the new basis is close to that from reference medium.

Can use the reference medium basis to obtain approximations of
internal solutions from data

Lippmann-Schwinger Lanczos approach of using internal solutions in
the integral is fast, accurate and extendable to more general data sets.

Reconstructions can be improved with iteration (recent work Borcea
et. al).
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