Lippman-Schwinger-Lanczos algorithm for inverse scattering problems.

L. Borcea ${ }^{1} \quad$ V. Druskin ${ }^{2}$ A. Mamonov ${ }^{3}$ S. Moskow ${ }^{4}$ M. Zaslavsky ${ }^{5}$
${ }^{1}$ University of Michigan ${ }^{2}$ WPI
${ }^{3}$ University of Houston
${ }^{4}$ Drexel University
${ }^{5}$ Schlumberger-Doll Research

October 17, 2022

Background

Background

- Forward PDE problems: Given the PDE, including its coefficients, and all boundary/initial data, find its solution everywhere.

Background

- Forward PDE problems: Given the PDE, including its coefficients, and all boundary/initial data, find its solution everywhere.
- Inverse problem: Given the solution to the PDE on the boundary, for various choices of boundary data, frequencies, times, find the coefficients.

Background

- Forward PDE problems: Given the PDE, including its coefficients, and all boundary/initial data, find its solution everywhere.
- Inverse problem: Given the solution to the PDE on the boundary, for various choices of boundary data, frequencies, times, find the coefficients.
- Reduced Order Models (ROMs) for forward problems: If e.g. PDE is linear, find a low dimensional matrix that acts like the differential operator.

Background

- Forward PDE problems: Given the PDE, including its coefficients, and all boundary/initial data, find its solution everywhere.
- Inverse problem: Given the solution to the PDE on the boundary, for various choices of boundary data, frequencies, times, find the coefficients.
- Reduced Order Models (ROMs) for forward problems: If e.g. PDE is linear, find a low dimensional matrix that acts like the differential operator.
- Model reduction theory is a large field, but only recently have data driven ROMs been used for inverse problems.

Framework

- Find ROM that matches a given set of data exactly.

Framework

- Find ROM that matches a given set of data exactly.
- Orthogonalization allows one to realize the ROM as a sparse discrete network (in 1-d, a three point finite difference scheme).

Framework

- Find ROM that matches a given set of data exactly.
- Orthogonalization allows one to realize the ROM as a sparse discrete network (in 1-d, a three point finite difference scheme).
- The discrete network implicitly maps the boundary data back into the interior.

Framework

- Find ROM that matches a given set of data exactly.
- Orthogonalization allows one to realize the ROM as a sparse discrete network (in 1-d, a three point finite difference scheme).
- The discrete network implicitly maps the boundary data back into the interior.
- The ROM can also be viewed as a Galerkin method.

Framework

- Find ROM that matches a given set of data exactly.
- Orthogonalization allows one to realize the ROM as a sparse discrete network (in 1-d, a three point finite difference scheme).
- The discrete network implicitly maps the boundary data back into the interior.
- The ROM can also be viewed as a Galerkin method.
- Due to sparsity, the basis functions depend only very weakly on the coefficients. (Druskin et. al. 2016)

Framework

- Find ROM that matches a given set of data exactly.
- Orthogonalization allows one to realize the ROM as a sparse discrete network (in 1-d, a three point finite difference scheme).
- The discrete network implicitly maps the boundary data back into the interior.
- The ROM can also be viewed as a Galerkin method.
- Due to sparsity, the basis functions depend only very weakly on the coefficients. (Druskin et. al. 2016)
- (Borcea, Druskin, Mamonov, Zaslavsky, M 2020) Produce a data generated internal solution.

Framework

- Find ROM that matches a given set of data exactly.
- Orthogonalization allows one to realize the ROM as a sparse discrete network (in 1-d, a three point finite difference scheme).
- The discrete network implicitly maps the boundary data back into the interior.
- The ROM can also be viewed as a Galerkin method.
- Due to sparsity, the basis functions depend only very weakly on the coefficients. (Druskin et. al. 2016)
- (Borcea, Druskin, Mamonov, Zaslavsky, M 2020) Produce a data generated internal solution.
- (Druskin, Zaslavsky, M 2021) Use data generated internal solution in a Lippmann-Schwinger formulation.

Framework

- Find ROM that matches a given set of data exactly.
- Orthogonalization allows one to realize the ROM as a sparse discrete network (in 1-d, a three point finite difference scheme).
- The discrete network implicitly maps the boundary data back into the interior.
- The ROM can also be viewed as a Galerkin method.
- Due to sparsity, the basis functions depend only very weakly on the coefficients. (Druskin et. al. 2016)
- (Borcea, Druskin, Mamonov, Zaslavsky, M 2020) Produce a data generated internal solution.
- (Druskin, Zaslavsky, M 2021) Use data generated internal solution in a Lippmann-Schwinger formulation.
- Recent work LS in time domain (Borcea et. al 2022 archived)

Time domain SISO problem

$$
\begin{align*}
u_{t t}+A u & =0 \text { in } \Omega \times[0, \infty) \tag{1}\\
u(t=0) & =g \text { in } \Omega \tag{2}\\
u_{t}(t=0) & =0 \text { in } \Omega \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
A=A_{0}+q \tag{4}
\end{equation*}
$$

- $A_{0} \geq 0$ is known background, (for example $A_{0}=-\Delta$),
- $q(x) \geq 0$ is our unknown potential
- initial data g is localized (approximate delta) source
- assume homogeneous Neumann boundary conditions on the spatial boundary $\partial \Omega$.

Time domain SISO problem

- The exact forward solution to (1) is

$$
\begin{equation*}
u(x, t)=\cos (\sqrt{A} t) g(x) . \tag{5}
\end{equation*}
$$

Time domain SISO problem

- The exact forward solution to (1) is

$$
\begin{equation*}
u(x, t)=\cos (\sqrt{A} t) g(x) \tag{5}
\end{equation*}
$$

- We measure data at the source (modeled by integration against g) for $2 n-2$ evenly spaced time steps $t=k \tau$

$$
\begin{equation*}
F(k \tau)=\int_{\Omega} g(x) \cos (\sqrt{A} k \tau) g(x) d x \tag{6}
\end{equation*}
$$

Time domain SISO problem

- The exact forward solution to (1) is

$$
\begin{equation*}
u(x, t)=\cos (\sqrt{A} t) g(x) \tag{5}
\end{equation*}
$$

- We measure data at the source (modeled by integration against g) for $2 n-2$ evenly spaced time steps $t=k \tau$

$$
\begin{equation*}
F(k \tau)=\int_{\Omega} g(x) \cos (\sqrt{A} k \tau) g(x) d x \tag{6}
\end{equation*}
$$

- The inverse problem is as follows: Given

$$
\{F(k \tau)\} \text { for } k=0, \ldots, 2 n-2
$$

reconstruct q.

Time domain SISO problem

- If $u_{k}=u(k \tau, x)$ for $k=0, \ldots, 2 n-2$ are the true snapshots,

Time domain SISO problem

- If $u_{k}=u(k \tau, x)$ for $k=0, \ldots, 2 n-2$ are the true snapshots,
- then the $n \times n$ mass matrix $k, I=0, \ldots, n-1$

$$
\begin{equation*}
M_{k l}=\int_{\Omega} u_{k} u_{l} d x \tag{7}
\end{equation*}
$$

from (6)

$$
\begin{equation*}
M_{k l}=\int_{\Omega} g(x) \cos (\sqrt{A} k \tau) \cos (\sqrt{A} / \tau) g(x) d x \tag{8}
\end{equation*}
$$

Time domain SISO problem

- If $u_{k}=u(k \tau, x)$ for $k=0, \ldots, 2 n-2$ are the true snapshots,
- then the $n \times n$ mass matrix $k, l=0, \ldots, n-1$

$$
\begin{equation*}
M_{k l}=\int_{\Omega} u_{k} u_{l} d x \tag{7}
\end{equation*}
$$

from (6)

$$
\begin{equation*}
M_{k l}=\int_{\Omega} g(x) \cos (\sqrt{A} k \tau) \cos (\sqrt{A} / \tau) g(x) d x \tag{8}
\end{equation*}
$$

- from the cosine angle sum formula

$$
\begin{equation*}
M_{k l}=\frac{1}{2}(F((k-l) \tau)+F((k+I) \tau)) \tag{9}
\end{equation*}
$$

M can be obtained directly from the data.

Time domain SISO problem

- M is positive definite, compute its Cholesky decomposition

$$
M=U^{\top} U
$$

where U is upper triangular.

Time domain SISO problem

- M is positive definite, compute its Cholesky decomposition

$$
M=U^{\top} U
$$

where U is upper triangular.

- Define \vec{u} to be a row vector of the first n snapshots $(k=0, \ldots, n-1)$, and set

$$
\begin{equation*}
v_{k}=\sum_{l} u_{l} U_{l k}^{-1} \tag{10}
\end{equation*}
$$

Time domain SISO problem

- M is positive definite, compute its Cholesky decomposition

$$
M=U^{\top} U
$$

where U is upper triangular.

- Define \vec{u} to be a row vector of the first n snapshots ($k=0, \ldots, n-1$), and set

$$
\begin{equation*}
v_{k}=\sum_{l} u_{l} U_{l k}^{-1} \tag{10}
\end{equation*}
$$

- . The functions $\left\{v_{k}\right\}$ will be orthonormal in the L^{2} norm (Gram-Schmidt).

Time domain SISO problem

- We do not know the snapshots, but from the data we know the transformation that orthogonalizes them sequentially.

Time domain SISO problem

- We do not know the snapshots, but from the data we know the transformation that orthogonalizes them sequentially.
- It was first noticed in (Druskin et. al. 2016) that these orthogonalized snapshots depend very weakly on q.

Time domain SISO problem

- We do not know the snapshots, but from the data we know the transformation that orthogonalizes them sequentially.
- It was first noticed in (Druskin et. al. 2016) that these orthogonalized snapshots depend very weakly on q.
- This is because we start with a local source, orthogonalize sequentially, reflections overlap with previous times.

Time domain SISO problem

- We do not know the snapshots, but from the data we know the transformation that orthogonalizes them sequentially.
- It was first noticed in (Druskin et. al. 2016) that these orthogonalized snapshots depend very weakly on q.
- This is because we start with a local source, orthogonalize sequentially, reflections overlap with previous times.
- So do all of the above for the known background problem

Time domain SISO problem

- Background exact solution

$$
\begin{equation*}
u^{0}(x, t)=\cos \left(\sqrt{A_{0}} t\right) g(x) \tag{11}
\end{equation*}
$$

and snapshots $\left\{u_{j}^{0}\right\}$

- mass matrix

$$
\begin{equation*}
M_{k l}^{0}=\int_{\Omega} u_{k}^{0} u_{l}^{0} d x \tag{12}
\end{equation*}
$$

- Cholesky decomposition

$$
M^{0}=\left(U^{0}\right)^{\top} U^{0},
$$

- orthogonalized background snapshots

$$
\begin{equation*}
\vec{v}^{0}=\vec{u}^{0}\left(U^{0}\right)^{-1} . \tag{13}
\end{equation*}
$$

Time domain SISO problem

- Crucial step:

$$
\begin{equation*}
\vec{v} \approx \vec{v}^{0} \tag{14}
\end{equation*}
$$

Time domain SISO problem

- Crucial step:

$$
\begin{equation*}
\vec{v} \approx \vec{v}^{0} . \tag{14}
\end{equation*}
$$

- From (10) and (14) we have that the true snapshots

$$
\begin{aligned}
\vec{u} & =\vec{v} U \\
& \approx \vec{v}^{0} U .
\end{aligned}
$$

Time domain SISO problem

- Crucial step:

$$
\begin{equation*}
\vec{v} \approx \vec{v}^{0} . \tag{14}
\end{equation*}
$$

- From (10) and (14) we have that the true snapshots

$$
\begin{aligned}
\vec{u} & =\vec{v} U \\
& \approx \vec{v}^{0} U .
\end{aligned}
$$

- Definition of our data generated snapshots

$$
\begin{align*}
\overrightarrow{\mathbf{u}} & :=\vec{v}^{0} U \\
& =\vec{u}^{0}\left(U^{0}\right)^{-1} U . \tag{15}
\end{align*}
$$

Figure: Data generated internal snapshots

Lippmann-Schwinger-Lanczos equation

- Time domain Lippmann-Schwinger

$$
\begin{equation*}
F_{0}(k \tau)-F(k \tau)=\int_{0}^{k \tau} \int_{\Omega} u_{0}(x, k \tau-t) u(x, t) q(x) d x d t \tag{16}
\end{equation*}
$$

Lippmann-Schwinger-Lanczos equation

- Time domain Lippmann-Schwinger

$$
\begin{equation*}
F_{0}(k \tau)-F(k \tau)=\int_{0}^{k \tau} \int_{\Omega} u_{0}(x, k \tau-t) u(x, t) q(x) d x d t \tag{16}
\end{equation*}
$$

- Use data generated internal solution (interpolated in time)

$$
\begin{equation*}
F_{0}(k \tau)-F(k \tau)=\int_{0}^{k \tau} \int_{\Omega} u_{0}(x, k \tau-t) \mathbf{u}(x, t) q(x) d x d t \tag{17}
\end{equation*}
$$

Spectral domain SISO problem

- Find u such that

$$
\begin{aligned}
-u^{\prime \prime}+q(x) u+\lambda u & =0 \text { for } x \text { on }(0,1) \\
-u^{\prime}(0) & =1 \\
u(1) & =0
\end{aligned}
$$

- Define the transfer function $F(\lambda):=u(0 ; \lambda)$.
- Consider the inverse problem: Given $\left\{F(\lambda), F^{\prime}(\lambda): \lambda=b_{1}, \ldots b_{m}\right\}$, find $q(x)$

Spectral domain SISO problem.

- Consider the inverse problem: Given $\left\{F(\lambda), F^{\prime}(\lambda): \lambda=b_{1}, \ldots b_{m}\right\}$, find $q(x)$
- Given $2 m$ spectral data values to reconstruct $q(x)$
- Can do a modified version of what follows for other forms of spectral data
- We will construct a ROM that matches this data exactly

Spectral domain SISO

- Consider exact solutions to above u_{1}, \ldots, u_{m} corresponding to spectral points $\lambda=b_{1}, \ldots b_{m}$. and the subspace

$$
G=\operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}
$$

- Although we do not know these solutions, we can obtain the Galerkin system (ROM) from the data
- Given by the mass and stiffness matrices

$$
M_{i j}=\int_{0}^{1} u_{i} u_{j}
$$

and

$$
S_{i j}=\int_{0}^{1} u_{i}^{\prime} u_{j}^{\prime}+\int_{0}^{1} q u_{i} u_{j} .
$$

They are given by the formulas

$$
\begin{equation*}
M_{i j}=\frac{F\left(\lambda_{i}\right)-F\left(\lambda_{j}\right)}{\lambda_{j}-\lambda_{i}}, \quad M_{i i}=-\frac{d F}{d \lambda}\left(\lambda_{i}\right) . \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{i j}=\frac{F\left(\lambda_{j}\right) \lambda_{j}-F\left(\lambda_{i}\right) \lambda_{i}}{\lambda_{j}-\lambda_{i}}, \quad S_{i i}=\frac{d(\lambda F)}{d \lambda}\left(\lambda_{i}\right) \tag{19}
\end{equation*}
$$

Spectral domain SISO

- Spectral snapshots are not like in the time domain, will not orthogonalize in the same way sequentially.

Spectral domain SISO

- Spectral snapshots are not like in the time domain, will not orthogonalize in the same way sequentially.
- Here we orthogonalize by using the Lanczos algorithm explicitly

Spectral domain SISO

- Spectral snapshots are not like in the time domain, will not orthogonalize in the same way sequentially.
- Here we orthogonalize by using the Lanczos algorithm explicitly
- It is Gram-Schmidt using the M inner product (L^{2}) on the Krylov subspaces generated by powers of $A=M^{-1} S$ and initial vector $M^{-1} b$ (projection of a delta function source onto G).

Spectral domain SISO

- Spectral snapshots are not like in the time domain, will not orthogonalize in the same way sequentially.
- Here we orthogonalize by using the Lanczos algorithm explicitly
- It is Gram-Schmidt using the M inner product (L^{2}) on the Krylov subspaces generated by powers of $A=M^{-1} S$ and initial vector $M^{-1} b$ (projection of a delta function source onto G).
- in the new basis A is tridiagonal

Spectral domain SISO

- Spectral snapshots are not like in the time domain, will not orthogonalize in the same way sequentially.
- Here we orthogonalize by using the Lanczos algorithm explicitly
- It is Gram-Schmidt using the M inner product (L^{2}) on the Krylov subspaces generated by powers of $A=M^{-1} S$ and initial vector $M^{-1} b$ (projection of a delta function source onto G).
- in the new basis A is tridiagonal
- These Krylov subspaces are the same as those generated by time snapshots corresponding to the ROM!

Spectral domain SISO

- That is, if $d \in \mathbb{R}^{m}$ satisfies the Galerkin problem

$$
S d(t)+M d(t)_{t t}=0, \quad d(0)=b, \quad d_{t t=0}=0
$$

which is a time-domain (the wave) variant of the ROM.

Spectral domain SISO

- That is, if $d \in \mathbb{R}^{m}$ satisfies the Galerkin problem

$$
S d(t)+M d(t)_{t t}=0, \quad d(0)=b, \quad d_{t=0}=0
$$

which is a time-domain (the wave) variant of the ROM.

- Then $d(\tau i)$ satisfy the second order finite-difference scheme

$$
\begin{aligned}
d[\tau(i+1)]= & (2 I-\tau A) d[\tau i]-d[\tau(i-1)], i=i, \ldots, m-1 \\
& d(0)=M^{-1} b, \quad d(\tau)=d(-\tau)
\end{aligned}
$$

where $A=M^{-1} S$.

Spectral domain SISO

- That is, if $d \in \mathbb{R}^{m}$ satisfies the Galerkin problem

$$
S d(t)+M d(t)_{t t}=0, \quad d(0)=b, \quad d_{t=0}=0
$$

which is a time-domain (the wave) variant of the ROM.

- Then $d(\tau i)$ satisfy the second order finite-difference scheme

$$
\begin{aligned}
d[\tau(i+1)]= & (2 I-\tau A) d[\tau i]-d[\tau(i-1)], i=i, \ldots, m-1 \\
& d(0)=M^{-1} b, \quad d(\tau)=d(-\tau)
\end{aligned}
$$

where $A=M^{-1} S$.

- span $\{d(\tau i)\}$ are the same as the above Krylov subspaces $w /$ powers of A.

Spectral domain SISO

- So the entries of this orthogonalized reduced order model (which can be obtained from the data) are the entries of the stiffness matrix

$$
\hat{S}_{i j}=\int \hat{u}_{i}^{\prime} \hat{u}_{j}^{\prime}+\int_{0}^{1} q \hat{u}_{i} \hat{u}_{j}
$$

and the mass matrix

$$
\hat{M}_{i j}=\int \hat{u}_{i} \hat{u}_{j} .
$$

Spectral domain SISO

- So the entries of this orthogonalized reduced order model (which can be obtained from the data) are the entries of the stiffness matrix

$$
\hat{S}_{i j}=\int \hat{u}_{i}^{\prime} \hat{u}_{j}^{\prime}+\int_{0}^{1} q \hat{u}_{i} \hat{u}_{j}
$$

and the mass matrix

$$
\hat{M}_{i j}=\int \hat{u}_{i} \hat{u}_{j}
$$

- correspond to orthogonalized projected time snapshots, which depend only very weakly on the coefficient .

Weak dependence of orthogonalized bases on q

Weak dependence of orthogonalized bases on q

A one-dimensional example: Inversion

- From the data, we have a Galerkin system (low dimensional reduced order model) for the internal solution for any spectral value.

A one-dimensional example: Inversion

- From the data, we have a Galerkin system (low dimensional reduced order model) for the internal solution for any spectral value.
- From the reference medium, we have a highly accurate approximation to the orthogonalized basis.

A one-dimensional example: Inversion

- From the data, we have a Galerkin system (low dimensional reduced order model) for the internal solution for any spectral value.
- From the reference medium, we have a highly accurate approximation to the orthogonalized basis.
- By solving the Galerkin system, we get the coefficients

A one-dimensional example: Inversion

- From the data, we have a Galerkin system (low dimensional reduced order model) for the internal solution for any spectral value.
- From the reference medium, we have a highly accurate approximation to the orthogonalized basis.
- By solving the Galerkin system, we get the coefficients
- This yields boundary data generated internal solutions

Internal solution

Internal solution for arbitrarily chosen spectral value $\lambda=3$ generated from data.

Internal solution

Internal solution for arbitrarily chosen spectral value $\lambda=3$ generated from data.

Spectral domain MIMO

- For higher dimensional problems, we can use multiple k sources/receivers:

$$
\begin{align*}
-\Delta u_{i}^{r}+q(x) u_{i}^{r}+b_{i} u_{i}^{r} & =0 \quad \text { in } \Omega \tag{20}\\
\frac{\partial u_{i}^{r}}{\partial \nu} & =g_{r} \quad \text { on } \partial \Omega
\end{align*}
$$

"source" (Neumann data) g_{r} and spectral value b_{i}

Spectral domain MIMO

- For higher dimensional problems, we can use multiple k sources/receivers:

$$
\begin{align*}
-\Delta u_{i}^{r}+q(x) u_{i}^{r}+b_{i} u_{i}^{r} & =0 \quad \text { in } \quad \Omega \tag{20}\\
\frac{\partial u_{i}^{r}}{\partial \nu} & =g_{r} \quad \text { on } \partial \Omega
\end{align*}
$$

"source" (Neumann data) g_{r} and spectral value b_{i}

- Now spectral data is in the form of a $k \times k$ block

$$
F_{r l}^{i}:=F_{r l}\left(b_{i}\right)=\int_{\partial \Omega} u_{i}^{r} g_{l}
$$

and

$$
D F_{r l}^{i}:=\left.\frac{d F_{r l}}{d \lambda}(\lambda)\right|_{\lambda=b_{i}}
$$

Spectral domain MIMO

- Galerkin system generation with basis of exact solutions

$$
S_{i r j l}+b_{i} M_{i r j l}=F_{l r}^{j}
$$

Spectral domain MIMO

- Galerkin system generation with basis of exact solutions

$$
S_{i r j l}+b_{i} M_{i r j l}=F_{l r}^{j}
$$

- is again obtained directly from boundary data :

$$
\begin{gather*}
M_{i r j l}=\frac{F_{l r}^{j}-F_{l r}^{i}}{b_{i}-b_{j}}, \tag{21}\\
M_{i r i l}=-D F_{l r}^{i}, \tag{22}\\
S_{i r j l}=\frac{b_{j} F_{l r}^{j}-b_{i} F_{l r}^{i}}{b_{j}-b_{i}}, \tag{23}
\end{gather*}
$$

and

$$
\begin{equation*}
S_{i r i l}=\left(\lambda F_{r l}\right)^{\prime}\left(b_{i}\right) \tag{24}
\end{equation*}
$$

Lippmann-Schwinger Lanczos approach

- other ways to use ROM to reconstruct - recently for hyperbolic time domain

Lippmann-Schwinger Lanczos approach

- other ways to use ROM to reconstruct - recently for hyperbolic time domain
- Druskin, V., Mamonov, A. and Zaslavsky, M., A nonlinear method for imaging with acoustic waves via reduced order model backprojection, SIAM Journal on Imaging Sciences, (2018).
- Borcea, L., Druskin, V., and Mamonov, A., Zaslavsky, M. and Zimmerling, J., Reduced Order Model Approach to Inverse Scattering, SIAM Journal on Imaging Sciences, (2020).

Lippmann-Schwinger Lanczos approach

- other ways to use ROM to reconstruct - recently for hyperbolic time domain
- Druskin, V., Mamonov, A. and Zaslavsky, M., A nonlinear method for imaging with acoustic waves via reduced order model backprojection, SIAM Journal on Imaging Sciences, (2018).
- Borcea, L., Druskin, V., and Mamonov, A., Zaslavsky, M. and Zimmerling, J., Reduced Order Model Approach to Inverse Scattering, SIAM Journal on Imaging Sciences, (2020).
- A natural way that uses internal solutions - in the Lippmann-Schwinger equation

Lippmann-Schwinger Lanczos approach

- other ways to use ROM to reconstruct - recently for hyperbolic time domain
- Druskin, V., Mamonov, A. and Zaslavsky, M., A nonlinear method for imaging with acoustic waves via reduced order model backprojection, SIAM Journal on Imaging Sciences, (2018).
- Borcea, L., Druskin, V., and Mamonov, A., Zaslavsky, M. and Zimmerling, J., Reduced Order Model Approach to Inverse Scattering, SIAM Journal on Imaging Sciences, (2020).
- A natural way that uses internal solutions - in the Lippmann-Schwinger equation
- Adds versatility, computationally simple

Spectral domain Lippmann-Schwinger Lanczos approach

- Consider the Lippmann-Schwinger equation

$$
\begin{equation*}
u-u_{0}=\int_{\Omega} G\left(q-q_{0}\right) u \tag{25}
\end{equation*}
$$

Spectral domain Lippmann-Schwinger Lanczos approach

- Consider the Lippmann-Schwinger equation

$$
\begin{equation*}
u-u_{0}=\int_{\Omega} G\left(q-q_{0}\right) u \tag{25}
\end{equation*}
$$

- Integrating both sides against the Neumann data g (and integration by parts), one has

$$
\begin{equation*}
F_{0}-F=\int_{\Omega} u u_{0}\left(q-q_{0}\right) \tag{26}
\end{equation*}
$$

- For inverse Born one would replace u by u_{0}

Spectral domain Lippmann-Schwinger Lanczos approach

- Consider the Lippmann-Schwinger equation

$$
\begin{equation*}
u-u_{0}=\int_{\Omega} G\left(q-q_{0}\right) u \tag{25}
\end{equation*}
$$

- Integrating both sides against the Neumann data g (and integration by parts), one has

$$
\begin{equation*}
F_{0}-F=\int_{\Omega} u u_{0}\left(q-q_{0}\right) \tag{26}
\end{equation*}
$$

- For inverse Born one would replace u by u_{0}
- With data generated ROM u with its data generated internal solution.

Spectral domain Lippman-Schwinger Lanczos approach

Reconstruction from derivative of internal solution

reconstruction from Lippmann Schwinger Lanczos method

Figure: Lippmann Schwinger Lanczos: Reconstruction of 1-d medium. Two sources total; one on each side, and four spectral values.

Spectral domain Lippman-Schwinger Lanczos approach

Spectral domain Lippman-Schwinger Lanczos approach

Spectral domain Lippman-Schwinger Lanczos approach

Figure: Experiment 3: True medium (top left) and its reconstructions using 'Cheated IE' (top right), Born linearization (bottom left) and our approach (bottom right)

symmetric data: Lippman-Schwinger Lanczos approach

Figure: Experiment 1: True medium (top left) and its reconstructions using 'Cheated IE' (top right), Born linearization (bottom left) and our approach (bottom right)

Non-symmetric data: Lippman-Schwinger Lanczos approach

Figure: Experiment 1: True medium (top left) and its reconstructions using 'Cheated IE' (top right), Born linearization (bottom left) and our approach (bottom right)

Time domain MIMO problem

$$
\begin{align*}
u_{t t}+A u & =0 \text { in } \Omega \times[0, \infty) \tag{27}\\
u(t=0) & =g \text { in } \Omega \tag{28}\\
u_{t}(t=0) & =0 \text { in } \Omega \tag{29}
\end{align*}
$$

operator $A=A_{0}+q$. Source $/$ receivers modeled by $\left\{g_{j}\right\}$, data

$$
\begin{equation*}
F^{j i}(k \tau)=\int_{\Omega} g_{j}(x) \cos (\sqrt{A} k \tau) g_{i}(x) d x \tag{30}
\end{equation*}
$$

receiver j from source i at time $k \tau$.

Time domain MIMO problem

- Mass tensor can again be obtained by the extension of (9) to blocks

Time domain MIMO problem

- Mass tensor can again be obtained by the extension of (9) to blocks
- Block Cholesky (with $m \times m$ blocks) decomposition,

$$
M=U^{\top} U
$$

where U is block upper triangular.

Time domain MIMO problem

- Mass tensor can again be obtained by the extension of (9) to blocks
- Block Cholesky (with $m \times m$ blocks) decomposition,

$$
M=U^{\top} U
$$

where U is block upper triangular.

- Orthogonalized basis

$$
\vec{v}=\vec{u} U^{-1} .
$$

Time domain MIMO problem

- Mass tensor can again be obtained by the extension of (9) to blocks
- Block Cholesky (with $m \times m$ blocks) decomposition,

$$
M=U^{\top} U
$$

where U is block upper triangular.

- Orthogonalized basis

$$
\vec{v}=\vec{u} U^{-1} .
$$

- similar decomposition/orthogonalization for the background mass matrix

$$
M^{0}=\left(U^{0}\right)^{\top} U^{0}, \quad \vec{v}^{0}=\vec{u}^{0}\left(U^{0}\right)^{-1}
$$

Time domain MIMO problem

- Mass tensor can again be obtained by the extension of (9) to blocks
- Block Cholesky (with $m \times m$ blocks) decomposition,

$$
M=U^{\top} U
$$

where U is block upper triangular.

- Orthogonalized basis

$$
\vec{v}=\vec{u} U^{-1} .
$$

- similar decomposition/orthogonalization for the background mass matrix

$$
M^{0}=\left(U^{0}\right)^{\top} U^{0}, \quad \vec{v}^{0}=\vec{u}^{0}\left(U^{0}\right)^{-1}
$$

- data generated internal solutions directly

$$
\overrightarrow{\mathbf{u}}=\vec{u}^{0}\left(U^{0}\right)^{-1} U
$$

Time domain multistatic problem

- series of single input/single output (SISO) responses due to moving collocated sources and receivers (SAR model)

Time domain multistatic problem

- series of single input/single output (SISO) responses due to moving collocated sources and receivers (SAR model)
- In this case we don't have full MIMO data matrix (only the diagonal)

Time domain multistatic problem

- series of single input/single output (SISO) responses due to moving collocated sources and receivers (SAR model)
- In this case we don't have full MIMO data matrix (only the diagonal)
- ROMs are constructed to match the data for each source-receiver pair separately,

Time domain multistatic problem

- series of single input/single output (SISO) responses due to moving collocated sources and receivers (SAR model)
- In this case we don't have full MIMO data matrix (only the diagonal)
- ROMs are constructed to match the data for each source-receiver pair separately,
- The data from different locations is then coupled via the approximate Lippmann-Schwinger (LSL)

Time domain multistatic 2.5 D

Figure: 2-D varying medium in. 3-D

Conclusions

- Time domain mass matrix gives orthogonalization of time snapshots sequentially

Conclusions

- Time domain mass matrix gives orthogonalization of time snapshots sequentially
- Spectral domain data, full ROM and Lanczos orthogonalize projected time steps

Conclusions

- Time domain mass matrix gives orthogonalization of time snapshots sequentially
- Spectral domain data, full ROM and Lanczos orthogonalize projected time steps
- In both cases the new basis is close to that from reference medium.

Conclusions

- Time domain mass matrix gives orthogonalization of time snapshots sequentially
- Spectral domain data, full ROM and Lanczos orthogonalize projected time steps
- In both cases the new basis is close to that from reference medium.
- Can use the reference medium basis to obtain approximations of internal solutions from data

Conclusions

- Time domain mass matrix gives orthogonalization of time snapshots sequentially
- Spectral domain data, full ROM and Lanczos orthogonalize projected time steps
- In both cases the new basis is close to that from reference medium.
- Can use the reference medium basis to obtain approximations of internal solutions from data
- Lippmann-Schwinger Lanczos approach of using internal solutions in the integral is fast, accurate and extendable to more general data sets.

Conclusions

- Time domain mass matrix gives orthogonalization of time snapshots sequentially
- Spectral domain data, full ROM and Lanczos orthogonalize projected time steps
- In both cases the new basis is close to that from reference medium.
- Can use the reference medium basis to obtain approximations of internal solutions from data
- Lippmann-Schwinger Lanczos approach of using internal solutions in the integral is fast, accurate and extendable to more general data sets.
- Reconstructions can be improved with iteration (recent work Borcea et. al).

