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@ Forward PDE problems: Given the PDE, including its coefficients, and
all boundary/initial data, find its solution everywhere.
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@ Reduced Order Models (ROMs) for forward problems: If e.g. PDE is
linear, find a low dimensional matrix that acts like the differential
operator.
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Background

@ Forward PDE problems: Given the PDE, including its coefficients, and
all boundary/initial data, find its solution everywhere.

@ Inverse problem: Given the solution to the PDE on the boundary, for
various choices of boundary data, frequencies, times, find the
coefficients.

@ Reduced Order Models (ROMs) for forward problems: If e.g. PDE is
linear, find a low dimensional matrix that acts like the differential
operator.

@ Model reduction theory is a large field, but only recently have data
driven ROMs been used for inverse problems.
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Framework

@ Find ROM that matches a given set of data exactly.
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Framework

@ Find ROM that matches a given set of data exactly.

@ Orthogonalization allows one to realize the ROM as a sparse discrete
network (in 1-d , a three point finite difference scheme).
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Framework

@ Find ROM that matches a given set of data exactly.

@ Orthogonalization allows one to realize the ROM as a sparse discrete
network (in 1-d , a three point finite difference scheme).

@ The discrete network implicitly maps the boundary data back into the
interior.
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Framework

@ Find ROM that matches a given set of data exactly.

@ Orthogonalization allows one to realize the ROM as a sparse discrete
network (in 1-d , a three point finite difference scheme).

@ The discrete network implicitly maps the boundary data back into the

interior.
@ The ROM can also be viewed as a Galerkin method.
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Framework

@ Find ROM that matches a given set of data exactly.

@ Orthogonalization allows one to realize the ROM as a sparse discrete
network (in 1-d , a three point finite difference scheme).

@ The discrete network implicitly maps the boundary data back into the
interior.
@ The ROM can also be viewed as a Galerkin method.

@ Due to sparsity, the basis functions depend only very weakly on the
coefficients. (Druskin et. al. 2016)
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Framework

@ Find ROM that matches a given set of data exactly.

@ Orthogonalization allows one to realize the ROM as a sparse discrete
network (in 1-d , a three point finite difference scheme).

@ The discrete network implicitly maps the boundary data back into the
interior.

@ The ROM can also be viewed as a Galerkin method.

@ Due to sparsity, the basis functions depend only very weakly on the
coefficients. (Druskin et. al. 2016)

o (Borcea, Druskin, Mamonov, Zaslavsky, M 2020) Produce a data
generated internal solution.
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Framework

@ Find ROM that matches a given set of data exactly.

@ Orthogonalization allows one to realize the ROM as a sparse discrete
network (in 1-d , a three point finite difference scheme).

@ The discrete network implicitly maps the boundary data back into the
interior.

@ The ROM can also be viewed as a Galerkin method.

@ Due to sparsity, the basis functions depend only very weakly on the
coefficients. (Druskin et. al. 2016)

o (Borcea, Druskin, Mamonov, Zaslavsky, M 2020) Produce a data
generated internal solution.

o (Druskin, Zaslavsky, M 2021) Use data generated internal solution in
a Lippmann-Schwinger formulation.
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Framework

@ Find ROM that matches a given set of data exactly.

@ Orthogonalization allows one to realize the ROM as a sparse discrete
network (in 1-d , a three point finite difference scheme).

@ The discrete network implicitly maps the boundary data back into the
interior.

@ The ROM can also be viewed as a Galerkin method.

@ Due to sparsity, the basis functions depend only very weakly on the
coefficients. (Druskin et. al. 2016)

o (Borcea, Druskin, Mamonov, Zaslavsky, M 2020) Produce a data
generated internal solution.

o (Druskin, Zaslavsky, M 2021) Use data generated internal solution in
a Lippmann-Schwinger formulation.

@ Recent work LS in time domain (Borcea et. al 2022 archived)
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Time domain SISO problem

up +Au = 0in Q x [0, 00) (1)
u(t=0) = ginQ (2)
u(t=0) = 0inQ (3)
where
A=Ay+q (4)

Ao > 0 is known background, (for example Ag = —A),
q(x) > 0 is our unknown potential

initial data g is localized (approximate delta) source

assume homogeneous Neumann boundary conditions on the spatial
boundary 012.
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Time domain SISO problem

@ The exact forward solution to (1) is

u(x, t) = cos (VAt)g(x). (5)
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Time domain SISO problem

@ The exact forward solution to (1) is

u(x, t) = cos (VAt)g(x). (5)

@ We measure data at the source (modeled by integration against g) for
2n — 2 evenly spaced time steps t = kT

Fkr) = /Q &(x) cos (VAKT)g(x)dx. (6)
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Time domain SISO problem

@ The exact forward solution to (1) is

u(x, t) = cos (VAt)g(x). (5)

@ We measure data at the source (modeled by integration against g) for
2n — 2 evenly spaced time steps t = kT

Fkr) = /Q &(x) cos (VAKT)g(x)dx. (6)

@ The inverse problem is as follows: Given
{F(kT)} for k=0,...,2n—2,

reconstruct q.
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Time domain SISO problem

o If ux = u(kr,x) for k =0,...,2n — 2 are the true snapshots,

S. Moskow (Drexel University) L-S-L for inverse scattering Johann Radon Institute October 17, 2022



Time domain SISO problem

o If ux = u(kr,x) for k =0,...,2n — 2 are the true snapshots,

@ then the n X n mass matrix k,/ =0,...,n—1
My = / U uydx (7)
Q
from (6)

My = /Qg(x) cos (VAkT) cos (VAlT)g(x)dx, (8)
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Time domain SISO problem

o If ux = u(kr,x) for k =0,...,2n — 2 are the true snapshots,
@ then the n X n mass matrix k,/ =0,...,n—1
My = / U uydx (7)
Q
from (6)

My = /Qg(x) cos (VAkT) cos (VAlT)g(x)dx, (8)

@ from the cosine angle sum formula

1

Mia = 5 (F((k = 1)r) + F((k + 1)7)), (9)

M can be obtained directly from the data.
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Time domain SISO problem

@ M is positive definite, compute its Cholesky decomposition
M=U"U

where U is upper triangular.
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Time domain SISO problem

@ M is positive definite, compute its Cholesky decomposition
M=U"U

where U is upper triangular.

@ Define 7 to be a row vector of the first n snapshots
(k=0,...,n—1), and set

vie=>Y_ uU. (10)
/
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Time domain SISO problem

@ M is positive definite, compute its Cholesky decomposition
M=U"U

where U is upper triangular.

@ Define 7 to be a row vector of the first n snapshots
(k=0,...,n—1), and set

vie=>Y_ uU. (10)
/

o . The functions {v,} will be orthonormal in the L2 norm
(Gram-Schmidt).
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Time domain SISO problem

@ We do not know the snapshots, but from the data we know the
transformation that orthogonalizes them sequentially.
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Time domain SISO problem

@ We do not know the snapshots, but from the data we know the
transformation that orthogonalizes them sequentially.

@ It was first noticed in (Druskin et. al. 2016) that these
orthogonalized snapshots depend very weakly on gq.
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Time domain SISO problem

@ We do not know the snapshots, but from the data we know the
transformation that orthogonalizes them sequentially.

@ It was first noticed in (Druskin et. al. 2016) that these
orthogonalized snapshots depend very weakly on gq.

@ This is because we start with a local source, orthogonalize
sequentially, reflections overlap with previous times.
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Time domain SISO problem

@ We do not know the snapshots, but from the data we know the
transformation that orthogonalizes them sequentially.

@ It was first noticed in (Druskin et. al. 2016) that these
orthogonalized snapshots depend very weakly on gq.

@ This is because we start with a local source, orthogonalize
sequentially, reflections overlap with previous times.

@ So do all of the above for the known background problem
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Time domain SISO problem

@ Background exact solution

uO(x, t) = cos (v/Aot)g(x). (11)
and snapshots {uJQ}
@ mass matrix
Ml = [ ufub, (12)
Q

@ Cholesky decomposition
MO — (UO)T UO,
@ orthogonalized background snapshots

O =)t (13)
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Time domain SISO problem

@ Crucial step:

<L

2

)
=
2

S. Moskow (Drexel University) L-S-L for inverse scattering Johann Radon Institute October 17, 2022



Time domain SISO problem

@ Crucial step:
A% (14)
e From (10) and (14) we have that the true snapshots

u = vU

PU.
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Time domain SISO problem

@ Crucial step:
A% (14)
e From (10) and (14) we have that the true snapshots

u = vU

PU.

@ Definition of our data generated snapshots

i = VU
uotu. (15)
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Lippmann-Schwinger-Lanczos equation

@ Time domain Lippmann-Schwinger

kT
Fo(kr) — F(kr) = /0 /Q wo(x, k7 — t)u(x, )g(x)dxde.  (16)
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Lippmann-Schwinger-Lanczos equation

@ Time domain Lippmann-Schwinger

kT
Fo(kr) — F(kr) = /0 /Q wo(x, k7 — t)u(x, )g(x)dxde.  (16)

@ Use data generated internal solution (interpolated in time)

kT
Fo(kr) — F(kr) = /O /Q wo(x, k7 — thu(x, )g(x)dxde  (17)
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Spectral domain SISO problem

@ Find u such that

—u"+qg(x)u+Xu = 0 for x on (0,1)
—u'(0) =
u(l) =

@ Define the transfer function F(\) := u(0; \).

o Consider the inverse problem: Given {F(\), F'(A\) : A= by, ...bn} ,
find g(x)

[l
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Spectral domain SISO problem.

o Consider the inverse problem: Given {F(\), F/(A\) : A = b1,...bm},
find g(x)
e Given 2m spectral data values to reconstruct g(x)

@ Can do a modified version of what follows for other forms of spectral
data

@ We will construct a ROM that matches this data exactly
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Spectral domain SISO

@ Consider exact solutions to above uy, ..., u, corresponding to
spectral points A = by, ... b;,. and the subspace

G =span{ug,...,um}

@ Although we do not know these solutions, we can obtain the Galerkin
system (ROM) from the data

@ Given by the mass and stiffness matrices

1
M,'j:/ ujuj
0
1 1
/7
S;j:/ u,-uj—i—/ qujuj.
0 0

and
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They are given by the formulas

o F(Xi) — F(\j) o dF .
Mj; = N , M; = d)\()\')' (18)
and
5. _ FA)N — F(Ai)A S _ d(AF)()\_) (19)
v Aj— A ’ " d\ "
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Spectral domain SISO

@ Spectral snapshots are not like in the time domain, will not
orthogonalize in the same way sequentially.
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Spectral domain SISO

@ Spectral snapshots are not like in the time domain, will not
orthogonalize in the same way sequentially.

@ Here we orthogonalize by using the Lanczos algorithm explicitly
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Spectral domain SISO

@ Spectral snapshots are not like in the time domain, will not
orthogonalize in the same way sequentially.
@ Here we orthogonalize by using the Lanczos algorithm explicitly

e It is Gram-Schmidt using the M inner product (L2) on the Krylov
subspaces generated by powers of A= M~1S and initial vector M~1h
(projection of a delta function source onto G).
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Spectral domain SISO

@ Spectral snapshots are not like in the time domain, will not
orthogonalize in the same way sequentially.

@ Here we orthogonalize by using the Lanczos algorithm explicitly

e It is Gram-Schmidt using the M inner product (L2) on the Krylov
subspaces generated by powers of A= M~1S and initial vector M~1h
(projection of a delta function source onto G).

@ in the new basis A is tridiagonal
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Spectral domain SISO

Spectral snapshots are not like in the time domain, will not
orthogonalize in the same way sequentially.

@ Here we orthogonalize by using the Lanczos algorithm explicitly

e It is Gram-Schmidt using the M inner product (L2) on the Krylov
subspaces generated by powers of A= M~1S and initial vector M~1h
(projection of a delta function source onto G).

@ in the new basis A is tridiagonal

@ These Krylov subspaces are the same as those generated by time
snapshots corresponding to the ROM!
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Spectral domain SISO

@ That is, if d € R™ satisfies the Galerkin problem
Sd(t) + Md(t)w =0, d(0) = b, dii—o =0,

which is a time-domain (the wave) variant of the ROM.
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Spectral domain SISO

@ That is, if d € R™ satisfies the Galerkin problem
Sd(t) + Md(t)w =0, d(0) = b, dii—o =0,

which is a time-domain (the wave) variant of the ROM.

@ Then d(7i) satisfy the second order finite-difference scheme
dir(i+1)] = @2l —7A)Yd[ri| = d[r(i=1)],i=1i,...,m—1,

d(0)=M=1b, d(r)=d(-1)
where A = M~1S.
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Spectral domain SISO

@ That is, if d € R™ satisfies the Galerkin problem
Sd(t) + Md(t)w =0, d(0) = b, dii—o =0,

which is a time-domain (the wave) variant of the ROM.

@ Then d(7i) satisfy the second order finite-difference scheme
dir(i+1)] = @2l —7A)Yd[ri| = d[r(i=1)],i=1i,...,m—1,

d(0)=M=1b, d(r)=d(-1)
where A = M~1S.

@ span{d(7i)} are the same as the above Krylov subspaces w/ powers
of A.
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Spectral domain SISO

@ So the entries of this orthogonalized reduced order model (which can
be obtained from the data) are the entries of the stiffness matrix

1

and the mass matrix
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Spectral domain SISO

@ So the entries of this orthogonalized reduced order model (which can
be obtained from the data) are the entries of the stiffness matrix

1
& Al A A A
S,-j:/u,-uj+/ qu;u;j
0
M,:,':/fl,'ﬁj.

@ correspond to orthogonalized projected time snapshots, which depend
only very weakly on the coefficient .

and the mass matrix
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Weak dependence of orthogonalized bases on g

First basis function

Second basis function
B

perurbed medm pertubed medum
tofeence modm feterence medum

“Third basis function

Fourth basis function

perurbed medum pertubed medm
toterence modum eterence mecium
3 s

S. Moskow rexel University) for inverse scatteri:

Johann Radon Insti



Weak dependence of orthogonalized bases on g

Fifth basis function Sixth basis function
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A one-dimensional example: Inversion

e From the data, we have a Galerkin system (low dimensional reduced
order model) for the internal solution for any spectral value.
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A one-dimensional example: Inversion

e From the data, we have a Galerkin system (low dimensional reduced
order model) for the internal solution for any spectral value.

@ From the reference medium, we have a highly accurate approximation

to the orthogonalized basis.
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A one-dimensional example: Inversion

e From the data, we have a Galerkin system (low dimensional reduced
order model) for the internal solution for any spectral value.

@ From the reference medium, we have a highly accurate approximation
to the orthogonalized basis.

@ By solving the Galerkin system, we get the coefficients
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A one-dimensional example: Inversion

e From the data, we have a Galerkin system (low dimensional reduced
order model) for the internal solution for any spectral value.

@ From the reference medium, we have a highly accurate approximation
to the orthogonalized basis.

@ By solving the Galerkin system, we get the coefficients

@ This yields boundary data generated internal solutions
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Internal solution

Internal solution for arbitrarily chosen spectral value A = 3 generated from
data.

Internal data , lambda= 3
T T T

0.6 T T T T T
data generated solution
exact solution
reference medium solution
05 1
04 1
03 1
02 1
01t 1
0 I I I I I I I I I
0 01 02 03 04 05 06 07 08 09 1
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Internal solution

Internal solution for arbitrarily chosen spectral value A = 3 generated from
data.

Internal data , lambda=3
T T T T T T T

data generated solution
0311 exact solution
reference medium solution

L L L L L L L L L
0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 05
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Spectral domain MIMO

@ For higher dimensional problems, we can use multiple k
sources/receivers:

—Aul + qg(x)uj + bjui = 0 in Q (20)
ou’
({;Z = g on 9dQ

"source” (Neumann data) g, and spectral value b;
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Spectral domain MIMO

@ For higher dimensional problems, we can use multiple k
sources/receivers:

—Aul + qg(x)uj + bjui = 0 in Q (20)
ou’
({;Z = g on 9dQ

"source” (Neumann data) g, and spectral value b;

@ Now spectral data is in the form of a k x k block

0= rl(bi):/ ui g
80

and
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Spectral domain MIMO

@ Galerkin system generation with basis of exact solutions

Sigi + biMig = Fi,

S. Moskow (Drexel University) L-S-L for inverse scattering Johann Radon Institute October 17, 2022



Spectral domain MIMO

@ Galerkin system generation with basis of exact solutions

Sigi + biMig = Fi,

@ is again obtained directly from boundary data :

Ff _ Fi
M., = Ir Ir 21
Miiy = —DF, (22)
biFl — biF]
Sir' _ Jr i 23
and
Sivit = (MFp) (7). (24)
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Lippmann-Schwinger Lanczos approach

@ other ways to use ROM to reconstruct - recently for hyperbolic time
domain
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Lippmann-Schwinger Lanczos approach

@ other ways to use ROM to reconstruct - recently for hyperbolic time
domain

@ Druskin, V., Mamonov, A. and Zaslavsky, M., A nonlinear method
for imaging with acoustic waves via reduced order model
backprojection, SIAM Journal on Imaging Sciences, (2018).

@ Borcea, L., Druskin, V., and Mamonov, A., Zaslavsky, M. and
Zimmerling, J., Reduced Order Model Approach to Inverse
Scattering, SIAM Journal on Imaging Sciences, (2020).
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Lippmann-Schwinger Lanczos approach

@ other ways to use ROM to reconstruct - recently for hyperbolic time
domain

@ Druskin, V., Mamonov, A. and Zaslavsky, M., A nonlinear method
for imaging with acoustic waves via reduced order model
backprojection, SIAM Journal on Imaging Sciences, (2018).

@ Borcea, L., Druskin, V., and Mamonov, A., Zaslavsky, M. and
Zimmerling, J., Reduced Order Model Approach to Inverse
Scattering, SIAM Journal on Imaging Sciences, (2020).

@ A natural way that uses internal solutions - in the
Lippmann-Schwinger equation
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Lippmann-Schwinger Lanczos approach

@ other ways to use ROM to reconstruct - recently for hyperbolic time
domain

@ Druskin, V., Mamonov, A. and Zaslavsky, M., A nonlinear method
for imaging with acoustic waves via reduced order model
backprojection, SIAM Journal on Imaging Sciences, (2018).

@ Borcea, L., Druskin, V., and Mamonov, A., Zaslavsky, M. and
Zimmerling, J., Reduced Order Model Approach to Inverse
Scattering, SIAM Journal on Imaging Sciences, (2020).

@ A natural way that uses internal solutions - in the
Lippmann-Schwinger equation

@ Adds versatility , computationally simple
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Spectral domain Lippmann-Schwinger Lanczos approach

@ Consider the Lippmann-Schwinger equation

u—uoz/QG(q—qo)u (25)
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Spectral domain Lippmann-Schwinger Lanczos approach

@ Consider the Lippmann-Schwinger equation

u—uoz/QG(q—qo)u (25)

@ Integrating both sides against the Neumann data g (and integration
by parts) , one has

Fo—F = /Q uuo(q — qo) (26)

@ For inverse Born one would replace u by ug
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Spectral domain Lippmann-Schwinger Lanczos approach

@ Consider the Lippmann-Schwinger equation

u—uoz/QG(q—qo)u (25)

@ Integrating both sides against the Neumann data g (and integration
by parts) , one has

Fo—F = /Q uuo(q — qo) (26)

@ For inverse Born one would replace u by ug

@ With data generated ROM u with its data generated internal solution.
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Spectral domain Lippman-Schwinger Lanczos approach

Reconstruction from derivative of interal solution
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Figure: Lippmann Schwinger Lanczos: Reconstruction of 1-d medium. Two
sources total; one on each side, and four spectral values.
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Spectral domain

Lippman-Schwinger Lanczos approach
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Spectral domain Lippman-Schwinger Lanczos approach

True q Cheated IE
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Spectral domain Lippman-Schwinger Lanczos approach
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Figure: Experiment 3: True medium (top left) and its reconstructions using
"Cheated IE’ (top right), Born linearization (bottom left) and our approach

(bottom right)
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symmetric data: Lippman-Schwinger Lanczos approach

True q Cheated IE
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Figure: Experiment 1: True medium (top left) and its reconstructions using

'Cheated IE’ (top right), Born linearization (bottom left) and our approach
(bottom right)
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Non-symmetric data: Lippman-Schwinger Lanczos
approach

Figure: Experiment 1: True medium (top left) and its reconstructions using
'Cheated IE’ (top right), Born linearization (bottom left) and our approach
(bottom right)
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Time domain MIMQO problem

upr +Au = 0in Q x[0,00) (27)
u(t=0) = ginQ (28)
u(t=0) = 0inQ (29)

operator A = Ag + q. Source/receivers modeled by {g;}, data
Fii(kr) = / gj(x) cos (V/AkT)gi(x)dx, (30)
Q

receiver j from source i at time k.
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Time domain MIMQO problem

@ Mass tensor can again be obtained by the extension of (9) to blocks
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where U is block upper triangular.
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Time domain MIMQO problem

@ Mass tensor can again be obtained by the extension of (9) to blocks
@ Block Cholesky (with m x m blocks) decomposition,

M=U"U

where U is block upper triangular.

@ Orthogonalized basis
v=au

@ similar decomposition/orthogonalization for the background mass
matrix

MO — (UO)TUo7 ‘70 — gO(UO)—l
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Time domain MIMQO problem

@ Mass tensor can again be obtained by the extension of (9) to blocks
@ Block Cholesky (with m x m blocks) decomposition,
M=U"U
where U is block upper triangular.
@ Orthogonalized basis
v=au
@ similar decomposition/orthogonalization for the background mass
matrix
MO — (UO)TUo7 ‘70 — gO(UO)—l
o data generated internal solutions directly

u= U tu.

S. Moskow (Drexel University) L-S-L for inverse scattering Johann Radon Institute October 17, 2022



Time domain multistatic problem

e series of single input/single output (SISO) responses due to moving
collocated sources and receivers (SAR model)
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Time domain multistatic problem

e series of single input/single output (SISO) responses due to moving
collocated sources and receivers (SAR model)

@ In this case we don't have full MIMO data matrix (only the diagonal)
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e series of single input/single output (SISO) responses due to moving
collocated sources and receivers (SAR model)

@ In this case we don't have full MIMO data matrix (only the diagonal)

@ ROMs are constructed to match the data for each source-receiver pair
separately,
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Time domain multistatic problem

e series of single input/single output (SISO) responses due to moving
collocated sources and receivers (SAR model)

@ In this case we don't have full MIMO data matrix (only the diagonal)

@ ROMs are constructed to match the data for each source-receiver pair
separately,

@ The data from different locations is then coupled via the approximate
Lippmann-Schwinger (LSL)
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Time domain multistatic 2.5 D

Cheated LS
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Conclusions

@ Time domain mass matrix gives orthogonalization of time snapshots
sequentially
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@ Lippmann-Schwinger Lanczos approach of using internal solutions in
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Conclusions

@ Time domain mass matrix gives orthogonalization of time snapshots
sequentially

@ Spectral domain data, full ROM and Lanczos orthogonalize projected
time steps

@ In both cases the new basis is close to that from reference medium.

@ Can use the reference medium basis to obtain approximations of
internal solutions from data

@ Lippmann-Schwinger Lanczos approach of using internal solutions in
the integral is fast, accurate and extendable to more general data sets.

@ Reconstructions can be improved with iteration (recent work Borcea
et. al).
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