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Applications of geodesic X-ray transform

© Radon transform and X-ray CT
@ SPECT, tomography in media with variable refractive index

© Seismology, travel-time tomography.
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Classical IP questions for simple surfaces

Simple = OM stricly
convex + no conjugate
points + no geodesic of

infinite length.

Recovery of f from Ihf is ...
e Injective over L2(M) [Mukhometov >75]

o lll-posed of order 1/2 [Stefanov-Uhlmann ’04],
[M.-Nickl-Paternain ’19], [Paternain-Salo ’20], [M. °20]

@ Invertible up to compact error [Pestov-Uhlmann ’04] (exact in
constant curvature cases)

1
f K f=— I] A"HA_ lf.
+ ~~ 8 \J;z HJF/_/O

compact backproj. filter
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Classical IP questions for simple surfaces

Simple = OM stricly

convex + no conjugate " ¢
points + no geodesic of
infinite length. o

Recovery of f from Ihf is ...
e Injective over L2(M) [Mukhometov >75]

o lll-posed of order 1/2 [Stefanov-Uhlmann ’04],
[M.-Nickl-Paternain ’19], [Paternain-Salo ’20], [M. °20]

@ Invertible up to compact error [Pestov-Uhlmann ’04] (exact in
constant curvature cases)

1
f K f=— I] A"HA_ lf.
+ ~~ 8 \J;z HJF/_/O

compact backproj. filter

> Great ! let's implement it !
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Introduction

A special family: constant curvature disks

Domain: D= {z € C, |z| <1}
Metric: g.(z) = (1 + |z|?)72|dz|?, for k € (—1,1) fixed.
Relevant quantities:

21

, II=1-—k.
1+k

curv =4k, L(OD) =

Example with kK = —0.7,—0.3,0,0.3,0.7.

S

N

Advantages: rotation-invariant, Pestov-Uhlmann formulas exact,
still reaches borderline cases of simplicity.
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Introduction

Sampling questions [stefanov, SIMA *20]

Problem: To reconstruct  from samples of Af, with A a linear,
injective, (kind of) stable operator. (“A = id": classical sampling)
@ Given a bandlimited function f, what are the sampling
requirements on Af to “faithfully” reconstruct f 7
@ Given available sampling rates on Af, how to constrain the
bandlimit of £ 7
© If data is undersampled,
(a) can we predict location, orientation and frequency of artifacts ?
(b) can we reconstruct a blurred yet unaliased version of  ?
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Sampling questions [stefanov, SIMA *20]

Problem: To reconstruct  from samples of Af, with A a linear,
injective, (kind of) stable operator. (“A = id": classical sampling)
@ Given a bandlimited function f, what are the sampling
requirements on Af to “faithfully” reconstruct f 7
@ Given available sampling rates on Af, how to constrain the
bandlimit of £ 7
© If data is undersampled,
(a) can we predict location, orientation and frequency of artifacts ?
(b) can we reconstruct a blurred yet unaliased version of  ?

D> [Stefanov, SIMA °20]: Sharp answers are possible when A is a
classical Fourier Integral Operator (such as fp !).

Nearby literature:

Fourier-based: Natterer ’93, Stefanov ’20, Stefanov-Tindel ’21
Detecting jump discontinuities: [Katsevich, ’17, °20, ’21]
Methods exploiting other sparsity: many authors

8/24



Sampling the X-ray transform on simple surfaces
Introduction

Aliasing illustration when A = | [stefanov, s, >20]

Nyquist criterion: if supp(f) C [~B, B]?, sample at h < 5
When Nyquist is violated (right: twice Nyquist rate):

> Artifacts at same location, with different frequency and
orientation, recovery (generally) impossible 9/2a
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Introduction

Answering sampling questions for the X-ray transform

Heuristics:

Bandlimit constraint on f = f, takes the form "WF,(f) Cc "
for some compact set ¥ C T*M

Bandlimit on f translates into bandlimit on Iyf through the
canonical relation of the FIO [y via

WFL(lof)\{0} C C/OOWFh(f)\{O} [Stefanov ’20, Thm 2.2]

Recovery of a X-bandlimited f requires unaliased sampling of
Iof, which depends on

o the geometry via C;, (Jacobi fields, boundary curvature),
e assuming Cartesian sampling on 9, SM, a 'good’ choice of
coordinate system on 94 SM.

In undersampled situations, aliasing artifacts can be described.
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The X-ray transform on CCD’s
Coordinate systems

Coordinate systems

Sampling issues strongly depend on the choice of the coordinate
system. Previous coordinate systems: [Assylbekov-Stefanov, ’20]

fan-beam (s, &) \ parallel (w, p)
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The X-ray transform on CCD’s
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The X-ray transform on CCD’s
Coordinate systems

Changes of coordinate systems

BET ST A A
G e e 8
k=-0.7 k=-0.3 k=0 k=0.3 k=0.7

(a) The image of an equispaced Cartesian grid (s,a) € [0,L] x [-7/2,7/2] viewed in (w,p) € [0, L] x
[0,L/2] (iso-s in red, iso-a in blue).

Kk =—0.7 k=-0.3 k=0 k=0.3 k=0.7

(b) the image of an equispaced Cartesian grid (w, p) € [0, L] x [0, L/2] viewed in (s, @) € [0, L] x[—7/2,7/2]
(iso-w in red, iso-p in blue).
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Sampling the X-ray transform on simple surfaces
The X-ray transform on CCD’s
Canonical relation, microlocal range

Canonical relation of fy: geometric description

Using the double fibration picture [Helgason, Guillemin]
84 SM <= sM =5 M,
one has the clean composition of FIOs ly = F, o 7*, then:
Cip(w) = (Cy(w), C-(w)), we T"M (two graphs).
To find Ci(w):

@ Let (x,v) €95SMand t >0, Ay >0 s.t. w = A (5,v ()L
@ Then Ci(w) = Ay € T, )0+ SM, where

n(V) = b(x, v, t), n(H) = —pa(x, v, t) (a, b : scalar Jacobi field).

W= A4 (g o () = A= (oo (12))4

C+('W‘)m </\ (‘(w)m
- ~
~_—T'M
Ty, @eSM)™N — Tr ., (0_SM)

N\
A

-

\
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Sampling the X-ray transform on simple surfaces
The X-ray transform on CCD’s
Canonical relation, microlocal range

Microlocal range C;,(T*M) in coordinate systems

Fan-beam:
n = A(ns(t) ds+nq(t) da)
ns = 11(s)b(s, a, t) — cos aa(s, a, t)
T]CY = b(57a7 t)

Sample cotangent fiber
(Eucl. disk):

Sensitive to: Jacobi fields

Parallel:
n = Anw(t) dw +np(t) dp)

b(w, p, t) b(Sa(w, p), t)

nw = p(Sa(w, P))b(w o) /L(W,P)m
_ b(w, p, t) b(Sa(w, p), t)
np = p(Sa(w ))17(7 + p(w, p) b(Sa(w, ), 7)

Sample cotangent fiber (Eucl. disk):

Sensitive to: simplicity



The X-ray transform on CCD’s

function + WFk(Iofn) C Ciy © WFk(1p)
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The X-ray transform on CCD’s

function +
WFh(/ofh) C Clo o WFh(fh)

(a) (s,a) coordinates

Wi 5“7

o o
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@ 0w ® o =
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b) (w,p) coordinates
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The X-ray transform on CCD’s
Canonical relation, microlocal range

A classical comparison

The classical picture: WF(lhf) C C;y o WF(f)
1
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Sampling issues
Sharp sampling rates

Indicators of sharp sampling rates

Q: Given a bandlimit on f, how to predict sampling rates on Iof ?

A: If f is AB*M-bandlimited, visualize AC},(B*M)
(fiber-dependent) and fit it in a Nyquist box !

Geometries: |. to .r, k = —0.7,—0.3,0,0.3,0.7
Coordinates: fan-beam (top), parallel (bottom)

—a=0
—a=n/9
a=27/9 —- N
——a=71/3
a=47/9 g -
(0.4,8) (0.7,3.71) (1,2) (1.3,1.17) (1.6,0.96)
(0.4,0.4) (0.7,0.7) (1,1) (1.3,1.86) (1.6,4)
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Sampling issues

function + FT




Sampling the X-ray transform on simple surfaces
Sampling issues
Predicting aliasing artifacts

How to read and predict aliasing artifacts 1/2

Let’s return to the canonical relation of Ip.
Partitioning of one fiber of T*(0+SM) (o =0 or p = 0):
e z = =

(a) Axes: (15, 1a)

(b) Axes: (i, 1)
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Sampling issues

Original function
+ FT

Geometry:
(R,k) = (1,0.4)
Coordinates:
fan-beam
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Sampling issues

Vertically subsampled Iyf - Fourier transform:
0.2
0.1
0.1
-0.2

(a) Upsampling method based on P. The singularity remains aliased after upsampling. Reconstruction

has aliasing artifacts.
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Sampling issues

Vertically subsampled lyf - Fourier transform:
0.2
0.1
0.1
-0.2

(b) Upsampling method based on B. The singularity is properly recovered after upsampling. Reconstruc-
tion has no aliasing artifacts.
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Sampling the X-ray transform on simple surfaces
Sampling issues
Non ’box-based’ considerations

Conclusions

e Injectivity, stability and reconstruction formulas at the continuous
level still do not address a variety of issues that can occur on the
discretization side.
e The sampling of FIOs can lead to new artifacts compared to the
classical sampling problem:
o Artifacts can be at a different orientation, frequency and
location.
@ Unlike in classical sampling, undersampling can lead to
higher-frequency reconstructions.
e Addressing sampling issues for FIOs requires a good
understanding of their canonical relation and a good choice of
coordinate system in the data space.
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Conclusions

e Injectivity, stability and reconstruction formulas at the continuous
level still do not address a variety of issues that can occur on the
discretization side.
e The sampling of FIOs can lead to new artifacts compared to the
classical sampling problem:
o Artifacts can be at a different orientation, frequency and
location.
@ Unlike in classical sampling, undersampling can lead to
higher-frequency reconstructions.
e Addressing sampling issues for FIOs requires a good
understanding of their canonical relation and a good choice of
coordinate system in the data space.

Thank you !

Reference: F.M. and P. Stefanov, Sampling the X-ray transform on
simple surfaces, preprint (2021). arxiv:2110.05761 2424




	Introduction
	The X-ray transform on CCD's
	Coordinate systems
	Canonical relation, microlocal range

	Sampling issues
	Sharp sampling rates
	Predicting aliasing artifacts
	Non 'box-based' considerations


