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Sampling the X-ray transform on simple surfaces

Introduction

The geodesic X-ray transform

(M, g), ∂M strictly convex.

∂+SM: �inward� boundary ('fan-beam').

Geodesics: γx ,v (t).

Problem: to recover f ∈ L2(M) from its Geodesic X-ray transform:

I0f (x , v) =

∫ τ(x,v)

0

f (γx,v (t)) dt, (x , v) ∈ ∂+SM = S1 ×
(
−π

2
,
π

2

)
.
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Sampling the X-ray transform on simple surfaces

Introduction

Applications of geodesic X-ray transform

1 Radon transform and X-ray CT

2 SPECT, tomography in media with variable refractive index

3 Seismology, travel-time tomography.

4 / 24



Sampling the X-ray transform on simple surfaces

Introduction

Classical IP questions for simple surfaces

Simple = ∂M stricly

convex + no conjugate

points + no geodesic of

in�nite length.

Recovery of f from I0f is . . .

Injective over L2(M) [Mukhometov '75]

Ill-posed of order 1/2 [Stefanov-Uhlmann '04],

[M.-Nickl-Paternain '19], [Paternain-Salo '20], [M. '20]

Invertible up to compact error [Pestov-Uhlmann '04] (exact in
constant curvature cases)

f + K︸︷︷︸
compact

f =
1

8π
I ∗⊥︸︷︷︸

backproj.

A∗+HA−︸ ︷︷ ︸
�lter

I0f .

B Great ! let's implement it !
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Sampling the X-ray transform on simple surfaces

Introduction

A special family: constant curvature disks

Domain: D = {z ∈ C, |z | ≤ 1}
Metric: gκ(z) = (1 + κ|z |2)−2|dz |2, for κ ∈ (−1, 1) �xed.

Relevant quantities:

curv = 4κ, L(∂D) =
2π

1 + κ
, II = 1− κ.

Example with κ = −0.7,−0.3, 0, 0.3, 0.7.

Advantages: rotation-invariant, Pestov-Uhlmann formulas exact,

still reaches borderline cases of simplicity.
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Introduction

A reconstruction experiment (κ = −0.3)

true function geodesics
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Sampling the X-ray transform on simple surfaces

Introduction

Sampling questions [Stefanov, SIMA '20]

Problem: To reconstruct f from samples of Af , with A a linear,

injective, (kind of) stable operator. (�A = id�: classical sampling)
1 Given a bandlimited function f , what are the sampling

requirements on Af to �faithfully� reconstruct f ?
2 Given available sampling rates on Af , how to constrain the

bandlimit of f ?
3 If data is undersampled,

(a) can we predict location, orientation and frequency of artifacts ?
(b) can we reconstruct a blurred yet unaliased version of f ?

B [Stefanov, SIMA '20]: Sharp answers are possible when A is a

classical Fourier Integral Operator (such as I0 !).

Nearby literature:

Fourier-based: Natterer '93, Stefanov '20, Stefanov-Tindel '21

Detecting jump discontinuities: [Katsevich, '17, '20, '21]

Methods exploiting other sparsity: many authors
8 / 24



Sampling the X-ray transform on simple surfaces

Introduction

Sampling questions [Stefanov, SIMA '20]

Problem: To reconstruct f from samples of Af , with A a linear,

injective, (kind of) stable operator. (�A = id�: classical sampling)
1 Given a bandlimited function f , what are the sampling

requirements on Af to �faithfully� reconstruct f ?
2 Given available sampling rates on Af , how to constrain the

bandlimit of f ?
3 If data is undersampled,

(a) can we predict location, orientation and frequency of artifacts ?
(b) can we reconstruct a blurred yet unaliased version of f ?

B [Stefanov, SIMA '20]: Sharp answers are possible when A is a

classical Fourier Integral Operator (such as I0 !).

Nearby literature:

Fourier-based: Natterer '93, Stefanov '20, Stefanov-Tindel '21

Detecting jump discontinuities: [Katsevich, '17, '20, '21]

Methods exploiting other sparsity: many authors
8 / 24



Sampling the X-ray transform on simple surfaces

Introduction

Sampling questions [Stefanov, SIMA '20]

Problem: To reconstruct f from samples of Af , with A a linear,

injective, (kind of) stable operator. (�A = id�: classical sampling)
1 Given a bandlimited function f , what are the sampling

requirements on Af to �faithfully� reconstruct f ?
2 Given available sampling rates on Af , how to constrain the

bandlimit of f ?
3 If data is undersampled,

(a) can we predict location, orientation and frequency of artifacts ?
(b) can we reconstruct a blurred yet unaliased version of f ?

B [Stefanov, SIMA '20]: Sharp answers are possible when A is a

classical Fourier Integral Operator (such as I0 !).

Nearby literature:

Fourier-based: Natterer '93, Stefanov '20, Stefanov-Tindel '21

Detecting jump discontinuities: [Katsevich, '17, '20, '21]

Methods exploiting other sparsity: many authors
8 / 24



Sampling the X-ray transform on simple surfaces

Introduction

Aliasing illustration when A = I [Stefanov, SIMA, '20]

Nyquist criterion: if supp(f̂ ) ⊂ [−B,B]2, sample at h < π
B .

When Nyquist is violated (right: twice Nyquist rate):

On the Fourier (modulus) side:

B Artifacts at same location, with di�erent frequency and

orientation, recovery (generally) impossible 9 / 24



Sampling the X-ray transform on simple surfaces

Introduction

Answering sampling questions for the X-ray transform

Heuristics:

Bandlimit constraint on f = fh takes the form "WFh(f ) ⊂ Σ"

for some compact set Σ ⊂ T ∗M

Bandlimit on f translates into bandlimit on I0f through the

canonical relation of the FIO I0 via

WFh(I0f )\{0} ⊂ CI0◦WFh(f )\{0} [Stefanov '20, Thm 2.2]

Recovery of a Σ-bandlimited f requires unaliased sampling of

I0f , which depends on

the geometry via CI0 (Jacobi �elds, boundary curvature),
assuming Cartesian sampling on ∂+SM, a 'good' choice of
coordinate system on ∂+SM.

In undersampled situations, aliasing artifacts can be described.

10 / 24
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Sampling the X-ray transform on simple surfaces

The X-ray transform on CCD's

Coordinate systems

Coordinate systems

Sampling issues strongly depend on the choice of the coordinate

system. Previous coordinate systems: [Assylbekov-Stefanov, '20]

fan-beam (s, α) parallel (w , p)
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Sampling the X-ray transform on simple surfaces

The X-ray transform on CCD's

Coordinate systems

X-ray transforms: same function, di�erent coord. systems
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Sampling the X-ray transform on simple surfaces

The X-ray transform on CCD's

Coordinate systems

Changes of coordinate systems
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Sampling the X-ray transform on simple surfaces

The X-ray transform on CCD's

Canonical relation, microlocal range

Canonical relation of I0: geometric description

Using the double �bration picture [Helgason, Guillemin]

∂+SM
F←− SM

π−→ M,

one has the clean composition of FIOs I0 = F∗ ◦ π∗, then:
CI0(ω) = (C+(ω),C−(ω)), ω ∈ T ∗M (two graphs).

To �nd C+(ω):

Let (x , v) ∈ ∂+SM and t > 0, λ+ > 0 s.t. ω = λ+(γ̇x,v (t))
[
⊥.

Then C+(ω) = λ+η ∈ T ∗(x,v)∂+SM, where

η(V ) = b(x , v , t), η(H) = −µa(x , v , t) (a, b : scalar Jacobi �eld).

14 / 24



Sampling the X-ray transform on simple surfaces

The X-ray transform on CCD's

Canonical relation, microlocal range

Microlocal range CI0(T
∗M) in coordinate systems

Fan-beam:
η = λ(ηs(t) ds+ηα(t) dα)

ηs = II (s)b(s, α, t)− cosαa(s, α, t)

ηα = b(s, α, t).

Sample cotangent �ber

(Eucl. disk):

Sensitive to: Jacobi �elds

Parallel:
η = λ(ηw (t) dw + ηp(t) dp)

ηw = µ(SA(w, p))
b(w, p, t)

b(w, p, τ)
− µ(w, p)

b(SA(w, p), t)

b(SA(w, p), τ)

ηp = µ(SA(w, p))
b(w, p, t)

b(w, p, τ)
+ µ(w, p)

b(SA(w, p), t)

b(SA(w, p), τ)

Sample cotangent �ber (Eucl. disk):

Sensitive to: simplicity

15 / 24



Sampling the X-ray transform on simple surfaces

The X-ray transform on CCD's

Canonical relation, microlocal range

Numerical example κ = 0.3

function +

FT
WFh(I0fh) ⊂ CI0 ◦WFh(fh)
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The X-ray transform on CCD's

Canonical relation, microlocal range

A classical comparison

The classical picture: WF (I0f ) ⊂ CI0 ◦WF (f )
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Sampling the X-ray transform on simple surfaces

Sampling issues

Sharp sampling rates

Indicators of sharp sampling rates

Q: Given a bandlimit on f , how to predict sampling rates on I0f ?

A: If f is λB∗M-bandlimited, visualize λCI0(B∗M)
(�ber-dependent) and �t it in a Nyquist box !

Geometries: l. to .r, κ = −0.7,−0.3, 0, 0.3, 0.7
Coordinates: fan-beam (top), parallel (bottom)

19 / 24



Sampling the X-ray transform on simple surfaces

Sampling issues

Sharp sampling rates

Illustration of sharp rates. κ = −0.3

function + FT

20 / 24



Sampling the X-ray transform on simple surfaces

Sampling issues

Predicting aliasing artifacts

How to read and predict aliasing artifacts 1/2

Let's return to the canonical relation of I0.
Partitioning of one �ber of T ∗(∂+SM) (α = 0 or p = 0):

21 / 24



Sampling the X-ray transform on simple surfaces

Sampling issues

Predicting aliasing artifacts

How to read and predict aliasing artifacts 2/2

Original function

+ FT

Geometry:

(R, κ) = (1, 0.4)
Coordinates:

fan-beam
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Sampling the X-ray transform on simple surfaces

Sampling issues

Non 'box-based' considerations

How to beat the 'box-based' Nyquist rate ? [Natterer]

Vertically subsampled I0f - Fourier transform:
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Sampling the X-ray transform on simple surfaces

Sampling issues

Non 'box-based' considerations

Conclusions

• Injectivity, stability and reconstruction formulas at the continuous

level still do not address a variety of issues that can occur on the

discretization side.

• The sampling of FIOs can lead to new artifacts compared to the

classical sampling problem:

Artifacts can be at a di�erent orientation, frequency and

location.

Unlike in classical sampling, undersampling can lead to

higher-frequency reconstructions.

• Addressing sampling issues for FIOs requires a good

understanding of their canonical relation and a good choice of

coordinate system in the data space.

Thank you !

Reference: F.M. and P. Stefanov, Sampling the X-ray transform on

simple surfaces, preprint (2021). arxiv:2110.05761 24 / 24
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