

Unsupervised Denoising Requires Unsupervised Metrics

Carlos Fernandez-Granda

www.cims.nyu.edu/~cfgranda

10/18/2022

Acknowledgements

This work was supported by NSF grants OAC-1940097, OAC-2103936, and NRT-1922658

Matan Leibovich, Adria Marcos-Morales, Sreyas Mohan (NYU)

Peter Crozier, Piyush Haluai, Mai Tan, Joshua Vincent (ASU)

90% of all manufactured goods involve catalytic processes somewhere in their production chain

Considerable impact in energy, healthcare (pharmaceuticals), new material (polymers), transport, and the environment (water, air-quality, renewable and bio-produced materials)

90% of all manufactured goods involve catalytic processes somewhere in their production chain

Considerable impact in energy, healthcare (pharmaceuticals), new material (polymers), transport, and the environment (water, air-quality, renewable and bio-produced materials)

To understand catalysis we need to see what is going on

Motivation: Studying catalysis

Electron microscope image

Electron microscope image

We need to denoise

Electron microscope image

We need to denoise and know how well we are denoising!

Denoising via deep learning

Unsupervised denoising

Unsupervised metrics

Denoising via deep learning

Unsupervised denoising

Unsupervised metrics

The denoising problem

Estimate this

The denoising problem

Estimate this

From this

Convolutional estimation

Challenge: There are many pixels! (at least 10^4 , often 10^6)

Convolutional estimation

Challenge: There are many pixels! (at least 10^4 , often 10^6)

Solution: Exploit translation-invariant statistics

Covariance for dataset of natural images:

Pixel 356

Cost function

Supervised mean squared error

Linear estimate (low noise level)

Example noisy image

Learned weights

Linear estimate (medium noise level)

Example noisy image

Learned weights

Linear estimate (high noise level)

Example noisy image

Learned weights

Limitations of linearity

Problem: Same estimate for each pixel

Limitations of linearity

Problem: Same estimate for each pixel

Blurs edges and other features

Limitations of linearity

Problem: Same estimate for each pixel

Blurs edges and other features

Pre-deep-learning solutions:

Adapt filter locally (e.g. bilateral filter [Tomasi and Manduchi 1998, Milanfar 2013])

Design/learn sparsifying transforms (wavelets, dictionary learning)

Results on electron microscopy

Deep-learning solution

Learn nonlinear convolutional model

Denoising Convolutional Neural Network (DnCNN)¹

¹Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang. IEEE Transactions in Image Processing (2017)

- Gather dataset of natural images
- Add synthetic Gaussian noise to generate noisy images

- Gather dataset of natural images
- Add synthetic Gaussian noise to generate noisy images
- ▶ Train CNN to estimate clean image minimizing mean squared error

Works very well (state of the art)

Test image

Gradient of output pixels with respect to input image reveals learned $\mathsf{function}^2$

²Robust and interpretable blind image denoising via bias-free convolutional neural networks. S. Mohan, Z. Kadkhodaie, E. Simoncelli, C. Fernandez-Granda. ICLR 2020

Low noise

Noisy image

Denoised

Low noise

Noisy image

Pixel 1

Denoised

Low noise

Noisy image

Denoised

Pixel 1

Low noise

Noisy image

Denoised

Pixel 1

Medium noise

Noisy image

Denoised

Pixel 1

Pixel 2

High noise

Noisy image

Denoised

Pixel 1

Application to electron microscopy³

³Deep denoising for scientific discovery: A case study in electron microscopy. S. Mohan, R. Manzorro, J. L. Vincent, B. Tang, D. Y. Sheth, D. S. Mattesson, E. P. Simoncelli, P. A. Crozier, C. Fernandez-Granda. IEEE Transactions on Computational Imaging 2022

Results

Results

Gradient

Gradient

Gradient

Denoising via deep learning

Unsupervised denoising

Unsupervised metrics

We often cannot simulate ground truth (because we don't know it!)

Supervised MSE

Supervised MSE

Problem: We don't have clean images...

Noise2Noise⁴

Solution: Just use noisy images!

⁴Noise2noise: Learning image restoration without clean data. Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., Aila, T. ICML 2018

Noise2Noise⁴

Solution: Just use noisy images!

Requires multiple copies of clean image with independent noise

⁴Noise2noise: Learning image restoration without clean data. Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., Aila, T. ICML 2018

Neighbor2Neighbor⁵

Obtains copies from single image via spatial subsampling

⁵Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images. T. Huang, S. Li, X. Jia, H. Lu, J. Liu CVPR 2021

Blind-spot denoising⁶

⁶Noise2self: Blind denoising by self-supervision. J. Batson, L. Royer. ICML 2019 Noise2void- Learning denoising from single noisy images A. Krull, T. Buchholz, F. Jug. CVPR 2019 High-quality self-supervised deep image denoising S. Laine, T. Karras, J. Lehtinen, T. Aila. Neurips 2019

Noisy image

Noisy image

Reference

Noisy image

Reference

Supervised

⁷Unsupervised Deep Video Denoising D. Sheth, S. Mohan, J. Vincent, R. Manzorro, P. Crozier, M. Khapra, E. Simoncelli, C. Fernandez-Granda. ICCV 2021

⁸Unsupervised Deep Video Denoising D. Sheth, S. Mohan, J. Vincent, R. Manzorro,

 P. Crozier, M. Khapra, E. Simoncelli, C. Fernandez-Granda. ICCV 2021
⁹Adaptive Denoising via GainTuning S. Mohan, J. Vincent, R. Manzorro, P. Crozier, C. Fernandez-Granda, E. Simoncelli. NeurIPS 2021 Denoising via deep learning

Unsupervised denoising

Unsupervised metrics

In existing work, unsupervised methods are evaluated:

In existing work, unsupervised methods are evaluated:

On simulated data with known clean images

In existing work, unsupervised methods are evaluated:

On simulated data with known clean images

By visual inspection

In existing work, unsupervised methods are evaluated:

- On simulated data with known clean images
- By visual inspection
- By comparing to *clean* images estimated via averaging

In existing work, unsupervised methods are evaluated:

- On simulated data with known clean images
- By visual inspection
- By comparing to clean images estimated via averaging

Goal: Metric for quantitative evaluation without clean images

Idea

Compare to a noisy reference as in the Noise2Noise cost function

Clean image: x Data: y = x + z Denoised estimate: f(y)

Clean image: x Data: y = x + z Denoised estimate: f(y)

$$MSE := \frac{1}{n} \sum_{i=1}^{n} \left(x_i - f(y)_i \right)^2$$

Clean image: x Data: y = x + z Denoised estimate: f(y)

MSE :=
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - f(y)_i)^2$$

Clean image: x Data: y = x + z Denoised estimate: f(y)

MSE :=
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - f(y)_i)^2$$

$$\frac{1}{n}\sum_{i=1}^{n}\left(a_{i}-f(y)_{i}\right)^{2}$$

Clean image: x Data: y = x + z Denoised estimate: f(y)

MSE :=
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - f(y)_i)^2$$

$$\frac{1}{n}\sum_{i=1}^{n} (a_i - f(y)_i)^2 = \frac{1}{n}\sum_{i=1}^{n} (x_i + w_i - f(y)_i)^2$$

Clean image: x Data: y = x + z Denoised estimate: f(y)

MSE :=
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - f(y)_i)^2$$

$$\frac{1}{n}\sum_{i=1}^{n} (a_i - f(y)_i)^2 = \frac{1}{n}\sum_{i=1}^{n} (x_i + w_i - f(y)_i)^2$$
$$\approx \frac{1}{n}\sum_{i=1}^{n} (x_i - f(y)_i)^2 + \frac{1}{n}\sum_{i=1}^{n} w_i^2$$
Additive Gaussian noise with variance σ^2

Clean image: x Data: y = x + z Denoised estimate: f(y)

MSE :=
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - f(y)_i)^2$$

Noisy reference: a = x + w

$$\frac{1}{n} \sum_{i=1}^{n} (a_i - f(y)_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i + w_i - f(y)_i)^2$$
$$\approx \frac{1}{n} \sum_{i=1}^{n} (x_i - f(y)_i)^2 + \frac{1}{n} \sum_{i=1}^{n} w_i^2$$
$$\approx \text{MSE} + \sigma^2$$

$$\frac{1}{n}\sum_{i=1}^{n}\left(a_{i}-f(y)_{i}\right)^{2}\approx\mathrm{MSE}+\sigma^{2}$$

$$\frac{1}{n}\sum_{i=1}^{n}\left(a_{i}-f(y)_{i}\right)^{2}\approx\mathrm{MSE}+\sigma^{2}$$

$$\frac{1}{n}\sum_{i=1}^{n}\frac{(b_i-c_i)^2}{2} = \frac{1}{n}\sum_{i=1}^{n}\frac{(v_i-u_i)^2}{2}$$

$$\frac{1}{n}\sum_{i=1}^{n}\left(a_{i}-f(y)_{i}\right)^{2}\approx\mathrm{MSE}+\sigma^{2}$$

$$\frac{1}{n} \sum_{i=1}^{n} \frac{(b_i - c_i)^2}{2} = \frac{1}{n} \sum_{i=1}^{n} \frac{(v_i - u_i)^2}{2}$$
$$\approx \frac{1}{2n} \sum_{i=1}^{n} v_i^2 + \frac{1}{2n} \sum_{i=1}^{n} u_i^2$$

$$\frac{1}{n}\sum_{i=1}^{n}\left(a_{i}-f(y)_{i}\right)^{2}\approx\mathrm{MSE}+\sigma^{2}$$

$$\frac{1}{n} \sum_{i=1}^{n} \frac{(b_i - c_i)^2}{2} = \frac{1}{n} \sum_{i=1}^{n} \frac{(v_i - u_i)^2}{2}$$
$$\approx \frac{1}{2n} \sum_{i=1}^{n} v_i^2 + \frac{1}{2n} \sum_{i=1}^{n} u_i^2$$
$$\approx \sigma^2$$

$$\frac{1}{n}\sum_{i=1}^{n}\left(a_{i}-f(y)_{i}\right)^{2}\approx\mathrm{MSE}+\sigma^{2}$$

$$\frac{1}{n} \sum_{i=1}^{n} \frac{(b_i - c_i)^2}{2} = \frac{1}{n} \sum_{i=1}^{n} \frac{(v_i - u_i)^2}{2}$$
$$\approx \frac{1}{2n} \sum_{i=1}^{n} v_i^2 + \frac{1}{2n} \sum_{i=1}^{n} u_i^2$$
$$\approx \sigma^2$$

uMSE:=
$$\frac{1}{n} \sum_{i=1}^{n} (a_i - f(y)_i)^2 - \frac{(b_i - c_i)^2}{2}$$

uMSE and uPSNR

uMSE :=
$$\frac{1}{n} \sum_{i=1}^{n} (a_i - f(y)_i)^2 - \frac{(b_i - c_i)^2}{2}$$

uMSE and uPSNR

uMSE :=
$$\frac{1}{n} \sum_{i=1}^{n} (a_i - f(y)_i)^2 - \frac{(b_i - c_i)^2}{2}$$

$$\mathsf{uPSNR} := 10 \log \left(\frac{255^2}{\mathsf{uMSE}} \right)$$

Statistical properties

If noisy references correspond to the same clean image and noise is pixel-wise independent

If noisy references correspond to the same clean image and noise is pixel-wise independent

► The uMSE and uPSNR are unbiased

If noisy references correspond to the same clean image and noise is $\ensuremath{\mathsf{pixel-wise}}$ independent

- The uMSE and uPSNR are unbiased
- The uMSE and uPSNR are consistent

If noisy references correspond to the same clean image and noise is $\ensuremath{\mathsf{pixel-wise}}$ independent

- The uMSE and uPSNR are unbiased
- The uMSE and uPSNR are consistent
- The uMSE is asymptotically Gaussian

Confidence intervals

Comparison to averaging approach

Existing works compute MSE using average of noisy images as *clean image*

Comparison to averaging approach

Existing works compute MSE using average of noisy images as clean image

Requires many noisy images to converge to the true MSE

Comparison to averaging approach

Existing works compute MSE using average of noisy images as clean image

Requires many noisy images to converge to the true MSE

How do we compute the noisy references?

How do we compute the noisy references?

How do we compute the noisy references?

Consecutive frames

Bias

Bias

Bias

	$\sigma = 25$	$\sigma = 50$	$\sigma = 75$	
Method	PSNR	PSNR	PSNR	
Bilateral DenseNet DnCNN UNet	24.20 26.54 26.19 26.29	21.84 23.98 23.95 23.92	19.14 22.75 22.72 22.68	

		$\sigma = 25$		$\sigma = 50$		$\sigma = 75$	
Method	PSNR	uPSNR	PSNR	uPSNR	PSNR	uPSNR	
Bilateral DenseNet DnCNN UNet	24.20 26.54 26.19 26.29	24.18 26.51 26.21 26.28	21.84 23.98 23.95 23.92	21.86 24.06 24.02 24.01	19.14 22.75 22.72 22.68	19.17 23.00 22.75 22.70	

		$\sigma=25$			$\sigma = 50$			$\sigma=75$	
Method	PSNR	uPSNR	uPSNR _S	PSNR	uPSNR	uPSNR _S	PSNR	uPSNR	uPSNR _S
Bilateral DenseNet DnCNN UNet	24.20 26.54 26.19 26.29	24.18 26.51 26.21 26.28	26.20 27.61 28.14 27.98	21.84 23.98 23.95 23.92	21.86 24.06 24.02 24.01	22.90 26.28 26.08 26.25	19.14 22.75 22.72 22.68	19.17 23.00 22.75 22.70	19.58 24.69 24.59 24.84

Electron microscopy (Poisson noise)

Bilateral	Supervised	Unsupervised		
PSNR	PSNR	PSNR		
20.18	25.74	24.86		

Electron microscopy (Poisson noise)

	Bilateral		Supervised			Unsupervised		
PSNR	uPSNR	PSNR	uPSNR	P	SNR	uPSNR		
20.18	20.20	25.74	25.68	2	4.86	24.87		

Electron microscopy (Poisson noise)

	Bilateral		Supervised				Unsupervised		
PSNR uPSNR uPSNR _S PS			PSNR	uPSNR	uPSNR _S	PSNR	uPSNR	uPSNR _S	
20.18	20.20	20.21	25.74	25.68	25.86	24.86	24.87	24.74	

Real electron-microscope data

Inter-pixel correlation is non-negligeable

Real electron-microscope data

Inter-pixel correlation is non-negligeable

Solution: Spatial subsampling

Real electron-microscope data

Gaussian smoothing, uPSNR: 20.4 dB

Neural network (Neighbor2neighbor), uPSNR: 26.9 dB

uMSE/uPSNR are a consistent estimator of MSE/PSNR

uMSE/uPSNR are a consistent estimator of MSE/PSNR

Open questions:

uMSE/uPSNR are a consistent estimator of MSE/PSNR

Open questions:

How to address spatial-subsampling bias?

uMSE/uPSNR are a consistent estimator of MSE/PSNR

Open questions:

- How to address spatial-subsampling bias?
- How to deal with correlated noise?

uMSE/uPSNR are a consistent estimator of MSE/PSNR

Open questions:

- How to address spatial-subsampling bias?
- How to deal with correlated noise?
- Extension to inverse problems beyond denoising

For more information

Robust and interpretable blind image denoising via bias-free convolutional neural networks

Mohan & Kadkhodaie et. al. ICLR 2020

Unsupervised deep video denoising Sheth & Mohan et. al. ICCV 2021

Adaptive denoising via GainTuning Mohan et. al. NeurIPS 2021

Deep denoising for scientific discovery: A case study in electron microscopy Mohan et. al. IEEE Transactions on Computational Imaging 2022

Developing and Evaluating Deep Neural Network-based denoising for Nanoparticle TEM Images with Ultra-low Signal-to-Noise Vincent et. al. Microscopy & Microanalysis 2021

Evaluating Unsupervised Denoising Requires Unsupervised Metrics Marcos-Morales et. al. Preprint 2022