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1. Introduction

- We are interested in monitoring the shape of a waveguide from measurements of the fields on
a part of its surface, or from measurements in the section

- Applications include corrosion, quality control of semi-conducting structures,...

- We are particularly interested in how one can use locally resonant frequencies, which are
finely tuned to the local geometric features

- Our work is motivated by experiments made by Claire Prada and her collaborators at Institut
Langevin, who subject an elastic plate to laser excitation to measure the plate thickeness



There has been a lot of previous work concerning the detection of defects in waveguides

- Reconstructions based on linear sampling at a fixed frequency

[Dediu-McLaughlin, Bourgeois-Fliss, Bourgeois-Lunéville, Monk-Selgas-Yang,
Borcea-Cakoni-Meng,...]

- Asymptotic studies of the fields when the defects are small [Ammari-Iakovleva-Kang,...]

- Inverse problems using multi-frequency measurements [Bao-Triki, Isakov-Lu, Sini-Thành,...]



2. The forward problem : modal decomposition and asymptotic
structure of the solution near resonant frequencies

In a perfectly straight acoustic waveguide Ω = R× (0, 1), the Helmholtz equation
∆u+ k2u = f in Ω
∂νu = b1 on R× {y = 1}
∂νu = b0 on R× {y = 0}
u is outgoing

has a unique solution (under regularity assumptions on the source terms), which can be
represented as a series

u(x, y) =
∑
n≥0

uk,n(x)ϕn(y)

uk,n(x) =
i

2kn

∫
R

[
fn(x

′
) + b1(x

′
)ϕn(1) + b0(x

′
)ϕn(0)

]
e
ikn|x−x′|dx

′



where (ϕn)n≥1 is the basis of L2(0, 1) defined by

ϕ0(y) = 1 and ϕn(y) =
√

(2) cos(nπy), n ≥ 1

The expansion holds assuming that for all n ≥ 0,

k
2
n = k

2 − n2
π

2
/h

2 6= 0

and expressing the radiation condition in the form

∀ n ≥ 0,
∣∣∣ d
dx

(< uk, ϕn >)
x

|x|
− ikn < uk, ϕn >

∣∣∣ → 0 as |x| → ∞

Let Ωr = (−r, r)× (0, 1). The solution operator is continuous

||uk||H2(Ωr) ≤ Csol

(
||f ||L2(Ωr) + ||b1||H̃1/2(−r,r) + ||b0||H̃1/2(−r,r)

)
where Csol depends on r and on dist(k, nπ), n ≥ 0



We consider a waveguide with variable thickness h, which is a perturbation of a straight
wavewguide, under the smallness assumption that

∀ x ∈ R, 0 < hmin ≤ h(x) ≤ hmax <∞

||h′||∞ < η ||h′′||∞ < η
2

supph
′ ⊂ (−R/η,R/η)

and to simplify the analysis, we assume that the bottom of the waveguide is flat and that h is
increasing from hmin to hmax



The Helmholtz equation in Ω̃ = {x ∈ R, 0 < x < h(x)}

∆ũ+ k2ũ = f̃ in Ω

∂ν ũ = b̃top on R× {y = h(x)}

∂ν ũ = b̃bot on R× {y = 0}

ũ is outgoing

(1)

can be mapped to a PDE on a straight waveguide using the change of variable
(x, y)→ (x, y/h(x)) 

∆hu+ k2u = f in Ω

∂νu−Dhu = btop on R× {y = 1}

∂νu−Dhu = bbot on R× {y = 0}

u is outgoing

(2)

∆h, Dh are differential operators that involve h and its derivatives



Under the smallness assumption, we may neglect the terms in δh, Dh that are small and consider
approaching the previous system by the simpler

∂xxv +
1

h(x)2
∂yyv + k

2
v = f in Ω

∂νv = btop on R× {y = 1}

∂νv = bbot on R× {y = 0}

u is outgoing

for which wee seek a solution in the form of a series

v(x, y) =
∑
n≥0

vn(x)ϕn(y)

where the vn’s are outgoing and solve the 1D equation

v
′′
n(x) + kn(x)

2
vn(x) = fn(x)− ϕn(1)btop(x)− ϕn(0)bbot(x), x ∈ R

Here the ‘local wavenumber’ is kn(x)2 = k2 −
n2π2

h(x)2

We assume that δ = inf
(∣∣∣k2 − n2π2

hmax2

∣∣∣1/2
,
∣∣∣k2 − n2π2

hmin
2

∣∣∣1/2)
> 0



We use results by F. Olver on the Schrödinger equation :

1. If kn(x)2 > 0 (resp. k2
n < 0) the mode is called propagative (resp. evanescent)

One can change variable from x to z(x) =
∫ x |kn|, so that wn =

√
zvn solves

∂zzwn ± wn = ζ(x, z)wn with ||ζ||∞ = O(η)

then wn can be expressed as the sum of 2 exponential functions plus an error term

2. If kN (x∗) = 0 then the mode is called locally resonant (given our assumption that h is
increasing, there is only one such value)

The change of variable

ξ(x) =


(
− 3i/2

∫ x∗

x

kN (s) ds
)2/3

if x < x∗

−
(

3/2

∫ x

x∗
kN (s) ds

)2/3
if x > x∗

shows that wN (ξ) = −(
√
kNξ(x)−1/4)vN (x) solves the Airy equation

∂ξξwN − ξwN = ζ(ξ)wN , with ||ζ||∞ = O(η)

and wN can be expressed as a combination of Airy functions plus an error term



Theorem :

Let f ∈ L2(Ω), btop, bbot ∈ H1/2(R) with compact support in |x| < r for some r > 0

Assume that there is a single locally resonant mode N , associated with a single point x∗

There exists η0 = η0(hmin, hmax, R, r, δ) such that for η < η0 the Helmholtz equation (2) has
a unique solution u ∈ H2

loc(Ω)

Moreover u can be approximated by

u
app

(x, y) =
∑
n≥0

(∫
R
G

app
(x, s)

(
− fn(s) + ϕn(1)btop(s) + ϕn(0)bbot(s) ds

)
ϕn(y)

G
app

(x, s) =



i

2
√
kn(s)kn(x)

exp
(
i
∣∣∣ ∫ x

s

kn

∣∣∣) n < N

i

2
√
|kn|(s)|kn|(x)

exp
(
−
∣∣∣ ∫ x

s

|kn|
∣∣∣) n > N

π
(
ξ(s)ξ(x)

)1/4

√
kn(s)kn(x)

(iA+ B)(ξ(s))A(ξ(x)) if x < s

π
(
ξ(s)ξ(x)

)1/4

√
kn(s)kn(x)

(iA+ B)(ξ(x))A(ξ(s)) if x > s

n = N



Finally, one can infer existence of a solution to the original Helmholtz equation under the
assumption of smallness of h and define an approximate solution

ũ
app

(x, y) = u
app

(x,
y

h(x)
)

Remarks :

- This construction is a Born approximation

- The (stringent) assumptions show modes coupling is weak, inspite of the x-dependance of h

- The construction can be extended to a non-increasing profile h which is the union of a finite
number of sections where h is strictly monotonous

(one has to assume that they are no trapped modes)



Comparisons between FEM approximation of u and uapp

Red : Gapp
n (x, 0) ∼ uapp when f ∼ δ0(x)

Blue : ũ(x, 0) computed via a FEM approximation, using PML’s

Relative L2 error between 5 and 10%



Representation of the wavefield for a monochromatic source

evanescent mode

locally resonant modes

propagative mode



3. Reconstruction of the profile of the waveguide

We use a monochromatic source f(x, y) = fN (x)ϕN (y) where n is a locally resonant
frequency

The measurements are

u(x, 0) ' u
app
N (x)ϕN (0) '

∫
R
G

app
N (x, s)f(s) ds

where Gapp
N (x, s) = q(s)

−ξ(x)1/4√
kn(x)

A
(
ξ(x)

)
One can show that

data(x) = u(x, 0) = zA
(
α(x
∗ − x)

)
+ error term

z =
( 2N2π2h′(x∗)

h(x∗)3

)−1/6
∫ ∞
x∗+R

q(s)fN (s) ds α =
( 2N2π2h′(x∗)

h(x∗)3

)1/3



Setting F (z, α, β) = zA(β − αx), the parameters z, α, β are estimated from the data points
by a least square fit

And one obtains an estimate for x∗ = β/α

On the other hand, if the frequency k is locally resonant at x∗

k
2
N = 0 ⇒ k =

Nπ

h(x∗)

In this way, one can infer both x∗ and h(x∗) from the data and recover the profile of the
waveguide



Reconstruction method

1. Find an approximation of the support of h′ and a range of frequencies [kmin, kmax] that
contain locally resonant frequencies

2. Choose a discrete set of frequencies K ⊂ [kmin, kmax], choose source terms f, bbot.
Measure the wavefield u(x, 0) for each chosen frequency

3. Filter the data, eliminating components corresponding to propagative frequencies in the
Fourier transform of the responses

4. Find the point xmax where the response |u(x, 0)| is maximal and choose points in
[xmax − R, xmax + R]. The data is then

data(i) = u(xi, 0)

5. For every frequency k in K, compute h(x∗(k)) = Nπ/k. Minimize∑
i

|u(xi, 0)− F (z, α, β)(xi)|2

to obtain an estimate of x∗(k)



Examples of reconstruction

1



4. Conclusions

- We studied the propagation of waves in a waveguide with a slowly and smoothly varying
profile

- One can map the setting to that of a straight waveguide and construct a solution as a Born
approximation

- We analyzed the wavefield for locally resonant frequency

Under our assumptions, mode mixing does not perturb too much the structure of the
solution

For a locally resonant mode, the modeal equation can be cast as an Airy equation

- We have obtain an asymptotic form of the wavefield, from which one can extract information
on the geometric features of the waveguide and proposed a reconstruction method



Many questions remain open :

- Can one relax the smoothness assumptions on the geometry ? In particular, what about
kinks ?

- Can one find a method to show existence of solutions that does not rely on a modal
expansion ?

- Extension to elasticity : in the case of plates, Lamb modes allow for a representation of the
displacement field

However, the associated wave structure is more
complex and there are several types of resonances

In her experiments, Claire Prada uses ZGV modes
(wavenumbers for which ∂ωk = 0)
what is the geometrical information contained in
the asymptotic structure of these modes ? 02468
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