Microlocal analysis of seven-dimensional Radon transforms for Compton scattering tomography

James Webber ${ }^{\dagger}$ and Todd Quinto*

Brigham and Women's Hospital ${ }^{\dagger}$ / Department of Mathematics, Tufts University*

Inverse Problems at a small scale, October 19, 2022

$$
\begin{aligned}
& \text { SIMONS } \\
& \text { FOUNDATION }
\end{aligned}
$$

(Partial support from U.S. National Science Foundation, Simons Foundation)

Motivation

- Motivated by Compton Scattering Tomography (CST), we present a microlocal analysis of two novel Radon transforms which map functions to their integrals over apple and lemon surfaces.

Motivation

- Motivated by Compton Scattering Tomography (CST), we present a microlocal analysis of two novel Radon transforms which map functions to their integrals over apple and lemon surfaces.
- Main applications: Airport baggage and security screening, medical imaging.

Motivation

- Motivated by Compton Scattering Tomography (CST), we present a microlocal analysis of two novel Radon transforms which map functions to their integrals over apple and lemon surfaces.
- Main applications: Airport baggage and security screening, medical imaging.
- We consider the full 7-D manifold of apples and lemons and two natural submanifolds.

Motivation

- Motivated by Compton Scattering Tomography (CST), we present a microlocal analysis of two novel Radon transforms which map functions to their integrals over apple and lemon surfaces.
- Main applications: Airport baggage and security screening, medical imaging.
- We consider the full 7-D manifold of apples and lemons and two natural submanifolds.
- Main goals:
- To understand when there are no microlocal artifacts (added singularities) in backprojections reconstructions from $R_{j}^{*} D_{\varphi} R_{j}$.

Motivation

- Motivated by Compton Scattering Tomography (CST), we present a microlocal analysis of two novel Radon transforms which map functions to their integrals over apple and lemon surfaces.
- Main applications: Airport baggage and security screening, medical imaging.
- We consider the full 7-D manifold of apples and lemons and two natural submanifolds.
- Main goals:
- To understand when there are no microlocal artifacts (added singularities) in backprojections reconstructions from $R_{j}^{*} D \varphi R_{j}$.
- To predict and analyze the image artifacts with incomplete data.

Motivation

- Motivated by Compton Scattering Tomography (CST), we present a microlocal analysis of two novel Radon transforms which map functions to their integrals over apple and lemon surfaces.
- Main applications: Airport baggage and security screening, medical imaging.
- We consider the full 7-D manifold of apples and lemons and two natural submanifolds.
- Main goals:
- To understand when there are no microlocal artifacts (added singularities) in backprojections reconstructions from $R_{j}^{*} D \varphi R_{j}$.
- To predict and analyze the image artifacts with incomplete data.
- To mitigate artifacts when possible.

The Compton Effect

The Compton effect determines scattering angle
$E_{\mathrm{src}}=$ energy of monochromatic photons at the source, $E_{d}=$ measured energy of scattered photon at detector, $E_{0}=$ electron rest energy, $\omega=$ scattering angle.

$$
\frac{E_{\text {src }}-E_{d}}{E_{\text {src }}}=\frac{1-\cos (\omega)}{E_{0}}
$$

The Compton Effect

The Compton effect determines scattering angle

$E_{\text {src }}=$ energy of monochromatic photons at the source,
$E_{d}=$ measured energy of scattered photon at detector, $E_{0}=$ electron rest energy, $\omega=$ scattering angle.

$$
\frac{E_{\text {src }}-E_{d}}{E_{\text {src }}}=\frac{1-\cos (\omega)}{E_{0}}
$$

Moral

- If two photons from the same source hit the detector with the same energy, they have the same scattering angle.

The Compton Effect

The Compton effect determines scattering angle

$E_{\mathrm{src}}=$ energy of monochromatic photons at the source,
$E_{d}=$ measured energy of scattered photon at detector, $E_{0}=$ electron rest energy, $\omega=$ scattering angle.

$$
\frac{E_{\mathrm{src}}-E_{d}}{E_{\mathrm{src}}}=\frac{1-\cos (\omega)}{E_{0}}
$$

Moral

- If two photons from the same source hit the detector with the same energy, they have the same scattering angle.
- Therefore, they are on the same circle containing the source and detector! (if on the same side)

Back scattered Compton Data are over apples

Photons leave the source with energy $E_{\text {src }}$.

Back scattered Compton Data are over apples

Photons leave the source with energy $E_{\text {src }}$.
Some will backscatter off the point with energy E_{d} measured at the detector.
E_{d} determines the scattering angle $\omega \in(\pi / 2, \pi)$ and the apple part of the red circles (all points with scattering angle ω).

Back scattered Compton Data are over apples

Photons leave the source with energy $E_{\text {srr }}$.
Some will backscatter off the point with energy E_{d} measured at the detector.
E_{d} determines the scattering angle $\omega \in(\pi / 2, \pi)$ and the apple part of the red circles (all points with scattering angle ω). The same scattering occurs on the other circle.

Forward scattered Compton Data are over lemons

Photons leave the source with energy $E_{\text {srr }}$.
Forward Scatter will occur on the lemon () part between the source and detector with scattering angle $\omega \in(0, \pi / 2)$.

Previous works and dimensionality

1. Much of the literature considers these transforms over 3-D sets of lemons and apples [Webber, Q., Miller, Rigaud, Hahn, Webber, Holman, Cabeiro, et al.], [Arridge], etc.
2. [Rigaud, Hahn] With-3-D data, artifacts observed due to incomplete data.
3. [Webber, Holman] With 3-D data, transform shown to violate the Bolker condition, and artifacts are induced by a flowout. Invisible singularities near the center due to limited energy resolution.
4. [Cabeiro, et al.] shows artifacts in simulated reconstructions.

Previous works and dimensionality

1. Much of the literature considers these transforms over 3-D sets of lemons and apples [Webber, Q., Miller, Rigaud, Hahn, Webber, Holman, Cabeiro, et al.], [Arridge], etc.
2. [Rigaud, Hahn] With-3-D data, artifacts observed due to incomplete data.
3. [Webber, Holman] With 3-D data, transform shown to violate the Bolker condition, and artifacts are induced by a flowout. Invisible singularities near the center due to limited energy resolution.
4. [Cabeiro, et al.] shows artifacts in simulated reconstructions.
Common theme: these authors analyze artifacts for various three-dimensional data sets.

The parametrization

- \mathbf{x}_{0} is the center of the spindle torus, $\mathbf{x}_{T}=\mathbf{x}-\mathbf{x}_{0}$.

The parametrization

- \mathbf{x}_{0} is the center of the spindle torus, $\mathbf{x}_{T}=\mathbf{x}-\mathbf{x}_{0}$.
- $t=$ the distance between the center of the torus and center of the generating circle.

The parametrization

- \mathbf{x}_{0} is the center of the spindle torus, $\mathbf{x}_{T}=\mathbf{x}-\mathbf{x}_{0}$.
- $t=$ the distance between the center of the torus and center of the generating circle.
- $s>t^{2}$ and \sqrt{s} is the radius of the generating circle.

The parametrization

- \mathbf{x}_{0} is the center of the spindle torus, $\mathbf{x}_{T}=\mathbf{x}-\mathbf{x}_{0}$.
- $t=$ the distance between the center of the torus and center of the generating circle.
- $s>t^{2}$ and \sqrt{s} is the radius of the generating circle.
- $\xi \in S^{2}$ is parallel the axis of the spindle torus

The parametrization

- \mathbf{x}_{0} is the center of the spindle torus, $\mathbf{x}_{T}=\mathbf{x}-\mathbf{x}_{0}$.
- $t=$ the distance between the center of the torus and center of the generating circle.
- $s>t^{2}$ and \sqrt{s} is the radius of the generating circle.
- $\xi \in S^{2}$ is parallel the axis of the spindle torus

$$
\Psi_{j}\left(s, t, \mathbf{x}_{0}, \xi ; \mathbf{x}\right)=\left(\left\|\mathbf{x}_{T}-\left\langle\mathbf{x}_{T}, \xi\right\rangle \xi\right\|+(-1)^{j} t\right)^{2}+\left\langle\mathbf{x}_{T}, \xi\right\rangle^{2}-s .
$$

$\Psi_{j}=0$ is the defining equation of the apple $(j=1)$ and lemon $(j=2)$ Tufts surfaces.

Some example surfaces

Here are some 2-D cross-sections of apples and lemons with the defining equations highlighted.

Apples $(j=1)$

Lemons $(j=2)$

(x, y) plane cross-sections of the apple and lemon parts of a spindle torus when $\xi=(0,1)$ (left) and $\xi=(1,0)$ (right), $\mathbf{x}_{0}=\mathbf{0}$, and s and t vary between $\frac{1}{2}$ and 7 .

Our generalized Radon transform

$f \in L_{c}^{2}(B)$, integrate over apple $(j=1)$ and lemon $(j=2)$ surfaces:

$$
\mathcal{R}_{j} f\left(s, t, \mathbf{x}_{0}, \xi\right)=\int_{X}\left\|\nabla_{\mathbf{x}} \Psi_{j}\right\| \delta\left(\Psi_{j}\left(s, t, \mathbf{x}_{0}, \xi ; \mathbf{x}\right)\right) f(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

Our generalized Radon transform

$f \in L_{c}^{2}(B)$ ，integrate over apple（ $j=1$ ）and lemon $(j=2)$ surfaces：

$$
\begin{aligned}
\mathcal{R}_{j} f\left(s, t, \mathbf{x}_{0}, \xi\right) & =\int_{X}\left\|\nabla_{\mathbf{x}} \Psi_{j}\right\| \delta\left(\Psi_{j}\left(s, t, \mathbf{x}_{0}, \xi ; \mathbf{x}\right)\right) f(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{X}\left\|\nabla_{\mathbf{x}} \Psi_{j}\right\| e^{i \sigma \Psi_{j}\left(s, t, \mathbf{x}_{0}, \xi ; \mathbf{x}\right)} f(\mathbf{x}) \mathrm{d} \mathbf{x} \mathrm{~d} \sigma
\end{aligned}
$$

using $\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \sigma r} \mathrm{~d} \sigma=\delta(r)$ ．

Our generalized Radon transform

$f \in L_{c}^{2}(B)$, integrate over apple $(j=1)$ and lemon $(j=2)$ surfaces:

$$
\begin{aligned}
\mathcal{R}_{j} f\left(s, t, \mathbf{x}_{0}, \xi\right) & =\int_{X}\left\|\nabla_{\mathbf{x}} \Psi_{j}\right\| \delta\left(\Psi_{j}\left(s, t, \mathbf{x}_{0}, \xi ; \mathbf{x}\right)\right) f(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{X}\left\|\nabla_{\mathbf{x}} \Psi_{j}\right\| e^{i \sigma \Psi_{j}\left(s, t, \mathbf{x}_{0}, \xi ; \mathbf{x}\right)} f(\mathbf{x}) \mathrm{d} \mathbf{x} \mathrm{~d} \sigma
\end{aligned}
$$

using $\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{e}^{i \sigma r} \mathrm{~d} \sigma=\delta(r)$. Apple transform: $\mathcal{A} f=\mathcal{R}_{1} f$ Lemon transform: $\mathcal{L} f=\mathcal{R}_{2} f$

Our generalized Radon transform

$f \in L_{c}^{2}(B)$, integrate over apple $(j=1)$ and lemon $(j=2)$ surfaces:

$$
\begin{aligned}
\mathcal{R}_{j} f\left(s, t, \mathbf{x}_{0}, \xi\right) & =\int_{X}\left\|\nabla_{\mathbf{x}} \Psi_{j}\right\| \delta\left(\Psi_{j}\left(s, t, \mathbf{x}_{0}, \xi ; \mathbf{x}\right)\right) f(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{X}\left\|\nabla_{\mathbf{x}} \Psi_{j}\right\| e^{i \sigma \Psi_{j}\left(s, t, \mathbf{x}_{0}, \xi ; \mathbf{x}\right)} f(\mathbf{x}) \mathrm{d} \mathbf{x} \mathrm{~d} \sigma
\end{aligned}
$$

using $\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{e}^{i \sigma r} \mathrm{~d} \sigma=\delta(r)$.
Apple transform: $\mathcal{A} f=\mathcal{R}_{1} f$
Lemon transform: $\mathcal{L} f=\mathcal{R}_{2} f$
Let \bar{B} be the closed unit ball. The domain of $\mathcal{R}_{j} f$ is defined

$$
\begin{aligned}
& Y=\left\{\left(s, t, \mathbf{x}_{0}, \xi\right) \in \mathbb{R}^{2} \times \mathbb{R}^{3} \times S^{2}\right. \\
&\left.: s>t^{2},\left\{\mathbf{x}_{0} \pm \sqrt{s-t^{2}} \xi\right\} \cap \bar{B}=\varnothing\right\},
\end{aligned} .
$$

Y describes the set of apples and lemons who's singular points (source and receiver) do not intersect \bar{B}.

Main theorem

Theorem (Webber, Q. Inverse Problems 38(2022))
The apple and lemon transforms $R_{j}: L_{c}^{2}(B) \rightarrow L_{\text {loc }}^{2}(Y)$ are elliptic FIO order-2.

Main theorem

Theorem (Webber, Q. Inverse Problems 38(2022))
The apple and lemon transforms $R_{j}: L_{c}^{2}(B) \rightarrow L_{\text {loc }}^{2}(Y)$ are elliptic FIO order-2.
The left projections $\Pi_{L}^{(1)}, \Pi_{L}^{(2)}$ of \mathcal{A}, \mathcal{L}, respectively, are injective immersions, i.e., \mathcal{A}, \mathcal{L} satisfy the Bolker condition.

Main theorem

Theorem (Webber, Q. Inverse Problems 38(2022))
The apple and lemon transforms $R_{j}: L_{c}^{2}(B) \rightarrow L_{\text {loc }}^{2}(Y)$ are elliptic FIO order-2.
The left projections $\Pi_{L}^{(1)}, \Pi_{L}^{(2)}$ of \mathcal{A}, \mathcal{L}, respectively, are injective immersions, i.e., \mathcal{A}, \mathcal{L} satisfy the Bolker condition.

Key point: With full seven-dimensional data, the lemon and apple transforms satisfy the Bolker condition.

Main theorem

Theorem (Webber, Q. Inverse Problems 38(2022))
The apple and lemon transforms $R_{j}: L_{c}^{2}(B) \rightarrow L_{\text {loc }}^{2}(Y)$ are elliptic FIO order-2. The left projections $\Pi_{L}^{(1)}, \Pi_{L}^{(2)}$ of \mathcal{A}, \mathcal{L}, respectively, are injective immersions, i.e., \mathcal{A}, \mathcal{L} satisfy the Bolker condition.

Key point: With full seven-dimensional data, the lemon and apple transforms satisfy the Bolker condition.

- Thus, there are no artifacts in backprojection type reconstructions from seven-dimensional lemon or apple integral data, $\mathcal{K}=R_{j}^{*} D \varphi R_{j} f$ where φ is smooth (i.e., \mathcal{K} is a $\psi D O$).

Main theorem

Theorem (Webber, Q. Inverse Problems 38(2022))
The apple and lemon transforms $R_{j}: L_{c}^{2}(B) \rightarrow L_{\text {loc }}^{2}(Y)$ are elliptic FIO order-2. The left projections $\Pi_{L}^{(1)}, \Pi_{L}^{(2)}$ of \mathcal{A}, \mathcal{L}, respectively, are injective immersions, i.e., \mathcal{A}, \mathcal{L} satisfy the Bolker condition.

Key point: With full seven-dimensional data, the lemon and apple transforms satisfy the Bolker condition.

- Thus, there are no artifacts in backprojection type reconstructions from seven-dimensional lemon or apple integral data, $\mathcal{K}=R_{j}^{*} D \varphi R_{j} f$ where φ is smooth (i.e., \mathcal{K} is a $\psi D O$).
- Also, we show there are no invisible singularities on B with data over all Y.

Proof outline:

1. Calculate the canonical relation, \mathcal{C}_{j} of R_{j} and choose good coordinates.
$R=R(\alpha, \beta)=\left(\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta\end{array}\right), \quad \xi=R \mathbf{e}_{3}$.

Proof outline:

1. Calculate the canonical relation, \mathcal{C}_{j} of R_{j} and choose good coordinates.
$R=R(\alpha, \beta)=\left(\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta\end{array}\right), \quad \xi=R \mathbf{e}_{3}$.
2. Show the symbol of \mathcal{R}_{j} is smooth and never zero (singular points on our spindle tori don't meet B).

Proof outline：

1．Calculate the canonical relation， \mathcal{C}_{j} of R_{j} and choose good coordinates．
$R=R(\alpha, \beta)=\left(\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta\end{array}\right), \quad \xi=R \mathbf{e}_{3}$.
2．Show the symbol of \mathcal{R}_{j} is smooth and never zero（singular points on our spindle tori don＇t meet B ）．
3．Recall Sylvester＇s Determinant Theorem（SDT）：
$A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times m}: \operatorname{det}\left(I_{m \times m}+A B\right)=\operatorname{det}\left(I_{n \times n}+B A\right)$ ．

Proof outline:

1. Calculate the canonical relation, \mathcal{C}_{j} of R_{j} and choose good coordinates.
$R=R(\alpha, \beta)=\left(\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta\end{array}\right), \xi=R \mathbf{e}_{3}$.
2. Show the symbol of \mathcal{R}_{j} is smooth and never zero (singular points on our spindle tori don't meet B).
3. Recall Sylvester's Determinant Theorem (SDT):
$A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times m}: \operatorname{det}\left(I_{m \times m}+A B\right)=\operatorname{det}\left(I_{n \times n}+B A\right)$.
4. Show that the phase function is nondegenerate.

Proof outline:

1. Calculate the canonical relation, \mathcal{C}_{j} of R_{j} and choose good coordinates.

$$
R=R(\alpha, \beta)=\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \beta & -\sin \beta \\
0 & \sin \beta & \cos \beta
\end{array}\right), \quad \xi=R \mathbf{e}_{3} .
$$

2. Show the symbol of \mathcal{R}_{j} is smooth and never zero (singular points on our spindle tori don't meet B).
3. Recall Sylvester's Determinant Theorem (SDT):
$A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times m}: \operatorname{det}\left(I_{m \times m}+A B\right)=\operatorname{det}\left(I_{n \times n}+B A\right)$.
4. Show that the phase function is nondegenerate.
5. Show that $\Pi_{L}^{(j)}$ is an injective immersion (SDT).

Proof outline：

1．Calculate the canonical relation， \mathcal{C}_{j} of R_{j} and choose good coordinates．
$R=R(\alpha, \beta)=\left(\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta\end{array}\right), \quad \xi=R \mathbf{e}_{3}$.
2．Show the symbol of \mathcal{R}_{j} is smooth and never zero（singular points on our spindle tori don＇t meet B ）．
3．Recall Sylvester＇s Determinant Theorem（SDT）：
$A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times m}: \operatorname{det}\left(I_{m \times m}+A B\right)=\operatorname{det}\left(I_{n \times n}+B A\right)$ ．
4．Show that the phase function is nondegenerate．
5．Show that $\Pi_{L}^{(j)}$ is an injective immersion（SDT）． Each of these calculations has an expression： $\operatorname{det}\left(l_{3 \times 3}-\frac{t}{g}\left(r_{1}^{T}, r_{2}^{T}\right)\binom{r_{1}}{r_{2}}\right)=\operatorname{det}\left(l_{2 \times 2}-\frac{t}{g}\binom{r_{1}}{r_{2}}\left(r_{1}^{T}, r_{2}^{T}\right)\right)$ where r_{1} and r_{2} are the first two rows of $R^{T}, g=\left\|\mathbf{x}_{T}-\left\langle\mathbf{x}_{T}, \xi\right\rangle \xi\right\|$ ．

A five-dimensional set of spindle tori

Corollary ([Webber, Q.])

Let $\xi_{0} \in S^{2}$ be fixed. Then the Radon transform over lemons with axis parallel ξ_{0}

$$
\mathcal{L}_{T} f\left(\boldsymbol{s}, t, \mathbf{x}_{0}\right)=\mathcal{L} f\left(\boldsymbol{s}, t, \mathbf{x}_{0}, \xi_{0}\right)
$$

satisfies the Bolker condition on domain $\mathcal{E}^{\prime}(B)$.

A five-dimensional set of spindle tori

Corollary ([Webber, Q.])

Let $\xi_{0} \in S^{2}$ be fixed. Then the Radon transform over lemons with axis parallel ξ_{0}

$$
\mathcal{L}_{T} f\left(s, t, \mathbf{x}_{0}\right)=\mathcal{L} f\left(s, t, \mathbf{x}_{0}, \xi_{0}\right)
$$

satisfies the Bolker condition on domain $\mathcal{E}^{\prime}(B)$. The apple transform with ξ_{0} fixed

$$
\mathcal{A}_{T} f\left(s, t, \mathbf{x}_{0}\right)=\mathcal{A} f\left(s, t, \mathbf{x}_{0}, \xi_{0}\right)
$$

however, does not satisfy the Bolker condition.

A five-dimensional set of spindle tori

Corollary ([Webber, Q.])

Let $\xi_{0} \in S^{2}$ be fixed. Then the Radon transform over lemons with axis parallel ξ_{0}

$$
\mathcal{L}_{T} f\left(s, t, \mathbf{x}_{0}\right)=\mathcal{L} f\left(s, t, \mathbf{x}_{0}, \xi_{0}\right)
$$

satisfies the Bolker condition on domain $\mathcal{E}^{\prime}(B)$.
The apple transform with ξ_{0} fixed

$$
\mathcal{A}_{T} f\left(s, t, \mathbf{x}_{0}\right)=\mathcal{A} f\left(s, t, \mathbf{x}_{0}, \xi_{0}\right)
$$

however, does not satisfy the Bolker condition.

1. Specifics: The left projection of \mathcal{A}_{T} has Jacobian which drops rank above the cylinder $t=\left\|\mathbf{x}_{T}-\left\langle\mathbf{x}_{T}, \xi_{0}\right\rangle \xi_{0}\right\|$.

A five-dimensional set of spindle tori

Corollary ([Webber, Q.])

Let $\xi_{0} \in S^{2}$ be fixed. Then the Radon transform over lemons with axis parallel ξ_{0}

$$
\mathcal{L}_{T} f\left(s, t, \mathbf{x}_{0}\right)=\mathcal{L} f\left(s, t, \mathbf{x}_{0}, \xi_{0}\right)
$$

satisfies the Bolker condition on domain $\mathcal{E}^{\prime}(B)$.
The apple transform with ξ_{0} fixed

$$
\mathcal{A}_{T} f\left(s, t, \mathbf{x}_{0}\right)=\mathcal{A} f\left(\boldsymbol{s}, t, \mathbf{x}_{0}, \xi_{0}\right)
$$

however, does not satisfy the Bolker condition.

1. Specifics: The left projection of \mathcal{A}_{T} has Jacobian which drops rank above the cylinder $t=\left\|\mathbf{x}_{T}-\left\langle\mathbf{x}_{T}, \xi_{0}\right\rangle \xi_{0}\right\|$.
Therefore, artifacts can appear in the reconstruction along rings which are the intersections of apples and the cylinder of radius t with the same axis of revolution.

2－D cross－section of a spindle torus with this cylinder．

The cylinder intersects the apple along rings at the top and bottom of the apple．The red points on the apple are where Π_{L} drops rank．

2-D cross-section of a spindle torus with this cylinder.

The cylinder intersects the apple along rings at the top and bottom of the apple. The red points on the apple are where Π_{L} drops rank.
The cylinder never intersects the lemon, so Bolker holds for \mathcal{L}_{T}.

A 3-dimensional geometry from luggage testing
We consider the practical geometry where the sources are on the plane $z=1$ and the detectors are on the plane $z=-1$ [Webber, Q., Miller] .

A 3－dimensional geometry from luggage testing
We consider the practical geometry where the sources are on the plane $z=1$ and the detectors are on the plane $z=-1$
［Webber，Q．，Miller］．This gives parameters：
－ $\mathrm{x}_{0} \in \mathbb{R}^{2}:\left(\mathbf{x}_{0}, 0\right)$ is the center of the spindle torus
－$t \in(0, \infty)$ ：the distance from $\left(\mathbf{x}_{0}, 0\right)$ to the center of the circle generating the torus．So，$s=t^{2}+1$

A 3－dimensional geometry from luggage testing
We consider the practical geometry where the sources are on the plane $z=1$ and the detectors are on the plane $z=-1$
［Webber，Q．，Miller］．This gives parameters：
－ $\mathrm{x}_{0} \in \mathbb{R}^{2}:\left(\mathbf{x}_{0}, 0\right)$ is the center of the spindle torus
－$t \in(0, \infty)$ ：the distance from $\left(\mathbf{x}_{0}, 0\right)$ to the center of the circle generating the torus．So，$s=t^{2}+1$
－The detector is directly below the source and they move together．

Source－detector pair

The transforms for luggage testing

$$
\left.\mathcal{A}_{0} f_{1}\left(t, \mathbf{x}_{0}\right)=\mathcal{A f}\left(t^{2}+1, t,\left(\mathbf{x}_{0}, 0\right)^{\top}, \mathbf{e}_{3}\right)\right)
$$

1. \mathcal{A}_{0} is an FIO for compactly supported distributions on $\{z>1\}$ (above the detector array)-or below.

The transforms for luggage testing

$$
\begin{gathered}
\left.\mathcal{A}_{0} f_{1}\left(t, \mathbf{x}_{0}\right)=\mathcal{A} f\left(t^{2}+1, t,\left(\mathbf{x}_{0}, 0\right)^{\top}, \mathbf{e}_{3}\right)\right) \\
\text { and } \\
\mathcal{L}_{0} f\left(t, \mathbf{x}_{0}\right)=\mathcal{L} f\left(t^{2}+1, t,\left(x_{0}, y_{0}, 0\right)^{\top}, \mathbf{e}_{3}\right) .
\end{gathered}
$$

1. \mathcal{A}_{0} is an FIO for compactly supported distributions on $\{z>1\}$ (above the detector array)-or below.
2. \mathcal{L}_{0} is an FIO for compactly supported distributions on $\{-1<z<1\}$ (in-between the source and detector array).

Theorem

－The lemon transform \mathcal{L}_{0} satisfies the Bolker condition for distributions in $\mathcal{E}^{\prime}(\{0<z<1\})$ ．

Theorem

－The lemon transform \mathcal{L}_{0} satisfies the Bolker condition for distributions in $\mathcal{E}^{\prime}(\{0<z<1\})$ ．

On $\{-1<z<1\}$ ，artifacts occur at mirror points－reflections in $z=0$

Theorem

－The apple transform \mathcal{A}_{0} satisfies Bolker for distributions supported in the region above the hyperboloid

$$
H\left(\mathbf{x}_{0}\right)=\left\{(x, y, z): z^{2}-1=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right\}
$$

$\Pi_{\llcorner }$drops rank at the red points where the apple intersects $H\left(\mathbf{x}_{0}\right)$ ．

Theorem

- The apple transform \mathcal{A}_{0} satisfies Bolker for distributions supported in the region above the hyperboloid

$$
H\left(\mathbf{x}_{0}\right)=\left\{(x, y, z): z^{2}-1=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right\}
$$

Π_{L} drops rank at the red points where the apple intersects $H\left(\mathbf{x}_{0}\right)$.

Warning: This region where Bolker holds depends on \mathbf{x}_{0} !

Artifact Reduction

Put supp (f) above $z=1+\epsilon$ and restrict the source cone-beam angle to only illuminate supp (f) above $H\left(\mathbf{x}_{0}\right)$

Artifact Reduction

Put supp (f) above $z=1+\epsilon$ and restrict the source cone-beam angle to only illuminate supp (f) above $H\left(\mathbf{x}_{0}\right)$

As the source and detector pairs move, only the part of $\operatorname{supp}(f)$ above $H\left(\mathbf{x}_{0}\right)$ is illuminated.

Summary

- We introduced two new seven-dimensional generalized Radon transforms, \mathcal{A} and \mathcal{L}.

Summary

- We introduced two new seven-dimensional generalized Radon transforms, \mathcal{A} and \mathcal{L}.
- We proved for the full 7-dim problem that \mathcal{A} and \mathcal{L} satisfy Bolker.

Summary

- We introduced two new seven-dimensional generalized Radon transforms, \mathcal{A} and \mathcal{L}.
- We proved for the full 7-dim problem that \mathcal{A} and \mathcal{L} satisfy Bolker.
- We analyzed lower dimensional cases, including a practical geometry for luggage testing.

Summary

- We introduced two new seven-dimensional generalized Radon transforms, \mathcal{A} and \mathcal{L}.
- We proved for the full 7-dim problem that \mathcal{A} and \mathcal{L} satisfy Bolker.
- We analyzed lower dimensional cases, including a practical geometry for luggage testing.
- We discovered artifacts and suggested ways to remove artifacts with machine design.

Summary

- We introduced two new seven-dimensional generalized Radon transforms, \mathcal{A} and \mathcal{L}.
- We proved for the full 7-dim problem that \mathcal{A} and \mathcal{L} satisfy Bolker.
- We analyzed lower dimensional cases, including a practical geometry for luggage testing.
- We discovered artifacts and suggested ways to remove artifacts with machine design.
- See: [Microlocal properties of seven-dimensional lemon and apple Radon transforms with applications in Compton scattering tomography. Inverse Problems 38(2022) 064001].

Summary

- We introduced two new seven-dimensional generalized Radon transforms, \mathcal{A} and \mathcal{L}.
- We proved for the full 7-dim problem that \mathcal{A} and \mathcal{L} satisfy Bolker.
- We analyzed lower dimensional cases, including a practical geometry for luggage testing.
- We discovered artifacts and suggested ways to remove artifacts with machine design.
- See: [Microlocal properties of seven-dimensional lemon and apple Radon transforms with applications in Compton scattering tomography. Inverse Problems 38(2022) 064001].

References

固
J. Webber, E.T. Quinto, and E.L. Miller. "A joint reconstruction and lambda tomography regularization technique for energy-resolved X-ray imaging" Inverse Problems 36 (2020) 074002 (32pp).
J. Webber and S. Holman. "Microlocal analysis of a spindle transform." Inverse Problems and Imaging 2(2019), 231-261.

T- J. Cebeiro, C. Tarpau, M.A. Morvidone, D. Rubio, and M.K. Nguyen. "On a three-dimensional Compton scattering tomography system with fixed source." Inverse Problems 37, no. 5 (2021): 054001.
R- G. Rigaud and B.N. Hahn. "Reconstruction algorithm for 3D Compton scattering imaging with incomplete data." Inverse Problems in Science and Engineering 29, no. 7 (2021): 967-989.

國 J. Webber and E.T. Quinto. "Microlocal properties of seven-dimensional lemon and apple Radon transforms with applications in Compton scattering tomography." Inverse Problems 38(2022) 064001.

