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Motivation

§ Motivated by Compton Scattering Tomography (CST), we
present a microlocal analysis of two novel Radon
transforms which map functions to their integrals over
apple and lemon surfaces.

§ Main applications: Airport baggage and security
screening, medical imaging.

§ We consider the full 7-D manifold of apples and lemons
and two natural submanifolds.

§ Main goals:
§ To understand when there are no microlocal artifacts

(added singularities) in backprojections
reconstructions from R˚

j DφRj .
§ To predict and analyze the image artifacts with

incomplete data.
§ To mitigate artifacts when possible.
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The Compton Effect

The Compton effect determines scattering angle

Esrc=energy of monochromatic photons at the source,
Ed=measured energy of scattered photon at detector,
E0=electron rest energy, ω=scattering angle.

Esrc ´ Ed

Esrc
“

1 ´ cospωq

E0

Moral
§ If two photons from the same source hit the detector with

the same energy, they have the same scattering angle.
§ Therefore, they are on the same circle containing the source

and detector! (if on the same side)
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Back scattered Compton Data are over apples

Detector

Source

Esrc

Photons leave the source with energy Esrc.
The same scattering occurs on the other circle.
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Some will backscatter off the point with energy Ed measured at
the detector.
Ed determines the scattering angle ω P pπ{2, πq and the apple
part of the red circles (all points with scattering angle ω).
The same scattering occurs on the other circle.
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Forward scattered Compton Data are over lemons

Detector

Source

Esrc

Ed
ω

Photons leave the source with energy Esrc.
The same scattering occurs on the other circle.
Forward Scatter will occur on the lemon () part between the
source and detector with scattering angle ω P p0, π{2q.



Previous works and dimensionality

1. Much of the literature considers these transforms over 3-D
sets of lemons and apples [Webber, Q., Miller,
Rigaud, Hahn, Webber, Holman, Cabeiro, et al.], [Arridge],
etc.

2. [Rigaud, Hahn] With - 3-D data, artifacts observed due to
incomplete data.

3. [Webber, Holman] With 3-D data, transform shown to
violate the Bolker condition, and artifacts are induced by a
flowout. Invisible singularities near the center due to limited
energy resolution.

4. [Cabeiro, et al.] shows artifacts in simulated
reconstructions.

Common theme: these authors analyze artifacts for various
three-dimensional data sets.
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The parametrization

ξ

x0

t

?
s

apple cross-section

d

§ x0 is the center of the spindle torus, xT “ x ´ x0.

§ t “ the distance between the center of the torus and center of
the generating circle.

§ s ą t2 and
?

s is the radius of the generating circle.

§ ξ P S2 is parallel the axis of the spindle torus

Ψjps, t ,x0, ξ;xq “
`

∥xT ´ xxT , ξyξ∥ ` p´1qj t
˘2

` xxT , ξy
2

´ s.

Ψj “ 0 is the defining equation of the apple (j “ 1) and lemon (j “ 2)
surfaces.
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Some example surfaces

Here are some 2-D cross-sections of apples and lemons with
the defining equations highlighted.
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Apples (j “ 1)

-2 -1 0 1 2

x

-1.5

-1

-0.5

0

0.5

1

1.5

y

(|y|+1)
2
+x

2
=2

(|y|+1)
2
+x

2
=4

(|y|+0.5)
2
+x

2
=2

(|y|+2)
2
+x

2
=7

Lemons (j “ 2)

px , yq plane cross-sections of the apple and lemon parts of a spindle
torus when ξ “ p0,1q (left) and ξ “ p1,0q (right), x0 “ 0, and s and t
vary between 1

2 and 7.



Our generalized Radon transform
f P L2

cpBq, integrate over apple (j “ 1) and lemon (j “ 2) surfaces:

Rj f ps, t ,x0, ξq “

ż

X
∥∇xΨj∥ δ pΨjps, t ,x0, ξ;xqq f pxqdx

“
1

2π

ż 8

´8

ż

X
∥∇xΨj∥eiσΨj ps,t,x0,ξ;xqf pxqdxdσ,

using 1
2π

ş8

´8
eiσr dσ “ δprq.

Apple transform: Af “ R1f
Lemon transform: Lf “ R2f
Let B be the closed unit ball. The domain of Rj f is defined

Y “tps, t ,x0, ξq P R2 ˆ R3 ˆ S2

: s ą t2, tx0 ˘
a

s ´ t2ξu X B “ Hu,
.

Y describes the set of apples and lemons who’s singular points
(source and receiver) do not intersect B.
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Main theorem

Theorem (Webber, Q. Inverse Problems 38(2022))
The apple and lemon transforms Rj : L2

cpBq Ñ L2
locpY q are elliptic FIO

order ´2.
The left projections Π

p1q

L ,Π
p2q

L of A,L, respectively, are injective
immersions, i.e., A,L satisfy the Bolker condition.

Key point: With full seven-dimensional data, the lemon and apple
transforms satisfy the Bolker condition.

§ Thus, there are no artifacts in backprojection type
reconstructions from seven-dimensional lemon or apple integral
data, K “ R˚

j DφRj f where φ is smooth (i.e., K is a ΨDO).

§ Also, we show there are no invisible singularities on B with data
over all Y .
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Proof outline:
1. Calculate the canonical relation, Cj of Rj and choose good

coordinates.

R “ Rpα, βq “

¨

˝

cosα ´ sinα 0
sinα cosα 0

0 0 1

˛

‚

¨

˝

1 0 0
0 cosβ ´ sinβ
0 sinβ cosβ

˛

‚, ξ “ Re3.

2. Show the symbol of Rj is smooth and never zero (singular points
on our spindle tori don’t meet B).

3. Recall Sylvester’s Determinant Theorem (SDT):
A P Rmˆn, B P Rnˆm: det pImˆm ` ABq “ det pInˆn ` BAq .

4. Show that the phase function is nondegenerate.

5. Show that Πpjq
L is an injective immersion (SDT).

Each of these calculations has an expression:

det

ˆ

I3ˆ3 ´ t
g

`

rT
1 , rT

2

˘

ˆ

r1
r2

˙˙

“ det

ˆ

I2ˆ2 ´ t
g

ˆ

r1
r2

˙

`

rT
1 , rT

2

˘

˙

where r1 and r2 are the first two rows of RT , g “ ∥xT ´ xxT , ξyξ∥.
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A five-dimensional set of spindle tori

Corollary ([Webber, Q.])
Let ξ0 P S2 be fixed. Then the Radon transform over lemons with axis
parallel ξ0

LT f ps, t ,x0q “ Lf ps, t ,x0, ξ0q

satisfies the Bolker condition on domain E 1pBq.
The apple transform with ξ0 fixed

AT f ps, t ,x0q “ Af ps, t ,x0, ξ0q,

however, does not satisfy the Bolker condition.

1. Specifics: The left projection of AT has Jacobian which drops
rank above the cylinder t “ ∥xT ´ xxT , ξ0yξ0∥.
Therefore, artifacts can appear in the reconstruction along rings
which are the intersections of apples and the cylinder of radius t
with the same axis of revolution.
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2-D cross-section of a spindle torus with this cylinder.
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x ´ xxT , ξyξx0

x

t

The cylinder intersects the apple along rings at the top and
bottom of the apple. The red points on the apple are where ΠL
drops rank.
The cylinder never intersects the lemon, so Bolker holds for LT .
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A 3-dimensional geometry from luggage testing
We consider the practical geometry where the sources are on the
plane z “ 1 and the detectors are on the plane z “ ´1
[Webber, Q., Miller] . This gives parameters:

§ x0 P R2: px0,0q is the center of the spindle torus

§ t P p0,8q: the distance from px0,0q to the center of the circle
generating the torus. So, s “ t2 ` 1

§ The detector is directly below the source and they move
together.

Detectors z “ ´1
1

1
Sources z “ 1

z

Ox x0

Source-detector pair

?
s

t
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The transforms for luggage testing

A0f1pt ,x0q “ Af
´

t2 ` 1, t , px0,0qT ,e3q

¯

and

L0f pt ,x0q “ Lf
´

t2 ` 1, t , px0, y0,0qT ,e3

¯

.

1. A0 is an FIO for compactly supported distributions on
tz ą 1u (above the detector array)–or below.

2. L0 is an FIO for compactly supported distributions on
t´1 ă z ă 1u (in-between the source and detector array).
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Theorem
§ The lemon transform L0 satisfies the Bolker condition for

distributions in E 1pt0 ă z ă 1uq.
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On t´1 ă z ă 1u, artifacts occur at mirror points–reflections in
z “ 0
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Theorem
§ The apple transform A0 satisfies Bolker for distributions

supported in the region above the hyperboloid

Hpx0q “
␣

px , y , zq : z2 ´ 1 “ px ´ x0q2`py ´ y0q2(

ΠL drops rank at the red points where the apple intersects Hpx0q.
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Detectors
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Hpx0q

Warning: This region where Bolker holds depends on x0!
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Artifact Reduction
Put supppf q above z “ 1 ` ϵ and restrict the source cone-beam angle to only
illuminate supppf q above Hpx0q
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tz “ 1 ` ϵu

tz “ 0u

Hpx0q

f f

γ

As the source and detector pairs move, only the part of supppf q above
Hpx0q is illuminated.
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Summary
§ We introduced two new seven-dimensional generalized

Radon transforms, A and L.

§ We proved for the full 7-dim problem that A and L satisfy
Bolker.

§ We analyzed lower dimensional cases, including a
practical geometry for luggage testing.

§ We discovered artifacts and suggested ways to remove
artifacts with machine design.

§ See: [Microlocal properties of seven-dimensional lemon
and apple Radon transforms with applications in Compton
scattering tomography. Inverse Problems 38(2022)
064001].

Thanks for listening!
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