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Computational imaging pipeline

Hardware design Measurement Algorithm design Final result



Large-scale 
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Coded detection 
microscope

Coded illumination 
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Atomic resolution 
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Neuron 
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Data-driven system 
design

My Research

DiffuserCam



Lenses map points to points

lens

sensor

Point Spread Function (PSF)



Mask-based cameras multiplex

mask

sensor

M. S. Asif, et al. ICCVW  (2015)
J. Tanida, et al. Applied optics  (2001)

K. Tajima, et al. ICCP (2017)
D. G. Stork, et al. Int. J. Adv. Systems and measurements (2014)

Point Spread Function (PSF)



Grace Kuo
Nick Antipa

DiffuserCam: stick a scatterer on a sensor

diffuser

sensor

https://laurawaller.com/opensource
Camille Biscarrat

Shreyas Parthasarathy

Point Spread Function (PSF)

https:///


diffuser

sensor

DiffuserCam: stick a scatterer on a sensor

Grace Kuo
Nick Antipa
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Traditional cameras take direct measurements

=

measurement
object
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Computational cameras can multiplex

=

measurement
object

Need to know the 
forward model!

- measure it?
- model it?
- machine learn it?



Point spread function shifts with position
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DiffuserCam forward model is a convolution

x=

Point Spread Functions 
for different image pixels



raw sensor data recovered scene

*solver is ADMM with TV reg in Halide 

Grace Kuo
Nick Antipa



raw sensor data recovered scene

*solver is ADMM with TV reg in Halide 

Grace Kuo
Nick Antipa



Image reconstruction is nonlinear optimization

*solved with ADMM in Halide
S. Boyd, et al. Foundations and Trends in Machine Learning (2011)
J. Ragan-Kelley, et al. AMC SIGPLAN (2013)



Physics-based image reconstruction

Final resultMeasurement



Deep learning based reconstruction

Final resultMeasurement



Inverse Problem Philosophies 

Physics-based

gradient descent 
(FISTA, ADMM)

CNNs, Unet, Resnet, etc.

• Interpretable
• Robust

• Slow
• Model mismatch causes artifacts

• Fast recon

• Large training dataset 
• Not interpretable 
• No guarantees, not robust 

Deep Learning



Inverse Problem Philosophies 

E. Bostan, U. Kamilov, L. Waller, IEEE Signal Processing Letters (2018).
Michael Kellman
Emrah Bostan
Kristina Monakhova

M. Kellman, E. Bostan, N. Repina, L. Waller, IEEE Trans. of Comp. Imaging (2019).

Physics-based Deep Learning

Physics-based learning

• Efficient parametrization
• Uses known physics
• Learns unknowns



Pipeline

dataset acquisition
ground truth
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Physics-based 
network
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n reconstructionsmeasurements

reconstructions

backprop

lensed 
camera

screen

DiffuserCam

…

system 
model

loss function

Kristina Monakhova

K. Monakhova, J. Yurtsever, G. Kuo, N. Antipa, K. Yanny, L. Waller, Optics Express (2019).



Physics-based learning improves speed + quality

1.5s 75ms 10ms

Ours

Physics-
based

Deep 
Learning

Kristina Monakhova

K. Monakhova, J. Yurtsever, G. Kuo, N. Antipa, K. Yanny, L. Waller, Optics Express (2019).

ground truth



raw sensor data recovered scene

*solver is ADMM with TV reg in Halide 

Grace Kuo
Nick Antipa



Cute! But what’s it good for?



Multiplexed measurements are tolerant to erasures

PSF



Multiplexed measurements are tolerant to erasures

PSF



Nominal Field of View

Extended Field of View



measurement with 90% erasures

Multiplexed measurements are tolerant to erasures



recovered image with 90% erasures

Multiplexed measurements are tolerant to erasures



Multiplexed measurements are tolerant to erasures

measurement



Multiplexed measurements are tolerant to erasures

measurement



Multiplexed measurements are tolerant to erasures

recovered image



Multiplexed measurements are tolerant to erasures

measurement

sensors cover only 8% of total area!

sensors



Multiplexed measurements are tolerant to erasures

recovered image

sensors cover only 8% of total area!



BIG DiffuserCam with tiled sensors

Nico Deshler
Ellin Zhao

ReconstructionMeasurement

2x2 tiled sensors

Large-aperture 
imaging with 

flat-ish optics?



Hyperspectral
(x,y, lambda)

3D   (x,y, z)

Video from Stills
(x,y, time)

2D
measurement






2D



Point spread function scales with depth
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Single-shot 3D is difficult

100 x 1 M
illion

100 Million

A

Problems:
- Calibration (100M images?!?)

- Computation
- Underdetermined



N. Antipa, G. Kuo, R. Heckel, E. Bostan, B. Mildenhall, R. Ng, L. Waller, Optica 5(1) (2017). 



Scanning 
Microscopy   

speed scales with # 
voxels in image

speed scales with 
sparsity of sample 

Compressed 
Sensingvs.
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Light sheet

Chen et al., Science (2014).

Light field microscopy

Levoy et al., 2006
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Towards lensless 3D microscopy

Lensless imager:
- small
- inexpensive
- enables tiling

with Adesnik Lab



3D neural activity tracking

with Adesnik Lab

Reconstructed neural activity

N. Pegard et al, Optica 2016

Nico Pegard



Neural activity tracking with flat DiffuserScope

diffuser color filters

sensor

sample

Grace Kuo

G. Kuo, F. Liu, I. Grossrubatscher, R. Ng, L. Waller, Optics Express (2020).






Hmm… is random scattering 
the best encoder?



Microlenses

Secret #3: off-the-shelf diffusers aren’t ideal

Lens Randomly spaced
microlenses

Smooth Diffuser

PS
F

Lens



Computational imaging pipeline

Hardware design Take picture Crunch Data Final result

optimize algorithm

Gregor & LeCun 2010, Yang et al. 2016, Zhang et al. 2017, Diamond et al. 2018 
Kamilov et al. IEEE Sig. Proc. Lett. 24:12 (2018)

E. Bostan, R. Heckel, M. Chen, M. Kellman, L. Waller, Optica 7(6), 559-562 (2020) 
K. Monakhova, J. Yurtsever, G. Kuo, N. Antipa, K. Yanny, L. Waller, Opt. Express (2019)

E. Bostan, U. Kamilov, L. Waller, IEEE Sig. Proc. Lett. 25(7), 989–993 (2018)

What is the best reconstruction algorithm?



Computational imaging pipeline

Hardware design Take picture Crunch Data Final result

Extended depth-of-field imaging: V. Sitzmann, et al., ACM Trans. Graphics 37:4 (2018).
Optical computing [Chang et al. 2018]
Microscopy [Horstmeyer 2017, Hershko et al. 2019, Kellman et al. 2019]
Monocular depth estimation [Wu et al. 2019, Chang et al. 2019]
Single-shot high dynamic range imaging [Metzler et al. 2020, Sun et al. 2020]
Wide-FoV and full spectrum imaging with a single optical element [Peng et al. 2019, Dun et al. 2020]
Holographic displays [Peng et al. 2020]

What are the best measurements to take?

optimize optics



Learning an optimized diffuser shape

XY Reconstruction Projection

XZ Reconstruction Projection

YZ Reconstruction Projection

• 40 Unrolls
• 23 Lenslets
• 5 Training Examples
• ADAM 

Optimization

Diffuser Surface

Eric Markley



Fourier DiffuserScope

Point Spread Function (PSF)

phase mask

Linda Liu



Fourier DiffuserScope

Point Spread Function (PSF)

Linda Liu

phase mask



Fourier DiffuserScope

sample

Linda Liu

phase mask

reconstructed 3D video

1mm






Fourier DiffuserScope

sample

Linda Liu

phase mask

reconstructed 
3D video






Resolution is more uniform 
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Fourier light field microscope
Fourier Diffuserscope

Linda Liu



Fourier DiffuserScope
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Lateral resolution Axial resolution

Linda Liu

Large volume: 1000×1000×280 µm3

High-resolution: <3 µm lateral, 4 µm axial

sample

phase mask



Open-source miniature 3D microscope version

Miniscope3D

K. K. Ghosh, et al, Nature Methods 8, 871 (2011). 

LED

Kyrollos Yanny
Nick Antipa

Miniscope

Miniscope.org



Open-source miniature 3D microscope version

Miniscope3D

Kyrollos Yanny
Nick Antipa

0.5 mm

6 µm
3 µm

K. Yanny, … L. Waller, Light: Science & Applications 9:171 (2020). 



Kyrollos Yanny
Nick Antipa

3D video reconstruction

50 𝜇𝜇𝜇𝜇

1

0

Raw fluorescence data at 30 fps

K. Yanny, … L. Waller, Light: Science & Applications 9:171 (2020). 



Hyperspectral
(x,y, lambda)

3D   (x,y, z)

Video from Stills
(x,y, time)

2D
measurement






Multiplexing enables temporal encoding with rolling shutter

Patrick Oare
Nick Antipa

P. Oare, N. Antipa, E. Bostan, L. Waller ICCP 2019 



Multiplexing enables temporal encoding with rolling shutter

Patrick Oare
Nick Antipa

P. Oare, N. Antipa, E. Bostan, L. Waller ICCP 2019 



Video from stills with rolling shutter

P. Oare, N. Antipa, E. Bostan, L. Waller ICCP 2019 

Patrick Oare
Nick Antipa

Raw data: 1 frame Reconstruction: 150 frames






3D   (x,y, z)

Video from Stills
(x,y, time)

Hyperspectral
(x,y, lambda)

2D
measurement






Kristina Monakhova
Kyrollos Yanny

Lensless hyperspectral imaging with color filter array

diffuser

sensorspectral filter array

super-pixel

Spectral Filter array 

filter spectral 
response



Lensless hyperspectral imaging with color filter array

diffuser

sensorspectral filter array

coded measurement

recovered hyperspectral 
data

x

y

x

𝜆𝜆

1

2

3

4

reconstruction algorithm

K. Monakhova*, K. Yanny*, N. Aggarwal, L. Waller, Optica 7(10)  2020

Kristina Monakhova
Kyrollos Yanny



Lensless hyperspectral imaging with color filter array

diffuser

sensorspectral filter array

» Cheap: sensor + $5 filter array + diffuser
» Compact: 1cm in addition to sensor
» Flexible: choose any spectral filters 

(user-defined sampling and bandwidths) 

K. Monakhova*, K. Yanny*, N. Aggarwal, L. Waller, Optica 7(10)  2020

Kristina Monakhova
Kyrollos Yanny



Raw measurement

K. Monakhova*, K. Yanny*, N. Aggarwal, L. Waller, Optica 7(10)  2020



hyperspectral reconstruction 0

1

400nm 600nm

0

1

400nm 800nm

0

1

400nm 800nm

400nm 600nm0

1

K. Monakhova*, K. Yanny*, N. Aggarwal, L. Waller, Optica 7(10)  2020



NASA: “Triple redundancy! We can’t afford to fail!”

Compressed Sensing: “Look at all this redundancy… 
I can fix that…”



Sparsity is required
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Multiplexing hurts SNR, but not too much

Kyrollos Yanny
Nick Antipa
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Calculating resolution 
is messy!



Secret #2: Resolution is very non-uniform

Diffuser
Cam

x

z

Small objects 
3D imaging

Large scenes 
2D photography 



Challenge: object-dependent resolution

2 
po

in
ts

16
 p

oi
nt

s
two-point resolution ~1.6x two-point res

Two-point resolution only
predicts best case scenario.



=

Solution?: use condition number of sub-problem

Assume we know where non-zero elements are:



Solution?: use condition number of sub-problem

=

Now it is a small least squares problem



Solution?: use condition number of sub-problem

Local condition number sort of 
gives worst case scenario



Challenge: model mis-match



Microscope has spatially-varying PSFs

Point source PSF



Solution: Local convolution model

Kyrollos Yanny
Nick Antipa

with shift-invariant model with shift variant model



Solution: Local convolution model

with shift-invariant model with shift variant model

Grace Kuo



Physics-based Deep Learning

Physics-based learning for 
spatially-varying “deconvolution”

  

K. Monakhova*, K. Yanny*, R. Shuai, L. Waller, Optica 9(1), 2022

image 
guess

training datalearnable filters

spatially-varying
“deconvolution”

ground 
truth

,

Training: update network weights and filters

CNN refinementmeasurement



Physics-based Deep Learning

Physics-based learning for 
spatially-varying “deconvolution”

  

K. Monakhova*, K. Yanny*, R. Shuai, L. Waller, Optica 9(1), 2022

0.032s20s 0.021s

> 600X speedup

Kristina Monakhova
Vi Tran



Hyperspectral
(x,y, lambda)

3D   (x,y, z)

Video from Stills
(x,y, time)
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Reproducible = open-source + cheap + simple hardware

Spectral Coded 
Illumination, Inc.*

*financial interest 

Brightfield

DPC 
Left/Right

Darkfield

DPC 
Top/Bottom

Computational 
CellScope

ScotchTape Cam

www.laurawaller.com/opensource

H. Pinkard, N. Stuurman, I. Ivanov, N. Anthony, W. Ouyang, B. Li, B. Yang, M. Tsuchida, B. Chhun, G. Zhang, R. Mei, M. Anderson, D. Shepherd, I. Hunt-Isaak, R. Dunn, W. Jahr, 
S. Kato, L. Royer, J. Thiagarajah, K. Eliceiri, E. Lundberg, S. Mehta, L. Waller, Nature Methods 18, 226-228 (2021).






GigaPan: WallerLab_Berkeley
Open-source : www.laurawaller.com

Twitter: @optrickster
Github: Waller_Lab

Collaborators: 
Hillel Adesnik
Ben Recht
Miki Lustig
Dan Fletcher
Colin Ophus
Mary Scott

Anti-collaborators:





is that ALL it’s good for?



Weak diffusers directly probe system aberrations

G. Gunjala, S. Sherwin, A. Shanker, L. Waller, Optics Express (2016).

Illumination at 
sample plane

Intensity at 
sensor plane

Fourier transform 
of intensity

Acquired images & their spectra

Uniquely defined 
aberration polynomial

1.5

-1.5

[ra
d]

Nonlinear least squares 
reconstruction algorithm

Interference where circles overlap
Acquired patterns should be diverse!

Holographic diffusers, 
photomask surface 
roughness, etc.

𝑢𝑢𝑦𝑦
𝑢𝑢𝑥𝑥

…
Gautam 
Gunjala












Application: EUV microscope characterization

G. Gunjala, A. Wojdyla, S. Sherwin, […] L. Waller, Scientific Reports (2020).

SHARP (LBNL)
𝜆𝜆 = 13.5 nm

Imaging FOV

1.5

-1.5

[ra
d]

Field-varying aberrations

• Using 10 full-field images of 
blank photomask surface 
roughness, we recover 5th-
order aberration polynomials 
across the FOV

• Accuracy of technique roughly 
𝝀𝝀 / 182

• Requires only statistical 
knowledge of scattering object 

• Does not require additional / 
invasive sensors or hardware

• Does not require fabrication / 
alignment of test objects 

Gautam 
Gunjala



Aberrations are bad, but maybe we can design 
“computationally friendly” ones?

Amit Kohli



Computational aberration correction

𝑒𝑒𝑗𝑗
Spherical Aberrations

Object Plane “Fourier Plane” Image Plane

Amit Kohli



Pupil aberrations can only hurt you

Diffraction Limited MTF Aberrated MTF

MTF = Modulation Transfer Function = |OTF|
Amit Kohli



Pupil aberrations can only hurt you

Diffraction Limited MTF Aberrated MTF

MTF = Modulation Transfer Function = |OTF|
Amit Kohli



Pupil aberrations + diffuser is worse, no?

Object Plane “Fourier Plane” Image Plane

𝑒𝑒𝑗𝑗
Spherical 

Aberrations

+
Amit Kohli

Diffuser



Which MTF is better?

Amit Kohli



The deconvolution with diffuser is better!

MaskNo Mask

Amit Kohli



The diffuser system is relatively invariant to aberrations

Spherical Seidel CoefficientNo Aberrations Very Aberrated
0 5 10

Amit Kohli





Dynamic Structured Illumination Microscopy with a 
Neural Space-time Model

Ruiming Cao
Research update 5/18/2022



Diffraction-limited system acts as a low-pass filter 
limiting the spatial resolution

2022 R. Cao, page 107

In Fourier space: 

Low-pass filter with bandwidth 
NA𝑜𝑜𝑜𝑜𝑜𝑜

𝜆𝜆



Sinusoidal structured illumination microscopy (SIM) 
captures high-frequency from Moiré patterns

2022 R. Cao, page 108

bandwidth:
NA𝑜𝑜𝑜𝑜𝑜𝑜+NA𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜆𝜆

structured illumination raw image super-resolved reconstruction

FT



Speckle-structured illumination modulates high-
frequency into diffraction limit

2022 R. Cao, page 109

bandwidth:
NA𝑜𝑜𝑜𝑜𝑜𝑜 + NA𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜆𝜆

speckle illumination raw image super-resolved reconstruction

FT



SIM requires multiple raw images for a super-resolved image, 
trading off temporal resolution

2022 R. Cao, page 110

Sinusoidal SIM Speckle SIM



Speckle Flow SIM: Fixed speckle illumination but a dynamic 
scene to diversify measured information

2022 R. Cao, page 111

dynamic scene acquired images


Ruiming Cao




Ruiming Cao





Speckle Flow SIM: super-resolve each frame of a dynamic 
scene with deformable motion

2022 R. Cao, page 112

reconstruct



Pre-calibrated

Fixed speckle-structured illumination can be pre-calibrated, 
making the reconstruction data-efficient

2022 R. Cao, page 113

reconstruct



Reconstructing a sequence of super-resolved 
frames from the same number of images still 

requires additional constraint

2022 R. Cao, page 114

Super-resolution bandwidth:
NA𝑜𝑜𝑜𝑜𝑜𝑜+NA𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠

𝜆𝜆
≈ 2 × acquired bandwidth

Each acquired image’s 

bandwidth : 
NA𝑜𝑜𝑜𝑜𝑜𝑜

𝜆𝜆

reconstruct



A video often contains temporal redundancy as the motion is 
smooth

2022 R. Cao, page 115

Video by courtesy of Michael Kellman

frame 63frame 64frame 65

Live C. Elegan

frame 66






A dynamic scene represented by a single static scene + 
motion kernel for each timepoint

2022 R. Cao, page 116

frame 𝑖𝑖 − 1 frame 𝑖𝑖 frame 𝑖𝑖 + 1 frame 𝑖𝑖 + 2

motion 𝑖𝑖 − 1 motion 𝑖𝑖 motion 𝑖𝑖 + 1 motion 𝑖𝑖 + 2



A coordinate-based multi-layer perceptron (MLP) to estimate 
motion for each space-time coordinate

2022 R. Cao, page 117



Motion MLP estimates the motion at pixel-level
2022 R. Cao, page 118



Neural space-time model: a dynamic scene represented by 
motion MLP and scene MLP

2022 R. Cao, page 119



Update model’s weights to reconstruct motion dynamics 
and a super-resolved scene

2022 R. Cao, page 120

loss
Update network weights

forward model



Speckle Flow SIM to recover deformable motion
2022 R. Cao, page 121


Ruiming Cao





Number of input frames affects reconstruction
2022 R. Cao, page 122

insufficient super-res clue more motion to estimate
Optimal at 10 frames



Experimental result of 1.88x super-resolution for a 
continuously moving sample

2022 R. Cao, page 123


Ruiming Cao
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