

for (int yTile = 0; yTile < in.height(); yTile += 32)
__m128i a, b, c, sum, avg;
__m128i blurH[(256/8)*(32+2)]; // allocate tile blu
for (int xTile = 0; xTile < in.width(); xTile += 25
__m128i *blurHPtr = blurH;
for (int y = -1; y < 32+1; y++) {</pre>

Computational Microscopy with Scattering

Laura Waller Professor Electrical Engineering and Computer Sciences UC Berkeley

Computational imaging pipeline

Lenses map points to points

Mask-based cameras multiplex

M. S. Asif, et al. *ICCVW* (2015) J. Tanida, et al. *Applied optics* (2001) K. Tajima, et al. *ICCP* (2017) D. G. Stork, et al. *Int. J. Adv. Systems and measurements* (2014)

DiffuserCam: stick a scatterer on a sensor

Point Spread Function (PSF)

https://laurawaller.com/opensource

DiffuserCam: stick a scatterer on a sensor

Traditional cameras take direct measurements

Computational cameras can multiplex

Point spread function shifts with position

DiffuserCam forward model is a convolution

Point Spread Functions for different image pixels

raw sensor data

recovered scene

*solver is ADMM with TV reg in Halide

raw sensor data

recovered scene

*solver is ADMM with TV reg in Halide

Image reconstruction is nonlinear optimization

*solved with ADMM in Halide

S. Boyd, et al. *Foundations and Trends in Machine Learning* (2011) J. Ragan-Kelley, et al. *AMC SIGPLAN* (2013)

Physics-based image reconstruction

Deep learning based reconstruction

Inverse Problem Philosophies

- Interpretable
- Robust
- Slow
- Model mismatch causes artifacts

• Fast recon

- Large training dataset
- Not interpretable
- No guarantees, not robust

Inverse Problem Philosophies

- Uses known physics
- Learns unknowns

Michael Kellman Emrah Bostan Kristina Monakhova

E. Bostan, U. Kamilov, L. Waller, *IEEE Signal Processing Letters* (2018).

M. Kellman, E. Bostan, N. Repina, L. Waller, IEEE Trans. of Comp. Imaging (2019).

Pipeline

K. Monakhova, J. Yurtsever, G. Kuo, N. Antipa, K. Yanny, L. Waller, Optics Express (2019).

Physics-based learning improves speed + quality

K. Monakhova, J. Yurtsever, G. Kuo, N. Antipa, K. Yanny, L. Waller, Optics Express (2019).

raw sensor data

recovered scene

*solver is ADMM with TV reg in Halide

PSF

Extended Field of View

measurement with 90% erasures

recovered image with 90% erasures

measurement

measurement

recovered image

measurement

sensors cover only 8% of total area!

recovered image

sensors cover only 8% of total area!

BIG DiffuserCam with tiled sensors

Large-aperture imaging with flat-ish optics?

$2D \rightarrow$

Point spread function scales with depth

Single-shot 3D is difficult

N. Antipa, G. Kuo, R. Heckel, E. Bostan, B. Mildenhall, R. Ng, L. Waller, Optica 5(1) (2017).

Towards lensless 3D microscopy

Lensless imager:

- small
- inexpensive
- enables tiling

3D neural activity tracking

N. Pegard et al, *Optica* 2016

Neural activity tracking with flat DiffuserScope

Grace Kuo

Hmm... is random scattering the best encoder?

Secret #3: off-the-shelf diffusers aren't ideal

Computational imaging pipeline

What is the best reconstruction algorithm?

Gregor & LeCun 2010, Yang et al. 2016, Zhang et al. 2017, Diamond et al. 2018 Kamilov et al. *IEEE Sig. Proc. Lett.* 24:12 (2018) E. Bostan, R. Heckel, M. Chen, M. Kellman, L. Waller, *Optica* 7(6), 559-562 (2020) K. Monakhova, J. Yurtsever, G. Kuo, N. Antipa, K. Yanny, L. Waller, *Opt. Express* (2019) E. Bostan, U. Kamilov, L. Waller, *IEEE Sig. Proc. Lett.* 25(7), 989–993 (2018)

Computational imaging pipeline

What are the best measurements to take?

Extended depth-of-field imaging: V. Sitzmann, et al., *ACM Trans. Graphics* 37:4 (2018). Optical computing [Chang et al. 2018] Microscopy [Horstmeyer 2017, Hershko et al. 2019, Kellman et al. 2019] Monocular depth estimation [Wu et al. 2019, Chang et al. 2019] Single-shot high dynamic range imaging [Metzler et al. 2020, Sun et al. 2020] Wide-FoV and full spectrum imaging with a single optical element [Peng et al. 2019, Dun et al. 2020] Holographic displays [Peng et al. 2020]

Learning an optimized diffuser shape

Diffuser Surface

- 40 Unrolls
- 23 Lenslets
- 5 Training Examples
- ADAM Optimization

YZ Reconstruction Projection

XZ Reconstruction Projection

Eric Markley

Point Spread Function (PSF)

Point Spread Function (PSF)

Resolution is more uniform

Large volume: $1000 \times 1000 \times 280 \ \mu m^3$ High-resolution: <3 μm lateral, 4 μm axial

Open-source miniature 3D microscope version

Open-source miniature 3D microscope version

K. Yanny, ... L. Waller, Light: Science & Applications 9:171 (2020).

$\int_{\mathbf{Y}} \frac{1}{50 \ \mu m}$

3D video reconstruction

Multiplexing enables temporal encoding with rolling shutter

Multiplexing enables temporal encoding with rolling shutter

Video from stills with rolling shutter

Lensless hyperspectral imaging with color filter array

Lensless hyperspectral imaging with color filter array

Kristina Monakhova Kyrollos Yanny

Lensless hyperspectral imaging with color filter array

- » **Compact**: 1cm in addition to sensor
- » Flexible: choose any spectral filters (user-defined sampling and bandwidths)

Kristina Monakhova Kyrollos Yanny

Raw measurement

.....

11

611

....

81

H

...

...

**

..

1

1

K. Monakhova* K. Yanny*, N. Aggarwal, L. Waller, Optica 7(10) 2020

NASA: "Triple redundancy! We can't afford to fail!" Compressed Sensing: "Look at all this redundancy... I can fix that..."

Sparsity is required

Multiplexing hurts SNR, but not too much

Kyrollos Yanny Nick Antipa

Calculating resolution is messy!

Secret #2: Resolution is very non-uniform

Challenge: object-dependent resolution

Two-point resolution only predicts *best case* scenario.

Solution?: use condition number of sub-problem

Assume we know where non-zero elements are:

Solution?: use condition number of sub-problem

Now it is a small least squares problem

Solution?: use condition number of sub-problem

Local condition number sort of gives worst case scenario

Challenge: model mis-match

Microscope has spatially-varying PSFs

Point source

Solution: Local convolution model

with shift-<u>in</u>variant model

with shift *variant* model

Kyrollos Yanny Nick Antipa

Solution: Local convolution model

with shift-<u>in</u>variant model

with shift *variant* model

Physics-based learning for spatially-varying "deconvolution"

Physics-based learning for spatially-varying "deconvolution"

20s

> 600X speedup

Kristina Monakhova Vi Tran

K. Monakhova*, K. Yanny*, R. Shuai, L. Waller, Optica 9(1), 2022

Reproducible = open-source + cheap + simple hardware

H. Pinkard, N. Stuurman, I. Ivanov, N. Anthony, W. Ouyang, B. Li, B. Yang, M. Tsuchida, B. Chhun, G. Zhang, R. Mei, M. Anderson, D. Shepherd, I. Hunt-Isaak, R. Dunn, W. Jahr, S. Kato, L. Royer, J. Thiagarajah, K. Eliceiri, E. Lundberg, S. Mehta, L. Waller, Nature Methods 18, 226-228 (2021).

<u>Collaborators</u>: Hillel Adesnik Ben Recht Miki Lustig Dan Fletcher Colin Ophus Mary Scott

Anti-collaborators:

GigaPan: WallerLab_Berkeley Open-source : www.laurawaller.com Twitter: @optrickster Github: Waller_Lab

is that ALL it's good for?

Weak diffusers directly probe system aberrations

Application: EUV microscope characterization

SHARP (LBNL) $\lambda = 13.5 \text{ nm}$

Field-varying aberrations

1.5 [rad] -1.5 **_** 🥖 🥏 🥏 🔵 🕥 💿

- Using 10 full-field images of blank photomask surface roughness, we recover 5thorder aberration polynomials across the FOV
- Accuracy of technique roughly $\lambda / 182$
- Requires only statistical knowledge of scattering object
- Does not require additional / invasive sensors or hardware
- Does not require fabrication / alignment of test objects

Aberrations are bad, but maybe we can design "computationally friendly" ones?

Computational aberration correction

Pupil aberrations can only hurt you

Diffraction Limited MTF

Aberrated MTF

MTF = Modulation Transfer Function = |OTF|

Pupil aberrations can only hurt you

Diffraction Limited MTF

Aberrated MTF

MTF = Modulation Transfer Function = |OTF|

Pupil aberrations + diffuser is worse, no?

Which MTF is better?

Amit Kohli

The deconvolution *with diffuser* is better!

No Mask

Mask

Amit Kohli

The diffuser system is relatively invariant to aberrations

Amit Kohli

Dynamic Structured Illumination Microscopy with a Neural Space-time Model Ruiming Cao Research update 5/18/2022

^{2022 R. Cao, page 107} Diffraction-limited system acts as a low-pass filter limiting the spatial resolution

^{2022 R. Cao} Sinusoidal structured illumination microscopy (SIM) captures high-frequency from Moiré patterns

^{2022 R. Cao, page 109} Speckle-structured illumination modulates highfrequency into diffraction limit

^{2022 R. Cao page 110} SIM requires multiple raw images for a super-resolved image, trading off temporal resolution

^{2022 R. Cao, page 111} Speckle Flow SIM: Fixed speckle illumination but a dynamic scene to diversify measured information

^{2022 R. Cao, page 112} Speckle Flow SIM: super-resolve each frame of a dynamic scene with deformable motion

^{2022 R. Cao} page 113 Fixed speckle-structured illumination can be pre-calibrated, making the reconstruction data-efficient

frames from the same number of images still requires additional constraint

Each acquired image's bandwidth : $\frac{NA_{obj}}{\lambda}$

Super-resolution bandwidth: $\frac{NA_{obj} + NA_{speckle}}{\lambda} \approx 2 \times \text{acquired bandwidth}$

A video often contains temporal redundancy as the motion is smooth

Live C. Elegan

Video by courtesy of Michael Kellman
A dynamic scene represented by a single static scene + motion kernel for each timepoint

A coordinate-based multi-layer perceptron (MLP) to estimate motion for each space-time coordinate

Motion MLP estimates the motion at pixel-level

^{2022 R. Cao, page 119} Neural space-time model: a dynamic scene represented by motion MLP and scene MLP

Update model's weights to reconstruct motion dynamics and a super-resolved scene

acquired images

Speckle Flow SIM to recover deformable motion

Number of input frames affects reconstruction

^{2022 R. Cao, page 123} Experimental result of 1.88x super-resolution for a continuously moving sample

