* ; (int yTile = ; yTile < in.height(); yTile += )
A RN _ ml28i a, b, c, sum, avg;
- m128i blurH[( / )*( + )]1; // allocate tile blL
(int xTile = ; xTile < in.wicth(); xTile +=
__m1281i *blurHPtr = blurH;

(inty=-;y< +; y+) {

Computational Microscopy with Scattering

Laura Waller
Professor
Electrical Engineering and Computer Sciences
UC Berkeley




Computational imaging pipeline

—>

Hardware design

Measurement

NN

Algorithm design

N

Final result
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Lenses map points to points

Point Spread Function (PSF)

lens

sensor




Mask-based cameras multiplex

Point Spread Function (PSF)
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mask

sensor

M. S. Asif, et al. ICCVW (2015
J. Tanida, et al. Applied optics (2001
K. Tajima, et al. ICCP (2017

)
)
)
D. G. Stork, et al. Int. J. Adv. Systems and measurements (2014)



DiffuserCam: stick a scatterer on a sensor

Point Spread Function (PSF)

diffuser

——> sensor

Camille Biscarrat
Shreyas Parthasarathy [

https://laurawaller.com/opensource
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DiffuserCam: stick a scatterer on a sensor
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Traditional cameras take direct measurements

- - -
] L
ﬂ L - R
measurement



Computational cameras can multiplex

Need to know the I
forward model!

- measure it?
- model it?
- machine learn it? -

7! S FELES

o

measurement

S I "Hx0] "B} l‘
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Point spread function shifts with position




DiffuserCam forward model is a convolution

Point Spread Functions
for different image pixels






raw sensor data recovered scene

Grace Kuo [
Nick Antipa ¥

*solver is ADMM with TV reg in Halide



Image reconstruction is nonlinear optimization

rkide™\ i 2
argmin| vy - @* * x | +A|OD
>0 ; A

Sparsity
basis

*solved with ADMM in Halide

S. Boyd, et al. Foundations and Trends in Machine Learning (2011)
J. Ragan-Kelley, et al. AMC SIGPLAN (2013)




Physics-based image reconstruction

Measurement Final result




Deep learning based reconstruction

Measurement

J I E—

HEE B EBE

S E—

Final result




Inverse Problem Philosophies

#7°7" Deep Learning
—
gradient descent CNNSs, Unet, Resnet, etc.
(FISTA, ADMM)

e Large training dataset
* Not interpretable
* No guarantees, not robust

e Slow
e Model mismatch causes artifacts



Inverse Problem Philosophies

Physics-based learning

e Efficient parametrization
* Uses known physics
e Learns unknowns

Michael Kellman
Emrah Bostan E. Bostan, U. Kamilov, L. Waller, IEEE Signal Processing Letters (2018).

Kristina Monakhova
M. Kellman, E. Bostan, N. Repina, L. Waller, IEEE Trans. of Comp. Imaging (2019).




Pipeline

ground truth

loss function

lensed e
camera DiffuserCam

ining

measurements reconstructions

Tra

Physics-based
network

measurements reconstructions

Operation

«<---- backprop

Kristina Monakhova

K. Monakhova, J. Yurtsever, G. Kuo, N. Antipa, K. Yanny, L. Waller, Optics Express (2019).



Physics-based learning improves speed + quality

HEYT Learning

ground truth

Kristina Monakhova [P

K. Monakhova, J. Yurtsever, G. Kuo, N. Antipa, K. Yanny, L. Waller, Optics Express (2019).



raw sensor data recovered scene

Grace Kuo |
Nick Antipa §

*solver is ADMM with TV reg in Halide



Cute! But what’s it good for?




Multiplexed measurements are tolerant to erasures



Multiplexed measurements are tolerant to erasures

PSF
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Multiplexed measurements are tolerant to erasures

measurement with 90% erasures

TN



Multiplexed measurements are tolerant to erasures

recovered image with 90% erasures




Multiplexed measurements are tolerant to erasures

measurement
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Multiplexed measurements are tolerant to erasures

measurement




Multiplexed measurements are tolerant to erasures

recovered image




Multiplexed measurements are tolerant to erasures

measurement
Z ‘ .
S\ Nensors”
D L sensors
WS - e

sensors cover only 8% of total area!



Multiplexed measurements are tolerant to erasures

recovered image

: !ﬂa ‘S 3
- " el

sensors cover only 8% of total area!



B I G DiffuserCam with tiled sensors

Measurement Reconstruction
‘3500 DX
2x2 tiled sensori
(ot _(ni
3500 px Large-aperture
imaging with
T flat-ish optics?

4 g Nico Deshler
el EllinZhao
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Point spread function scales with depth




1 Million

A

\ 4

A

Single-shot 3D is difficult

100 Million

Problems:

Haration (1000immEes?1?)
uta

Underdetermined

UOI[IIN T X 00T



N. Antipa, G. Kuo, R. Heckel, E. Bostan, B. Mildenhall, R. Ng, L. Waller, Optica 5(1) (2017).



Scanning
Microscopy

l

speed scales with #
voxels in image

Compressed
Sensing

\

speed scales with
sparsity of sample

VS.
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Towards lensless 3D microscopy

Lensless imager:
- small

- inexpensive
- enables tiling

with Adesnik Lab }* .



3D neural activity tracking

Reconstructed neural activity

Neuron ID

time(s)

Nico Pegard

with Adesnik Lab
N. Pegard et al, Optica 2016




Neural activity tracking with flat DiffuserScope

%ﬁ!ﬁ sample

diffuser .} color filters

sensor

G. Kuo, F. Liu, I. Grossrubatscher, R. Ng, L. Waller, Optics Express (2020).






Hmm... is random scattering
the best encoder?




Secret #3: off-the-shelf diffusers aren’t ideal
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%

eoeeooo ° ° .
X " e .
‘ RN PR
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Smooth Diffuser Lens Microlenses Randomly spaced

microlenses



Computational imaging pipeline

What is the best reconstruction algorithm?

Hardware design

—>

Take picture

—>

Crunch Data Final result

optimize algorithm

Gregor & LeCun 2010, Yang et al. 2016, Zhang et al. 2017, Diamond et al. 2018

Kamilov et al. IEEE Sig. Proc. Lett. 24:12

E. Bostan, R. Heckel, M. Chen, M. Kellman, L. Waller, Optica 7(6), 559-562

K. Monakhova, J. Yurtsever, G. Kuo, N. Antipa, K. Yanny, L. Waller, Opt. Express
E. Bostan, U. Kamilov, L. Waller, IEEE Sig. Proc. Lett. 25(7), 989-993

Py

2018
2020
2019
2018

)
)
)
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Computational imaging pipeline

What are the best measurements to take?

Hardware design Take picture Crunch Data Final result

— —

g

optimize optics

Extended depth-of-field imaging: V. Sitzmann, et al., ACM Trans. Graphics 37:4 (2018).

Optical computing [Chang et al. 2018]

Microscopy [Horstmeyer 2017, Hershko et al. 2019, Kellman et al. 2019]

Monocular depth estimation [Wu et al. 2019, Chang et al. 2019]

Single-shot high dynamic range imaging [Metzler et al. 2020, Sun et al. 2020]

Wide-FoV and full spectrum imaging with a single optical element [Peng et al. 2019, Dun et al. 2020]

Holographic displays [Peng et al. 2020]



Learning an optimized diffuser shape

Diffuser Surface

40 Unrolls XY Reconstruction Projection

23 Lenslets
5 Training Examples - ™
ADAM

Optimization

uoidaloid UOIdNIISUOIBY ZA

il =
L2 Loss of System
—— Taining Loss
Validation Loss
1 I
[ |
I '
600 800 1000 1200 _ : _
Taining lteration XZ Reconstruction Projection

Eric Markley




Fourier DiffuserScope

L_—| Point Spread Function (PSF)
phase mask l : :
Y

Linda Liu




Fourier DiffuserScope

phase mask -l

Point Spread Function (PSF)

Linda Liu




Fourier DiffuserScope

reconstructed 3D video

phase mask sdabiielim e

e

sample

2% B |inda Liu







Fourier DiffuserScope

phase mask sdabiielim e

\f—\
sample







Resolution is more uniform

=== ourier light field microscope
=== ourier Diffuserscope

Lateral (um)
Axial (um)

- 3 Linda Liu




Fourier DiffuserScope

A Lateral resolution ® Axial resolution

5 00

Resolution (um)
(@)}

4 0000000 0000000

phase mask sdbiiialim e 3 NSRRI SUVVIY oo

-300 -200 -100 0 100 200 300 400 100

IIIIIII z (um)

sample

Large volume: 1000x1000x280 pum?
High-resolution: <3 um lateral, 4 um axial

- ‘ﬁi Linda Liu




Open-source miniature 3D microscope version

Miniscope

CMOS
Sensor

Tube lens
Filter — e

|
Dichroic
Mirror I

GRIN Lens —>
LED

K. K. Ghosh, et al, Nature Methods 8, 871 (2011).

Miniscope.org

Miniscope3D

CMOS Sensor

I «— LED
=

Phase Mask

Kyrollos Yanny

Nick Antipa s

i

" g
tﬂw‘ .




Open-source miniature 3D microscope version

0.5 mm

K. Yanny, ... L. Waller, Light: Science & Applications 9:171 (2020).

Miniscope3D

CMOS Sensor

-

I <— LED

\— Phase Mask

Kyrollos Yanny
Nick Antipa




Raw fluorescence data at 30 fps 3D video reconstruction

I

R 1 i
L ;_r-.‘__,:l.
1]
s X 0 x £
v 50 ‘um Y

K 3
Kyrollos Yanny r...

Nick Antipa &

K. Yanny, ... L. Waller, Light: Science & Applications 9:171 (2020).









Multiplexing enables temporal encoding with rolling shutter

.

Patrick Oare
Nick Antipa &5

P. Oare, N. Antipa, E. Bostan, L. Waller ICCP 2019




Multiplexing enables temporal encoding with rolling shutter

B

N

r"

Patrick Oare
Nick Antipa [5%

P. Oare, N. Antipa, E. Bostan, L. Waller ICCP 2019




Video from stills with rolling shutter

Raw data: 1 frame

Patrick Oare
Nick Antipa

P. Oare, N. Antipa, E. Bostan, L. Waller ICCP 2019







Hyperspectral
(x,y, lambda)
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Lensless hyperspectral imaging with color filter array

Spectral Filter array

super-pixel

—
—

diffuser

filter spectral

/ /‘ response -

spectral filter array sensor

|
il |
ﬁﬁl‘ -'*IEL l'l. II" |

0 -
300 400 500 &00 700 | 200

Kristina Monakhova
Kyrollos Yanny




Lensless hyperspectral imaging with color filter array

diffuser

-

spectral filter array sensor

Kristina Monakhova
Kyrollos Yanny

coded measurement

reconstruction algorithm

1 2
A o 1 — sty - o)

recovered hyperspectral
data

9
a
9
a
9
a
9
a

4Udnm BLOUNM BOUnm

K. Monakhova*, K. Yanny*, N. Aggarwal, L. Waller, Optica 7(10) 2020



Lensless hyperspectral imaging with color filter array

diffuser

Cheap: sensor + S5 filter array + diffuser

Compact: 1cm in addition to sensor

Flexible: choose any spectral filters
(user-defined sampling and bandwidths)

y

spectral filter array sensor

Kristina Monakhova
Kyrollos Yanny

K. Monakhova*, K. Yanny*, N. Aggarwal, L. Waller, Optica 7(10) 2020
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K. Yanny*, N. Aggarwal, L. Waller, Optica 7(10) 2020



hyperspectral reconstruction

K. Monakhova*, K. Yanny*, N. Aggarwal, L. Waller, Optica 7(10) 2020
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a NASA: “Triple redundan_cy! We can’t afford to faill”

i

oy ﬂ Compressed Sensing: “Look at all this redundancy...
4 | can fix that...”




reconstruction

ground truth
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Sparsity is required
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Multiplexing hurts SNR, but not too much

Miniscope3D 2D Miniscope
100
2 _._=_ s E Hms
g =m ¥ T
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Calculating resolution
IS messy!




Secret #2: Resolution is very non-uniform
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16 points

Challenge: object-dependent resolution

two-point resolution  ~1.6x two-point res

y - * 4

T_)X 100 um

LI EA Two-point resolution only
predicts best case scenario.




Solution?: use condition number of sub-problem

Assume we know where non-zero elements are:




Solution?: use condition number of sub-problem

TR

Now it is a small least squares problem



Solution?: use condition number of sub-problem

Number of
sources

Local condition number sort of
gives worst case scenario
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Challenge: model mis-match
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Deep Learning
e ————————————————

Physics-based learning for
spatially-varying “deconvolution”

Training: update network weights and filters

p ’ _> spatially-varying — ‘“ “— HHIQ_HHH -& ﬁ%\
R “deconvolution” - = DE;D&DE : ’ 5‘

EENE )

CNN refinement image ground
guess truth

learnable filters training data

K. Monakhova*, K. Yanny*, R. Shuai, L. Waller, Optica 9(1), 2022



Deep Learning
ﬁ

Physics-based learning for
spatially-varying “deconvolution”

PSNR: 22.02

I
N ry.

YL

PSNR: 23.42

PSNR:18.71

-

4 ,

A

> 600X speedup

Kristina Monakhova
Vi Tran

K. Monakhova*, K. Yanny*, R. Shuai, L. Waller, Optica 9(1), 2022
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Reproducible = open-source + cheap + simple hardware

Computational
P ScotchTape Cam
CellScope
Ezam £ ® 0510
= Computational CellScope
. . . .
B
rightfield l_)iiliflild, 5
P -
- A
0
% 3 ' AN
DPC DPC -
Lef_t/’Right. _Tc_).p/Bott.om B @ :
7V p ASA R Spectral Code
e ¥ ) A &::“* 5
,//,

J
D
1

k Illumination, Inc.” /
*financial interest
www.laurawaller.com/opensource

H. Pinkard, N. Stuurman, I. Ivanov, N. Anthony, W. Ouyang, B. Li, B. Yang, M. Tsuchida, B. Chhun, G. Zhang, R. Mei, M. Anderson, D. Shepherd, |. Hunt-Isaak, R. Dunn, W. Jahr,
S. Kato, L. Royer, J. Thiagarajah, K. Eliceiri, E. Lundberg, S. Mehta, L. Waller, Nature Methods 18, 226-228 (2021).






Collaborators:
Hillel Adesnik
Ben Recht
Miki Lustig
Dan Fletcher
Colin Ophus
Mary Scott

GigaPan: WallerLab_Berkeley
Open-source : www.laurawaller.com
Twitter: @optrickster

Github: Waller_Lab

S ‘,,‘{hi—ﬁ?}“ M GORDON AND BETTY the David & CHAN ZUCKERBERG
stroBel . QLLBLLY &5 =¥ MOORE “Pidkard (CJ BIOHUB

’ \S’-"ﬂncp&mhn'o\‘“‘g FOUNDATION FOUNDATION
KL/E?[EHCOF :’Lﬁ\"‘:’l“’:l;z ‘ S,‘;—/ - Ao Bakar Fellows Program m) @







is that ALL it’s good for?




Weak diffusers directly probe system aberrations

Intensity at Fourier transform Uniquely defined
sensor plane of intensity aberration polynomial

|
Holographic diffusers,

photomask surface Acquired images & their spectra
roughness, etc.
- - . Nonlinear least squares
i, P reconstruction algorithm
Interference where circles overlap i & °°° W

Acquired patterns should be diverse!
Gautam
Gunjala p - §
4

G. Gunjala, S. Sherwin, A. Shanker, L. Waller, Optics Express (2016).













Application: EUV microscope characterization

Field-varying aberrations
CQOCOO0OO0O
OQQQOO0OO0O0O0C

%" ooocoococo!’
e 900000000 ().

2=135nm Q000000 0C
000000000
000000060060 =
= 00000066 =
e Q00O O0O0O000
307 0000000
Imaging FOV 0600006

G. Gunjala, A. Wojdyla, S. Sherwin, [...] L. Waller, Scientific Reports (2020).

e Using 10 full-field images of

blank photomask surface
roughness, we recover 5t-
order aberration polynomials
across the FOV

e Accuracy of technique roughly

A/182

* Requires only statistical

knowledge of scattering object

* Does not require additional /

invasive sensors or hardware

* Does not require fabrication /

alignment of test objects

Gautam
Gunjala




Aberrations are bad, but maybe we can design
“computationally friendly” ones?

Amit Kohli bl = 5%




Computational aberration correction

A1

T

Object Plane “Fourier Plane” Image Plane

v v “'fl 4
2l
o I-\ >
Amit Kohli pale 3
.

Spherical Aberrations




Pupil aberrations can only hurt you

Diffraction Limited MTF Aberrated MTF

MTF = Modulation Transfer Function = |OTF|




Pupil aberrations can only hurt you

Diffraction Limited MTF Aberrated MTF

MTF = Modulation Transfer Function = |OTF|




Pupil aberrations + diffuser is worse, no?

Object Plane “Fourier Plane” Image Plane

" ¥ “'fl >
2 S
- .‘ 4
Amit Kohli pale 3
4

Spherical Diffuser
Aberrations




Which MTF is better?

no mask
—— mask

Amit Kohli pglea




th diffuser is better

ion wi

The deconvolut

W EH

No Mask

Amit Kohli



The diffuser system is relatively invariant to aberrations

0 5 10
No Aberrations Spherical Seidel Coefficient Very Aberrated

s g
Amit Kohli bl







Dynamic Structured lllumination Microscopy with a
Neural Space-time Model



Diffraction-limited system acts as a low-pass filter
limiting the spatial resolution
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Sinusoidal structured illumination microscopy (SIM)
captures high-frequency from Moirée patterns
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Speckle-structured illumination modulates high-
frequency into diffraction limit
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SIM requires multiple raw images for a super-resolved image,
trading off temporal resolution

—

IIE-
—
——

l -
: u
i w -0

=m =

imgflip.com

imgip.com |




Speckle Flow SIM: Fixed speckle illumination but a dynamic
scene to diversify measured information

objective lens tube lens

™




Ruiming Cao




Ruiming Cao




Speckle Flow SIM: super-resolve each frame of a dynamic
scene with deformable motion

objective lens tube lens

™




Fixed speckle-structured illumination can be pre-calibrated,
making the reconstruction data-efficient

Pre-calibrated g

. ’ P
speckle illumination




MBS LUTHTOUULLITTIY a OoTHYUTIILE VUl oUupCli-“IToVilvVeU
frames from the same number of images still
requires additional constraint



A video often contains temporal redundancy as the motion is
smooth

Video by courtesy of Michael Kellman






A dynamic scene represented by a single static scene +
motion kernel for each timepoint




A coordinate-based multi-layer perceptron (MLP) to estimate
motion for each space-time coordinate

V‘X‘\ ox,

2N

(x, y, t=0) NAZAN AN (x+ox, y+oy)

V.V 4




Motion MLP estimates the motion at pixel-level




Neural space-time model: a dynamic scene represented by
motion MLP and scene MLP

i ) ‘AV(‘\ 0 OX,

OSY

(x, v, 1=0)]

(x+0x, y+5y)




Update model’s weights to reconstruct motion dynamics
and a super-resolved scene

forward model

LA KA ' ' m H“m'




Speckle Flow SIM to recover deformable motion




Ruiming Cao




Number of input frames affects reconstruction

10pm 10pum 10pm 10pm 10pm



Experimental result of 1.88x super-resolution for a
continuously moving sample
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