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Motivation

The aim of molecular dynamics simulations is to understand the
relationships between the macroscopic properties of a molecular
system and its atomistic features. In particular, one would like to
evaluate numerically macroscopic quantities from models at the
microscopic scale.

Many applications in various fields: biology, physics, chemistry,
materials science.

Various models: discrete state space (kinetic Monte Carlo, Markov
State Model) or continuous state space (Langevin).

The basic ingredient: a potential V which associates to a
configuration (x1, ..., xN) = x ∈ R

3Natom an energy
V (x1, ..., xNatom

). The dimension d = 3Natom is large (a few
hundred thousand to millions).



Introduction Free energy Thermodynamic integration Adaptive biasing techniques

Empirical force field

Typically, V is a sum of potentials modelling interaction between
two particles, three particles and four particles:

V =
∑

i<j

V1(x i , x j) +
∑

i<j<k

V2(x i , x j , xk) +
∑

i<j<k<l

V3(x i , x j , xk , x l).

For example,
V1(x i , x j) = VLJ(|x i − x j |)
where
VLJ(r) = 4ǫ

(

(

σ
r

)12
−
(

σ
r

)6
)

is

the Lennard-Jones potential.
-1

 0

 1

 2

 3

 4

 5

 0.6  0.8  1  1.2  1.4  1.6  1.8  2

V
L
J
(r
)

r

ǫ = 1, σ = 1



Introduction Free energy Thermodynamic integration Adaptive biasing techniques

Dynamics

Newton equations of motion:

{

dX t = M−1Pt dt

dPt = −∇V (X t) dt
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Dynamics
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1Pt dt

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t

where γ > 0. Langevin dynamics is ergodic wrt

µ(dx)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dµ = Z−1 exp(−βV (x)) dx

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.
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Dynamics
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1Pt dt

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t

where γ > 0. Langevin dynamics is ergodic wrt

µ(dx)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dµ = Z−1 exp(−βV (x)) dx

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.

In the following, we focus on the overdamped Langevin (or
gradient) dynamics

dX t = −∇V (X t) dt +
√

2β−1dW t ,

which is also ergodic wrt µ.
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Macroscopic quantities of interest

These dynamics are used to compute macroscopic quantities:

(i) Thermodynamic quantities (averages wrt µ of some
observables): stress, heat capacity, free energy,...

Eµ(ϕ(X )) =

∫

Rd

ϕ(x)µ(dx) ≃
1

T

∫ T

0

ϕ(X t) dt.

(ii) Dynamical quantities (averages over trajectories): diffusion
coefficients, viscosity, transition rates,...

E(F((X t)t≥0)) ≃
1

M

M
∑

m=1

F((Xm
t )t≥0).

Difficulties: (i) high-dimensional problem (N ≫ 1); (ii) X t is a
metastable process and µ is a multimodal measure.
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Metastability: energetic and entropic barriers
A two-dimensional schematic picture
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A toy model for solvation

Influence of the solvation on a dimer conformation [Dellago, Geissler].
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Compact state. Stretched state.

The particles interact through a pair potential: truncated LJ for all
particles except the two monomers (black particles) which interact
through a double-well potential. A slow variable is the distance
between the two monomers.
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A toy example in material sciences
The 7 atoms Lennard Jones cluster in 2D.

(a) C0, V = −12.53 (b) C1, V = −11.50 (c) C2, V = −11.48

(d) C3, V = −11.40

Figure: Low energy conformations of the Lennard-Jones cluster.

−→ simulation
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Simulations of biological systems
Unbinding of a ligand from a protein

(Diaminopyridine-HSP90, Courtesy of SANOFI)

Elementary time-step for the molecular dynamics = 10−15
s

Dissociation time = 0.5 s

Challenge: bridge the gap between timescales
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Outline

Outline of this part:

1. Definition of the free energy associated to a reaction
coordinate.

2. Thermodynamics integration: A free energy computation
method based on stochastic processes with constraints.

3. Adaptive biasing techniques: Free energy computation
methods based on biased stochastic processes.

Mathematical tools: delta measure and co-area formula, Entropy
techniques and Logarithmic Sobolev Inequalities.

Underlying question: how to properly define and quantify
metastability ? Various answers: (i) rate of convergence to
equilibrium; (ii) exit time from metastable states; (iii) decorrelation
time; (iv) asymptotic variance of estimators.
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Reaction coordinate and free energy
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Reaction coordinate

We suppose in the following that we know a slow variable of
dimension 1: ξ(X t), where ξ : Rd → T is a so-called reaction
coordinate.

This reaction coordinate will be used to efficiently sample the
canonical measure using two techniques: (i) constrained dynamics
(thermodynamic integration) or (ii) biased dynamics (adaptive
importance sampling technique).

Free energy will play a central role.

For example, in the 2D simple examples: ξ(x , y) = x .
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Free energy
Let us introduce two probability measures associated to µ and ξ:

• The image of the measure µ by ξ:

ξ∗µ (dz) = exp(−βA(z)) dz

where the free energy A is defined by:

A(z) = −β−1 ln

(

∫

Σ(z)
e−βV δξ(x)−z(dx)

)

,

with Σ(z) = {x , ξ(x) = z} is a (smooth) submanifold of Rd ,
and δξ(x)−z(dx) dz = dx .

• The probability measure µ conditioned to ξ(x) = z :

µΣ(z)(dx) =
exp(−βV (x)) δξ(x)−z(dx)

exp(−βA(z))
.
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Free energy (2d case)

In the simple case ξ(x , y) = x , we have:

• The image of the measure µ by ξ:

ξ∗µ (dx) = exp(−βA(x)) dx

where the free energy A is defined by:

A(x) = −β−1 ln

(

∫

Σ(x)
e−βV (x ,y)dy

)

and Σ(x) = {(x , y), y ∈ R}.

• The probability measure µ conditioned to ξ(x , y) = x :

µΣ(x)(dy) =
exp(−βV (x , y)) dy

exp(−βA(x))
.
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The delta measure and the co-area formula
• The measure δξ(x)−z is defined by: for all test functions

ϕ : T → R and ψ : Rd → R,
∫

Rd

ϕ ◦ ξ(x)ψ(x) dx =

∫

T

ϕ(z)

(

∫

Σ(z)
ψ(x)δξ(x)−z(dx)

)

dz .

• The measure δξ(x)−z can be understood using a regularization

procedure: for any test function ψ : Rd → R,
∫

Σ(z)
ψ(x)δξ(x)−z(dx) = lim

ǫ→0

∫

Rd

ψ(x)δǫ(ξ(x)− z) dx

where limǫ→0 δ
ǫ = δ (Dirac mass at zero).

• The measure δξ(x)−z is related to the Lebesgue measure on
Σ(z) through:

δξ(x)−z = |∇ξ|−1dσΣ(z).

This is the co-area formula. We thus have:
A(z) = −β−1 ln

(

∫

Σ(z) e
−βV |∇ξ|−1dσΣ(z)

)

.
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Free energy: Remarks

• A is the free energy associated with the reaction coordinate or
collective variable ξ (angle, length, ...). The aim of many
molecular dynamic simulations is to compute A.

• A is defined up to an additive constant, so that it is enough to
compute free energy differences, or the derivative of A (the
mean force).

• A(z) = −β−1 lnZΣ(z) and ZΣ(z) is the partition function
associated with the conditioned probability measures:
µΣ(z) = Z−1

Σ(z)e
−βV |∇ξ|−1dσΣ(z).

• If U =

∫

Σ(z)
V Z−1

Σ(z)e
−βV δξ(x)−z(dx) and

S = −kB

∫

Σ(z)
ln
(

Z−1
Σ(z)e

−βV
)

Z−1
Σ(z)e

−βV δξ(x)−z(dx), then

A = U − TS (since β−1 = kBT ).
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Free energy on a simple example

What is free energy ? The simple example of the solvation of a
dimer. (Profiles computed using thermodynamic integration.)
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The density of the solvent molecules is lower on the left than on
the right. At high (resp. low) density, the compact state is more
(resp. less) likely. The “free energy barrier” is higher at high density
than at low density. Related question: interpretation of the free energy barrier in terms of

dynamics ?
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Free energy calculation techniques
There are many free energy calculation techniques:

(a) Thermodynamic integration. (b) Histogram method.

(c) Non equilibrium dynamics. (d) Adaptive dynamics.
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Thermodynamic integration
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Ingredient 1: the mean force
Thermodynamic integration is based on two ingredients:
Ingredient 1: The derivative A′(z) can be obtained by sampling the
conditional probability measure µΣ(z) (Sprik, Ciccotti, Kapral,
Vanden-Eijnden, E, den Otter, ...)

A′(z) = Z−1
Σ(z)

∫

Σ(z)

(

∇V · ∇ξ

|∇ξ|2
− β−1

div

(

∇ξ

|∇ξ|2

))

e−βV |∇ξ|−1dσΣ(z)

=

∫

Σ(z)
f dµΣ(z)

where f = ∇V ·∇ξ
|∇ξ|2

− β−1
div

(

∇ξ
|∇ξ|2

)

. Another equivalent

expression:

A′(z) = Z−1
Σ(z)

∫

Σ(z)

∇ξ

|∇ξ|2
·
(

∇Ṽ + β−1H
)

exp(−βṼ )dσΣ(z)

where Ṽ = V + β−1 ln |∇ξ| and H = −∇ ·
(

∇ξ
|∇ξ|

)

∇ξ
|∇ξ| is the mean

curvature vector.
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Ingredient 1: the mean force

In the simple case ξ(x , y) = x , remember that

A(x) = −β−1 ln

(

∫

Σ(x)
e−βV (x ,y)dy

)

,

so that

A′(x) =

∫

Σ(x)
∂xV e−βV (x ,y) dy

∫

Σ(x)
e−βV (x ,y) dy

=

∫

Σ(x)
∂xV dµΣ(x).
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Ingredient 1: the mean force

Proof in the general case : A′(z) = −β−1
d
dz

∫
Σ(z) exp(−βV )δξ(x)−z (dx)∫

Σ(z) exp(−βV )δξ(x)−z (dx)

and
∫

T

(

∫

Σ(z)
exp(−βV )δξ(x)−z(dx)

)′

φ(z) dz

= −

∫

T

∫

Σ(z)
exp(−βV )δξ(x)−z(dx)φ′ dz

= −

∫

T

∫

Σ(z)
exp(−βV )φ′ ◦ ξ δξ(x)−z(dx) dz

= −

∫

Rd

exp(−βV )φ′ ◦ ξdx = −

∫

Rd

exp(−βV )∇(φ ◦ ξ) ·
∇ξ

|∇ξ|2
dx

=

∫

Rd

∇ ·

(

exp(−βV )
∇ξ

|∇ξ|2

)

φ ◦ ξ dx

=

∫

T

∫

Σ(z)

(

−β
∇V · ∇ξ

|∇ξ|2
+∇ ·

(

∇ξ

|∇ξ|2

))

exp(−βV )δξ(x)−z(dx)φ(z) dz
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Ingredient 2: constrained dynamics

Ingredient 2: It is possible to sample the conditioned probability
measure µΣ(z) = Z−1

Σ(z) exp(−βṼ )dσΣ(z) by considering the

following rigidly constrained dynamics:

(RCD)

{

dX t = −∇Ṽ (X t) dt +
√

2β−1dW t +∇ξ(X t)dΛt

dΛt such that ξ(X t) = z

The Lagrange multiplier writes dΛt = dΛm
t + dΛf

t , with
dΛm

t = −
√

2β−1 ∇ξ
|∇ξ|2

(X t) · dW t and

dΛf
t =

∇ξ
|∇ξ|2

·
(

∇Ṽ + β−1H
)

(X t) dt = f (X t) dt
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Ingredient 2: constrained dynamics

Equivalently, the rigidly constrained dynamics writes:

(RCD) dX t = P(X t)
(

−∇Ṽ (X t) dt +
√

2β−1dW t

)

+ β−1H(X t) dt

where P(x) is the orthogonal projection operator on Tx(Σ(ξ(x))):

P(x) = Id − n(x)⊗ n(x),

with n the unit normal vector: n(x) =
∇ξ

|∇ξ|
(x).

(RCD) can also be written using the Stratonovitch product:
dX t = −P(X t)∇Ṽ (X t) dt +

√

2β−1P(X t) ◦ dW t .

One can check that ξ(X t) is constant if X t satisfies (RCD).
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Ingredient 2: constrained dynamics

[G. Ciccotti, TL, E. Vanden-Einjden, 2008] Assume wlg that z = 0. The
probability µΣ(0) is the unique invariant measure with support in
Σ(0) for (RCD).

Proposition: Let X t be the solution to (RCD) such that the law of
X 0 is µΣ(0). Then, for all smooth function φ and for all time t > 0,

E(φ(X t)) =

∫

φdµΣ(0).

Proof: Introduce the infinitesimal generator and apply the divergence theorem on

submanifolds : ∀φ ∈ C1(Rd ,Rd ),

∫
div Σ(0)(φ) dσΣ(0) = −

∫
H · φ dσΣ(0),

where div Σ(0)(φ) = tr(P∇φ).
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Thermodynamic integration

Using the two ingredients above, A′(z) = limT→∞
1
T

∫ T

0
f (X t) dt,

where X t satisfies (RCD) and ξ(X 0) = z . The free energy profile is
then obtained by thermodynamic integration:

A(z)− A(0) =

∫ z

0

A′(z) dz ≃
K
∑

i=0

ωiA
′(zi ).

Notice that there is actually no need to compute f in practice since
the mean force can be obtained by averaging the Lagrange
multipliers:

A′(z) = lim
T→∞

1

T

∫ T

0

dΛt = lim
T→∞

1

T

∫ T

0

dΛf

t

since dΛt = dΛm
t + dΛf

t , with dΛm
t = −

√

2β−1 ∇ξ
|∇ξ|2

(X t) · dW t

and dΛf
t = f (X t) dt.



Introduction Free energy Thermodynamic integration Adaptive biasing techniques

Discretization of (RCD)

The two following schemes are consistent with (RCD):

(S1)

{

X n+1 = X n −∇Ṽ (X n)∆t +
√

2β−1∆W n + λn∇ξ(X n+1),
with λn ∈ R such that ξ(X n+1) = 0,

(S2)

{

X n+1 = X n −∇Ṽ (X n)∆t +
√

2β−1∆W n + λn∇ξ(X n),
with λn ∈ R such that ξ(X n+1) = 0,

where ∆W n = W (n+1)∆t − W n∆t . The constraint is exactly
satisfied (important for longtime computations). An approximation

of A′(0) = limT→∞
1
T

∫ T

0
dΛt is:

lim
T→∞

lim
∆t→0

1

T

T/∆t
∑

n=1

λn = A′(0).
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Error analysis

[Faou,TL, Mathematics of Computation, 2010] Using classical techniques
(Talay-Tubaro like proof), one can check that the ergodic measure
µ∆t
Σ(0) sampled by the Markov chain (X n)n≥0 is an approximation of

order one of µΣ(0): for all smooth functions g : Σ(0) → R,

∣

∣

∣

∣

∣

∫

Σ(0)
g dµ∆t

Σ(0) −

∫

Σ(0)
g dµΣ(0)

∣

∣

∣

∣

∣

≤ C∆t.
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Rigidly and softly constrained dynamics

Another way to constrain the overdamped Langevin dynamics to
Σ(0) is to add a constraining potential (soft constraint):

dX
η
t = −∇V (X η

t ) dt −
1

2η
∇(ξ2)(X η

t ) dt +
√

2β−1dW t

One can show that limη→0 X
η
t = X t (in L∞

t∈[0,T ](L
2

ω
)-norm) where X t

satisfies (RCD). Notice that we used V and not Ṽ in the softly
constrained dynamics.

The statistics associated with the dynamics where the constraints
are rigidly imposed and the dynamics where the constraints are
softly imposed are different: “a stiff spring 6= a rigid rod” (van
Kampen, Hinch,...).
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Back to the sampling of µ

TI yields a way to compute
∫

Rd φdµ:
∫

Rd

φdµ = Z−1

∫

Rd

φe−βV dx

= Z−1

∫

T

∫

Σ(z)
φe−βV δξ(x)−z(dx)

= Z−1

∫

T

∫

Σ(z) φe
−βV δξ(x)−z(dx)

∫

Σ(z) e
−βV δξ(x)−z(dx)

∫

Σ(z)
e−βV δξ(x)−z(dx) dz

=

(
∫

T

e−βA(z) dz

)−1 ∫

T

(

∫

Σ(z)
φdµΣ(z)

)

e−βA(z) dz

where, we recall, Σ(z) = {x , ξ(x) = z},

A(z) = −β−1 ln
(

∫

Σ(z)e
−βV δξ(x)−z(dx)

)

and

µΣ(z) = e−βV δξ(x)−z(dx)/
∫

Σ(z)e
−βV δξ(x)−z(dx).
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Generalization to Langevin dynamics

Interests: (i) Newton’s equations of motion are more “natural”;
(ii) leads to numerical schemes which sample the constrained
measure without time discretization error; (iii) seems to be more
robust wrt the timestep choice.







dqt = M−1pt dt

dpt = −∇V (qt) dt − γM−1pt dt +
√

2γβ−1dWt +∇ξ(qt) dλt
ξ(qt) = z .

The probability measure sampled by this dynamics is

µT∗Σ(z)(dqdp) = Z−1 exp(−βH(q, p))σT∗Σ(z)(dqdp)

where H(q, p) = V (q) + 1
2
pTM−1p.
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Generalization to Langevin dynamics

The marginal of µT∗Σ(z)(dqdp) in q writes:

νMΣ(z) =
1

Z
exp(−βV (q))σMΣ(z)(dq) 6=

1

Z
exp(−βV (q))δξ(q)−z(dq).

Thus, the “free energy” which is naturally computed by this
dynamics is

AM(z) = −β−1 ln

(

∫

Σ(z)
exp(−βV (q))σMΣ(z)(dq)

)

.

The original free energy may be recovered from the relation: for
GM = ∇ξTM−1∇ξ,

A(z)− AM(z) = −β−1 ln

(

∫

Σ(z)
det(GM)−1/2dνMΣ(z)

)

.
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Generalization to Langevin dynamics

Moreover, one can check that:

lim
T→∞

1

T

∫ T

0

dλt = (AM)′(z).

Discretization: A natural numerical scheme is obtained by a
splitting technique:

• 1/2 midpoint Euler on the fluctuation-dissipation part,

• 1 Verlet step on the Hamiltonian part (RATTLE scheme) and

• 1/2 midpoint Euler on the fluctuation-dissipation part.
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Generalization to Langevin dynamics




p
n+1/4 = p

n −
∆t

4
γM

−1(pn + p
n+1/4) +

√
∆t

2
σ G

n +∇ξ(qn)λn+1/4
,

∇ξ(qn)TM−1pn+1/4 = 0,




pn+1/2 = p
n+1/4 −

∆t

2
∇V (qn) +∇ξ(qn)λn+1/2

,

qn+1 = qn +∆t M−1 pn+1/2,

ξ(qn+1) = z ,

pn+3/4 = p
n+1/2 −

∆t

2
∇V (qn+1) +∇ξ(qn+1)λn+3/4

,

∇ξ(qn+1)TM−1pn+3/4 = 0,




p
n+1 = p

n+3/4 −
∆t

4
γM

−1(pn+3/4 + p
n+1) +

√
∆t

2
σ G

n+1/2

+∇ξ(qn+1)λn+1
,

∇ξ(qn+1)TM−1pn+1 = 0,

and limT→∞ lim∆t→0
1
T

∑T/∆t

n=1

(
λn+1/2 + λn+3/4

)
= (AM)′(z).
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Generalization to Langevin dynamics

Using the symmetry of the Verlet step, it is easy to add a
Metropolization step to the previous numerical scheme, thus
removing the time discretization error. Indeed, the proposal
(qn, pn) 7→ (qn+1,−pn+1) is symmetric, so that the Metropolis
Hastings acceptance ratio is simply
exp(−β(H(qn+1, pn+1)− H(qn, pn))).

For this modified scheme, one can prove that

lim
∆t→0

lim
T→∞

1

T

T/∆t
∑

n=1

(

λn+1/2 + λn+3/4
)

= (AM)′(z).
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Generalization to Langevin dynamics

By choosing M = ∆tγ/4 = Id, this leads to an original sampling
scheme in the configuration space (generalized Hybrid Monte Carlo
scheme).

Notice that it is not clear how to use such a Metropolization step
for the dynamics (RCD) since the proposal kernel is not symmetric,
and does not admit any simple analytical expression.

Algorithm: Let us introduce R∆t which is such that, if
(qn, pn) ∈ T ∗Σ(z), and |pn|2 ≤ R∆t , one step of the RATTLE
scheme is well defined (i.e. there exists a unique solution to the constrained problem).

Then the GHMC scheme writes (M = ∆tγ/4 = Id):
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Generalization to Langevin dynamics
Consider an initial configuration q0 ∈ Σ(z). Iterate on n ≥ 0,

1. Sample a random vector in the tangent space TqnΣ(z) (∇ξ(qn)T pn = 0):

p
n = β

−1/2
P(qn)G n

,

where (G n)n≥0 are i.i.d. standard random Gaussian variables, and

compute the energy E
n =

1

2
|pn|2 + V (qn) of the configuration (qn, pn);

2. If |pn|2 > R∆t , set E n+1 = +∞ and go to (3); otherwise perform one
integration step of the RATTLE scheme:





pn+1/2 = p
n −

∆t

2
∇V (qn) +∇ξ(qn)λn+1/2

,

q̃n+1 = q
n +∆t p

n+1/2
,

ξ(q̃n+1) = z ,

p̃n+1 = p
n+1/2 −

∆t

2
∇V (q̃n+1) +∇ξ(q̃n+1)λn+1

,

∇ξ(q̃n+1)T p̃n+1 = 0;
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Generalization to Langevin dynamics

3. If |p̃n+1|2 > R∆t , set E n+1 = +∞; otherwise compute the energy

E
n+1 =

1

2
|p̃n+1|2 + V (q̃n+1) of the new phase-space configuration.

Accept the proposal and set qn+1 = q̃n+1 with probability

min
(

exp(−β(E n+1 − E
n)), 1

)
;

otherwise, reject and set qn+1 = qn.

It can be checked that the probability measure

νMΣ(z) =
1

Z
exp(−βV (q))σMΣ(z)(dq)

is invariant for the Markov Chain (qn)n≥0.
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Adaptive biasing techniques
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Adaptive biasing techniques

We suppose again that we know a slow variable of dimension 1:
ξ(X t), where ξ : Rd → T is a so-called reaction coordinate.

This reaction coordinate will be used to bias the dynamics
(adaptive importance sampling technique), using the free energy A

associated with the reaction coordination ξ.

For example, in the 2D simple examples: ξ(x , y) = x .

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x

y

-3

-2

-1

0

1

2

3

-6 -4 -2 0 2 4 6
x

y



Introduction Free energy Thermodynamic integration Adaptive biasing techniques

Adaptive biasing techniques

The bottom line of adaptive methods is the following: for “well
chosen” ξ the potential V − A ◦ ξ is less rugged than V . Indeed, by
construction ξ∗ exp(−β(V − A ◦ ξ)) = 1T.

Problem: A is unknown ! Idea: use a time dependent potential of
the form

Vt(x) = V (x)− At(ξ(x))

where At is an approximation at time t of A, given the
configurations visited so far.

Hopes:

• build a dynamics which goes quickly to equilibrium,

• compute free energy profiles.

Wang-Landau, ABF, metadynamics: Darve, Pohorille, Hénin, Chipot, Laio, Parrinello, Wang, Landau,...
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Free energy biased dynamics (1/2)
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Free energy biased dynamics (2/2)
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Updating strategies
How to update At ? Two methods depending on wether A′

t

(Adaptive Biasing Force) or At (Adaptive Biasing Potential) is
approximated.
To avoid geometry problem, an extended configurational space
(x , z) ∈ R

n+1 may be considered, together with the meta-potential:

V k(x , z) = V (x) + k(z − ξ(x))2.

Choosing (x , z) 7→ z as a reaction coordinate, the associated free
energy Ak is close to A (in the limit k → ∞, up to an additive constant).

Adaptive algorithms used in molecular dynamics fall into one of
these four possible combinations [TL, M. Rousset, G. Stoltz, J Chem Phys, 2007]:

A′
t At

V ABF Wang-Landau
V k ... metadynamics
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The ABF method

For the Adaptive Biasing Force (ABF) method, the idea is to use
the formula

A′(z) =

∫

Σ(z)

(

∇V · ∇ξ

|∇ξ|2
− β−1

div

(

∇ξ

|∇ξ|2

))

e−βV δξ(x)−z(dx)

∫

Σ(z)
e−βV δξ(x)−z(dx)

=

∫

Σ(z)
f dµΣ(z) = Eµ(f (X )|ξ(X ) = z).

The mean force A′(z) is the average of f with respect to µΣ(z).
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The ABF method
In the simple case ξ(x , y) = x , remember that

A(x) = −β−1 ln

(
∫

e−βV (x ,y)dy

)

,

so that

A′(x) =

∫

Σ(x)
∂xV e−βV (x ,y) dy

∫

Σ(x)
e−βV (x ,y) dy

=

∫

∂xV dµΣ(x).

Notice that actually, whatever At is,

A′(z) =

∫

Σ(z)
f e−β(V−At◦ξ) δξ(x)−z(dx)

∫

Σ(z)
e−β(V−At◦ξ) δξ(x)−z(dx)

.
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The ABF method
Thus, we would like to simulate:

{

dX t = −∇(V − A ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′(z) = Eµ (f (X )|ξ(X ) = z)

but A is unknown...
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The ABF method

The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .
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The ABF method

The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

The associated (nonlinear) Fokker-Planck equation writes:























∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

f ψ δξ(x)−z(dx)
∫

ψ δξ(x)−z(dx)

,

where X t ∼ ψ(t, x) dx .
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The ABF method

The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

The associated (nonlinear) Fokker-Planck equation writes:























∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

f ψ δξ(x)−z(dx)
∫

ψ δξ(x)−z(dx)

,

where X t ∼ ψ(t, x) dx .

Questions: Does A′
t converge to A′ ? What did we gain compared

to the original gradient dynamics ?
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Back to the 2D example
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Back to the toy example for solvation
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The reaction coordinate ξ is the distance between the two
monomers. −→ simulation
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Longtime convergence and entropy (1/3)

Recall the original gradient dynamics:

dQt = −∇V (Qt) dt +
√

2β−1dW t .

The associated (linear) Fokker-Planck equation writes:

∂tφ = div
(

∇Vφ+ β−1∇φ
)

.

where Qt ∼ φ(t,q) dq.

The metastable behaviour of Qt is related to the multimodality of
µ, which can be quantified through the rate of convergence of φ to
φ∞ = Z−1 exp(−βV ).

A classical approach for partial differential equations (PDEs):
entropy techniques.
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Longtime convergence and entropy (2/3)

Notice that the Fokker-Planck equation rewrites

∂tφ = β−1
div

(

φ∞∇

(

φ

φ∞

))

.

Let us introduce the entropy:

E (t) = H(φ(t, ·)|φ∞) =

∫

ln

(

φ

φ∞

)

φ.

We have (Csiszár-Kullback inequality):

‖φ(t, ·)− φ∞‖L1 ≤
√

2E (t).
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Longtime convergence and entropy (3/3)

dE

dt
=

∫

ln

(

φ

φ∞

)

∂tφ

= β−1

∫

ln

(

φ

φ∞

)

div

(

φ∞∇

(

φ

φ∞

))

= −β−1

∫
∣

∣

∣

∣

∇ ln

(

φ

φ∞

)
∣

∣

∣

∣

2

φ =: −β−1I (φ(t, ·)|φ∞).

If V is such that the following Logarithmic Sobolev inequality
(LSI(R)) holds: ∀φ pdf,

H(φ|φ∞) ≤
1

2R
I (φ|φ∞)

then E (t) ≤ E (0) exp(−2β−1Rt) and thus φ converges to φ∞
exponentially fast with rate β−1R .

Metastability ⇐⇒ small R



Introduction Free energy Thermodynamic integration Adaptive biasing techniques

Efficiency of thermodynamic integration

With thermodynamic integration, the conditional measures µΣ(z)

are sampled rather than the original Gibbs measure µ. The
long-time behaviour of the constrained dynamics (RCD) will be
essentially limited by the LSI contant ρ(z) of the conditional
measures µΣ(z) (to be compared with the LSI constant R of the
original measure µ). For well-chosen ξ, ρ(z) ≫ R , which explains
the efficiency of the whole procedure.
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Convergence of ABF (1/4)
A convergence result [TL, M. Rousset, G. Stoltz, Nonlinearity 2008]: Recall the
ABF Fokker-Planck equation:







∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫
f ψ δξ(x)−z (dx)∫
ψ δξ(x)−z (dx)

.

Suppose:

(H1) “Ergodicity” of the microscopic variables: the conditional
probability measures µΣ(z) satisfy a LSI(ρ),

(H2) Bounded coupling:
∥

∥∇Σ(z)f
∥

∥

L∞
<∞,

then
‖A′

t − A′‖L2 ≤ C exp(−β−1 min(ρ, r)t).

The rate of convergence is limited by:

• the rate r of convergence of ψ =
∫

ψ δξ(x)−z(dx) to ψ∞,

• the LSI constant ρ (the real limitation).
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Convergence of ABF (2/4)

In summary:

• Original gradient dynamics: exp(−β−1Rt) where R is the LSI
constant for µ;

• ABF dynamics: exp(−β−1ρt) where ρ is the LSI constant for
the conditioned probability measures µΣ(z).

If ξ is well chosen, ρ≫ R : the free energy can be computed very
efficiently.

Two ingredients of the proof:

(1) The marginal ψ(t, z) =
∫

ψ(t, x) δξ(x)−z(dx) satisfies a closed
PDE:

∂tψ = β−1∂z,zψ on T,

and thus, ψ converges towards ψ∞ ≡ 1, with exponential speed
C exp(−4π2β−1t). (Here, r = 4π2).
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Convergence of ABF (3/4)

(2) The total entropy can be decomposed as [N. Grunewald, F. Otto, C. Villani,

M. Westdickenberg, Ann. IHP, 2009]:

E = EM + Em

where
The total entropy is E = H(ψ|ψ∞),

The macroscopic entropy is EM = H(ψ|ψ∞),

The microscopic entropy is

Em =

∫

H
(

ψ(·|ξ(x) = z)
∣

∣

∣
ψ∞(·|ξ(x) = z)

)

ψ(z) dz .

We already know that EM goes to zero: it remains only to consider
Em...
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Convergence of ABF (4/4)

Other results based on this set of assumptions:

• [TL, JFA 2008] LSI for the cond. meas. µΣ(z)

+ LSI for the marginal µ(dz) = ξ∗µ(dz)
+ bdd coupling (‖∇Σ(z)f ‖L∞ <∞) =⇒ LSI for µ.

• [F. Legoll, TL, Nonlinearity, 2010] Effective dynamics for ξ(Qt). Uniform
control in time:

H(L(ξ(Qt))|L(zt)) ≤ C

(

‖∇Σ(z)f ‖L∞

ρ

)2

H(L(Q0)|µ).
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Discretization of ABF
Discretization of adaptive methods can be done using two
(complementary) approaches:

• Use empirical means over many replicas (interacting particle
system):

E(f (X t)|ξ(X t) = z) ≃

∑N
m=1 f (X

m,N
t ) δα(ξ(Xm,N

t )− z)
∑N

m=1 δ
α(ξ(Xm,N

t )− z)
.

This approach is easy to parallelize, flexible (selection
mechanisms) and efficient in cases with multiple reactive
paths. [TL, M. Rousset, G. Stoltz, 2007; C. Chipot, TL, K. Minoukadeh, 2010 ; TL,

K. Minoukadeh, 2010]

• Use trajectorial averages along a single path:

E(f (X t)|ξ(X t) = z) ≃

∫ t

0
f (X s) δ

α(ξ(X s)− z) ds
∫ t

0
δα(ξ(X s)− z) ds

.

The longtime behavior is much more difficult to analyze.
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ABF: Current developments and open problems

• Avoid the computation of ξ: extended-ABF

• Projection on a gradient of the mean force (Helmholtz
decomposition)

• Reaction coordinates in larger dimension: exchange bias,
separated representations

• Extension of the analysis to the Langevin dynamics

• Extension of the analysis to approximations of the mean force
or the free energy based on time averages



Introduction Free energy Thermodynamic integration Adaptive biasing techniques

Other techniques to compute thermodynamic quantities

Other algorithms which are used in MD to sample efficiently µ:

• Umbrella sampling and statistical reconstruction: Histogram
methods

• Out of equilibrium methods: fluctuation relations à la
Jarzynski-Crooks

• Modify the dynamics: Metropolis Hastings algorithms with
well-chosen proposals, non-reversible perturbations,...

• Interacting replicas techniques: Parallel tempering, Replica
exchange dynamics, ...
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A book on the mathematics for stochastic MD
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