Garden of curves with many automorphisms

Gábor Korchmáros

Università degli Studi della Basilicata, Italy

joint work with Massimo Giulietti

Workshop on algebraic curves over finite fields, RICAM

November 11-15 2013, Linz
Outline

X := (projective, non-singular, geometrically irreducible,) algebraic curve of genus $g \geq 2$, defined over an algebraically closed filed K of characteristic $p > 0$.

$\text{Aut}(X)$:= the K-automorphism group of X.

Upper bounds on $|\text{Aut}(X)|$ depending on g, a survey.

What are the possibilities for $\text{Aut}(X)$ when X has zero p-rank?

A classification in even characteristic p-subgroups of $\text{Aut}(X)$ of curves with positive p-rank.

Remark

The general study of $\text{Aut}(X)$ relies on the fundamental group of the curve, see R. Pries and K. Stevenson, A survey of Galois theory of curves in characteristic p, Amer. Math. Soc., (2011)

For further developments in specific questions and for effective constructions we need the potential of Finite Group Theory.

Gábor Korchmáros

Curves with many automorphisms
\(\mathcal{X} := \) (projective, non-singular, geometrically irreducible,) algebraic curve of genus \(g \geq 2 \), defined over an algebraically closed field \(\mathbb{K} \) of characteristic \(p > 0 \). \(\text{Aut}(\mathcal{X}) := \) the \(\mathbb{K} \)-automorphism group of \(\mathcal{X} \).
\[\mathcal{X} := (\text{projective, non-singular, geometrically irreducible,}) \text{ algebraic curve of genus } g \geq 2, \text{ defined over an algebraically closed filed } \mathbb{K} \text{ of characteristic } p > 0. \ \text{Aut}(\mathcal{X}) := \text{the } \mathbb{K} \text{-automorphism group of } \mathcal{X}. \]

- Upper bounds on \(|\text{Aut}(\mathcal{X})|\) depending on \(g\), a survey.
\(\mathcal{X} := \) (projective, non-singular, geometrically irreducible,) algebraic curve of genus \(g \geq 2 \), defined over an algebraically closed field \(K \) of characteristic \(p > 0 \). \(\text{Aut}(\mathcal{X}) := \) the \(K \)-automorphism group of \(\mathcal{X} \).

- Upper bounds on \(|\text{Aut}(\mathcal{X})| \) depending on \(g \), a survey.
- What are the possibilities for \(\text{Aut}(\mathcal{X}) \) when \(\mathcal{X} \) has zero \(p \)-rank?
\(\mathcal{X} := \) (projective, non-singular, geometrically irreducible,) algebraic curve of genus \(g \geq 2 \), defined over an algebraically closed field \(K \) of characteristic \(p > 0 \). \(\text{Aut}(\mathcal{X}) := \) the \(K \)-automorphism group of \(\mathcal{X} \).

- Upper bounds on \(|\text{Aut}(\mathcal{X})| \) depending on \(g \), a survey.
- What are the possibilities for \(\text{Aut}(\mathcal{X}) \) when \(\mathcal{X} \) has zero \(p \)-rank? A classification in even characteristic.
\(\mathcal{X} := \) (projective, non-singular, geometrically irreducible,) algebraic curve of genus \(g \geq 2 \), defined over an algebraically closed field \(\mathbb{K} \) of characteristic \(p > 0 \). \(\text{Aut}(\mathcal{X}) := \) the \(\mathbb{K} \)-automorphism group of \(\mathcal{X} \).

- Upper bounds on \(|\text{Aut}(\mathcal{X})| \) depending on \(g \), a survey.
- What are the possibilities for \(\text{Aut}(\mathcal{X}) \) when \(\mathcal{X} \) has zero \(p \)-rank? A classification in even characteristic
- \(p \)-subgroups of \(\text{Aut}(\mathcal{X}) \) of curves with positive \(p \)-rank.

Remark

The general study of \(\text{Aut}(\mathcal{X}) \) relies on the fundamental group of the curve, see R. Pries and K. Stevenson, A survey of Galois theory of curves in characteristic \(p \), Amer. Math. Soc., (2011)

For further developments in specific questions and for effective constructions we need the potential of Finite Group Theory.
\(\mathcal{X} := \) (projective, non-singular, geometrically irreducible,) algebraic curve of genus \(g \geq 2 \), defined over an algebraically closed field \(\mathbb{K} \) of characteristic \(p > 0 \). \(\text{Aut}(\mathcal{X}) := \) the \(\mathbb{K} \)-automorphism group of \(\mathcal{X} \).

- Upper bounds on \(|\text{Aut}(\mathcal{X})| \) depending on \(g \), a survey.
- What are the possibilities for \(\text{Aut}(\mathcal{X}) \) when \(\mathcal{X} \) has zero \(p \)-rank? A classification in even characteristic
- \(p \)-subgroups of \(\text{Aut}(\mathcal{X}) \) of curves with positive \(p \)-rank.

Remark

The general study of \(\text{Aut}(\mathcal{X}) \) relies on the fundamental group of the curve,
\(X := \) (projective, non-singular, geometrically irreducible,) algebraic curve of genus \(g \geq 2 \), defined over an algebraically closed field \(\mathbb{K} \) of characteristic \(p > 0 \). \(\text{Aut}(X) := \) the \(\mathbb{K} \)-automorphism group of \(X \).

- Upper bounds on \(|\text{Aut}(X)| \) depending on \(g \), a survey.
- What are the possibilities for \(\text{Aut}(X) \) when \(X \) has zero \(p \)-rank? A classification in even characteristic
- \(p \)-subgroups of \(\text{Aut}(X) \) of curves with positive \(p \)-rank.

Remark

The general study of \(\text{Aut}(X) \) relies on the fundamental group of the curve, see R. Pries and K. Stevenson, A survey of Galois theory of curves in characteristic \(p \), Amer. Math. Soc., (2011)
\(\mathcal{X} := (\text{projective, non-singular, geometrically irreducible,}) \) algebraic curve of genus \(g \geq 2 \), defined over an algebraically closed field \(\mathbb{K} \) of characteristic \(p > 0 \). \(\text{Aut}(\mathcal{X}) := \text{the } \mathbb{K}\text{-automorphism group of } \mathcal{X}. \)

- Upper bounds on \(|\text{Aut}(\mathcal{X})| \) depending on \(g \), a survey.
- What are the possibilities for \(\text{Aut}(\mathcal{X}) \) when \(\mathcal{X} \) has zero \(p \)-rank? A classification in even characteristic
- \(p \)-subgroups of \(\text{Aut}(\mathcal{X}) \) of curves with positive \(p \)-rank.

Remark

The general study of \(\text{Aut}(\mathcal{X}) \) relies on the fundamental group of the curve, see R. Pries and K. Stevenson, A survey of Galois theory of curves in characteristic \(p \), Amer. Math. Soc., (2011)

For further developments in specific questions and for effective constructions we need the potential of Finite Group Theory.
The classical Hurwitz bound

If G is tame then $|G| \leq 84(g - 1)$.
(Hurwitz bound)

$|\text{Aut}(X)| < 16g^4$; up to one exception, the Hermitian curve, [Stichtenoth (1973)].

$|\text{Aut}(X)| < 8g^3$; up to four exceptions. [Henn (1976)]
The classical Hurwitz bound

- $\text{Aut}(\mathcal{X})$ is a finite group.
The classical Hurwitz bound

- $\text{Aut}(X)$ is a finite group.
- If G is tame then $|G| \leq 84(g - 1)$. (Hurwitz bound)
The classical Hurwitz bound

- $\text{Aut}(\mathcal{X})$ is a finite group.
- If G is tame then $|G| \leq 84(g - 1)$. (Hurwitz bound)
- $|\text{Aut}(\mathcal{X})| < 16g^4$; up to one exception, the Hermitian curve, [Stichtenoth (1973)].
The classical Hurwitz bound

- $\text{Aut}(\mathcal{X})$ is a finite group.
- If G is tame then $|G| \leq 84(g - 1)$. (Hurwitz bound)
- $|\text{Aut}(\mathcal{X})| < 16g^4$; up to one exception, the Hermitian curve, [Stichtenoth (1973)].
- $|\text{Aut}(\mathcal{X})| < 8g^3$; up to four exceptions. [Henn (1976)]
Four infinite families of curves \mathcal{X} with $|\text{Aut}(\mathcal{X})| \geq 8g^3$

(I) $v(Y^2 + Y + X^2 k + 1)$, $p = 2$, a hyperelliptic curve of genus $g = 2k - 1$ with $|\text{Aut}(\mathcal{X})| = 2^{2k+1} (2k + 1)$.

(II) The Roquette curve: $v(Y^2 - (X q - X))$ with $p > 2$, a hyperelliptic curve of genus $g = 1/2(q - 1)$ with $\text{Aut}(\mathcal{X})/\mathcal{M} \sim \text{PSL}(2, q)$ or $\text{Aut}(\mathcal{X})/\mathcal{M} \sim \text{PGL}(2, q)$, where $q = p^r$ and $|\mathcal{M}| = 2$.

(III) The Hermitian curve: $v(Y^n + Y - X^n + 1)$ with $n = p^r$, genus $1/2n(n - 1)$, $\text{Aut}(\mathcal{X}) \sim \text{PGU}(3, n)$, n a power of 2. $|\text{Aut}(\mathcal{X})| = (n^3 + 1)n^3(n^2 - 1)$.

(IV) The DLS curve (Deligne-Lusztig curve of Suzuki type): $v(X^n_0(X^n + X) + Y^n + Y)$, with $p = 2$, $n_0 = 2r \geq 2$, $n = 2n_0^2$, $g = n_0(n - 1)$, $\text{Aut}(\mathcal{X}) \sim \text{Sz}(n)$ where $\text{Sz}(n)$ is the Suzuki group, $|\text{Aut}(\mathcal{X})| = (n^2 + 1)n^2(n - 1)$.
Four infinite families of curves \mathcal{X} with $|\text{Aut}(\mathcal{X})| \geq 8g^3$

(I) $v(Y^2 + Y + X^{2^k+1})$, $p = 2$, a hyperelliptic curve of genus $g = 2^{k-1}$ with $\text{Aut}(\mathcal{X})$ fixing a point of \mathcal{X}. $|\text{Aut}(\mathcal{X})| = 2^{2k+1}(2^k + 1)$.
Four infinite families of curves \mathcal{X} with $|\text{Aut}(\mathcal{X})| \geq 8g^3$

(I) $v(Y^2 + Y + X^{2^k+1})$, $p = 2$, a hyperelliptic curve of genus $g = 2^{k-1}$ with $\text{Aut}(\mathcal{X})$ fixing a point of \mathcal{X}.

$|\text{Aut}(\mathcal{X})| = 2^{2k+1}(2^k + 1)$.

(II) The Roquette curve:

$v(Y^2 - (X^q - X))$ with $p > 2$, a hyperelliptic curve of genus $g = \frac{1}{2}(q - 1)$; $\text{Aut}(\mathcal{X})/M \cong \text{PSL}(2, q)$ or $\text{Aut}(\mathcal{X})/M \cong \text{PGL}(2, q)$, where $q = p^r$ and $|M| = 2$;
Four infinite families of curves \mathcal{X} with $|\text{Aut}(\mathcal{X})| \geq 8g^3$

(I) $\nu(Y^2 + Y + X^{2k+1})$, $p = 2$, a hyperelliptic curve of genus $g = 2^{k-1}$ with $\text{Aut}(\mathcal{X})$ fixing a point of \mathcal{X}.
$|\text{Aut}(\mathcal{X})| = 2^{2k+1}(2^k + 1)$.

(II) The Roquette curve:
$\nu(Y^2 - (X^q - X))$ with $p > 2$, a hyperelliptic curve of genus $g = \frac{1}{2}(q - 1)$; $\text{Aut}(\mathcal{X})/M \cong \text{PSL}(2, q)$ or $\text{Aut}(\mathcal{X})/M \cong \text{PGL}(2, q)$, where $q = p^r$ and $|M| = 2$;

(III) The Hermitian curve:
$\nu(Y^n + Y - X^{n+1})$ with $n = p^r$, genus $\frac{1}{2} n(n - 1)$, $\text{Aut}(\mathcal{X}) \cong \text{PGU}(3, n)$, n a power of 2.
$|\text{Aut}(\mathcal{X})| = (n^3 + 1)n^3(n^2 - 1)$.
Four infinite families of curves \mathcal{X} with $|\text{Aut}(\mathcal{X})| \geq 8g^3$

(I) $v(Y^2 + Y + X^{2^k+1})$, $p = 2$, a hyperelliptic curve of genus $g = 2^{k-1}$ with $\text{Aut}(\mathcal{X})$ fixing a point of \mathcal{X}.
$|\text{Aut}(\mathcal{X})| = 2^{2k+1}(2^k + 1)$.

(II) The Roquette curve:
$v(Y^2 - (X^q - X))$ with $p > 2$, a hyperelliptic curve of genus $g = \frac{1}{2}(q - 1)$; $\text{Aut}(\mathcal{X})/M \cong \text{PSL}(2, q)$ or $\text{Aut}(\mathcal{X})/M \cong \text{PGL}(2, q)$, where $q = p^r$ and $|M| = 2$;

(III) The Hermitian curve:
$v(Y^n + Y - X^{n+1})$ with $n = p^r$, genus $\frac{1}{2} n(n - 1)$, $\text{Aut}(\mathcal{X}) \cong \text{PGU}(3, n)$, n a power of 2.
$|\text{Aut}(\mathcal{X})| = (n^3 + 1)n^3(n^2 - 1)$.

(IV) The DLS curve (Deligne-Lusztig curve of Suzuki type): $v(X^{n_0}(X^n + X) + Y^n + Y)$, with $p = 2$, $n_0 = 2^r \geq 2$, $n = 2n_0^2$, $g = n_0(n - 1)$, $\text{Aut}(\mathcal{X}) \cong \text{Sz}(n)$ where $\text{Sz}(n)$ is the Suzuki group, $|\text{Aut}(\mathcal{X})| = (n^2 + 1)n^2(n - 1)$.
Two more infinite families of curves \mathcal{X} with large $\text{Aut}(\mathcal{X})$.

The DLR curve (the Deligne-Lusztig curve arising from the Ree group):

$$v(Y^n_2 - [1 + (X^n - X)]^{n-1}Y^{n-1} + (X^n - X)^n - X^n(X^n - X)^3 + 3^n),$$
with $p = 3$, $n_0 = 3^r$, $n = 3^{n_2^0}$;

$g = 3^{\frac{2}{n_0}(n - 1)(n + n_0 + 1)}$; $\text{Aut}(\mathcal{X}) \cong \text{Ree}(n)$ where $\text{Ree}(n)$ is the Ree group,

$|\text{Aut}(\mathcal{X})| = (n^3 + 1)n^3(n - 1)$.

The G.K curve:

$$v(Y^{3n+1} + (X^n + X)(\sum_{i=0}^{n} (-1)^{i+1}X^i(n-1)^i)n^{n+1}),$$
a curve of genus $g = \frac{1}{2}(n^3 + 1)(n^2 - 2) + 1$ with $\text{Aut}(\mathcal{X})$ containing a subgroup isomorphic to $\text{SU}(3, n)$, $n = p^r$.

$|\text{Aut}(\mathcal{X})| = (n^3 + 1)n^3(n - 1)$.

Gábor Korchmáros
Curves with many automorphisms
(V) The DLR curve (the Deligne-Lusztig curve arising from the Ree group):
\[v(Y^{n^2} - [1 + (X^n - X)^{n-1}]Y^n + (X^n - X)^{n-1}Y - X^n(X^n - X)^{n+3n_0}) \], with \(p = 3 \), \(n_0 = 3^r \), \(n = 3n_0^2 \);
\[g = \frac{3}{2}n_0(n - 1)(n + n_0 + 1); \text{ Aut}(\mathcal{X}) \cong \text{Ree}(n) \text{ where } \text{Ree}(n) \text{ is the Ree group, } |\text{Aut}(\mathcal{X})| = (n^3 + 1)n^3(n - 1). \]
(V) The DLR curve (the Deligne-Lusztig curve arising from the Ree group):
$$v(Y^{n^2} - [1 + (X^n - X)^{n-1}] Y^n + (X^n - X)^{n-1} Y - X^n(X^n - X)^{n+3n_0}),$$
with $p = 3$, $n_0 = 3^r$, $n = 3n_0^2$;
$g = \frac{3}{2} n_0(n - 1)(n + n_0 + 1)$; $\text{Aut}(\mathcal{X}) \cong \text{Ree}(n)$ where $\text{Ree}(n)$ is the Ree group, $|\text{Aut}(\mathcal{X})| = (n^3 + 1)n^3(n - 1)$.

(VI) The G.K curve:
$$v(Y^{n^3+1} + (X^n + X)(\sum_{i=0}^{n}(-1)^{i+1}X^{i(n-1)})^{n+1}),$$
a curve of genus $g = \frac{1}{2} (n^3 + 1)(n^2 - 2) + 1$ with $\text{Aut}(\mathcal{X})$ containing a subgroup isomorphic to $\text{SU}(3, n)$, $n = p^r$.
$|\text{Aut}(\mathcal{X})| = (n^3 + 1)n^3(n - 1)$.
Problems on curves with large automorphism groups, $\gamma = 0$

Remark
All the above examples have zero p-rank.

Problem 1: Find a function $f(g)$ such that if $|\text{Aut}(X)| > f(g)$ then $\gamma = 0$.

Problem 2: Determine the structure of large automorphism groups of curves with $\gamma = 0$. This includes the study of large automorphism groups of maximal curves over a finite field.

Problem 3: \exists simple or almost simple groups, other than those in the examples (II), . . . (VI), occurring as an automorphism group of a maximal curve?
Remark

All the above examples have zero p-rank.
Remark

All the above examples have zero p-rank.

- **Problem 1**: Find a function $f(g)$ such that if $|\text{Aut}(X)| > f(g)$ then $\gamma = 0$.

Problem 2: Determine the structure of large automorphism groups of curves with $\gamma = 0$.

This includes the study of large automorphism groups of maximal curves over a finite field.

Problem 3: \exists simple or almost simple groups, other than those in the examples (II), (III),..., occurring as an automorphism group of a maximal curve?
Remark

All the above examples have zero p-rank.

- **Problem 1**: Find a function $f(g)$ such that if $|\text{Aut}(X)| > f(g)$ then $\gamma = 0$.

- **Problem 2**: Determine the structure of large automorphism groups of curves with $\gamma = 0$. This includes the study of large automorphism groups of maximal curves over a finite field.
Remark

All the above examples have zero p-rank.

Problem 1: Find a function $f(g)$ such that if $|\text{Aut}(X)| > f(g)$ then $\gamma = 0$.

Problem 2: Determine the structure of large automorphism groups of curves with $\gamma = 0$. This includes the study of large automorphism groups of maximal curves over a finite field.

Problem 3: \exists simple or almost simple groups, other than those in the examples (II),... (VI), occurring as an automorphism group of a maximal curve?
Curves with a very large p-group S of automorphisms have p-rank γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).
Curves with a very large p-group S of automorphisms have p-rank γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).

Problem 4: “Big action problem” (Lehr-Matignon): What about zero p-rank curves with very large p-group S of automorphisms?
Curves with a very large p-group S of automorphisms have p-rank γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).

Problem 4: “Big action problem” (Lehr-Matignon): What about zero p-rank curves with very large p-group S of automorphisms? $|S| \geq (4g^2)/(p-1)^2 \Rightarrow \mathcal{X} = v(Y^q - Y + f(X))$ s. t. $f(X) = XP(X) + cX$, $q = p^h$ and $P(X)$ is an additive polynomial of $\mathbb{K}[X]$, (Lehr-Matignon 2005).
Curves with a very large p-group S of automorphisms have p-rank γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).

Problem 4: “Big action problem” (Lehr-Matignon): What about zero p-rank curves with very large p-group S of automorphisms? $|S| \geq (4g^2)/(p - 1)^2 \Rightarrow \mathcal{X} = v(Y^q - Y + f(X))$ s. t. $f(X) = XP(X) + cX$, $q = p^h$ and $P(X)$ is an additive polynomial of $\mathbb{K}[X]$, (Lehr-Matignon 2005).

Generalizations for $|S| \geq 4g^2/(p^2 - 1)^2$ by Matignon-Rocher 2008, Rocher 2009.
Curves with a very large p-group S of automorphisms have p-rank γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).

Problem 4: "Big action problem" (Lehr-Matignon): What about zero p-rank curves with very large p-group S of automorphisms? $|S| \geq (4g^2)/(p - 1)^2 \Rightarrow \mathcal{X} = v(Y^q - Y + f(X))$ s. t. $f(X) = XP(X) + cX$, $q = p^h$ and $P(X)$ is an additive polynomial of $\mathbb{K}[X]$, (Lehr-Matignon 2005).

Generalizations for $|S| \geq 4g^2/(p^2 - 1)^2$ by Matignon-Rocher 2008, Rocher 2009.

If $\text{Aut}(\mathcal{X})$ fixes no point and $|S| > pg/(p - 1)$ then \mathcal{X} is one of the curves (II) . . . (VI). (Giulietti-K. 2010).
Large p-subgroups of automorphisms of zero p-rank curves

Lemma [Bridge lemma]

Let X be a zero p-rank curve, i.e. $\gamma = 0$. Let $S \leq \text{Aut}(X)$ with $|S| = p^h$. Then S fixes a point of P of X, and no non-trivial element in S fixes a point distinct from P.

Definition

A Sylow p-subgroup S_p of a finite group G is a trivial intersection set if S_p meets any other Sylow p-subgroup of G trivially. If this is the case, G has the TI-condition with respect to the prime p.

Theorem (Giulietti-K. 2005)

Let X be a curve with $\gamma = 0$. Then every wild subgroup G of $\text{Aut}(X)$ satisfies the TI-condition for its p-subgroups of Sylow.

Gábor Korchmáros

Curves with many automorphisms
Lemma

[Bridge lemma]
Lemma

[Bridge lemma] Let \mathcal{X} be a zero p-rank curve, i.e. $\gamma = 0$. Let $S \leq \text{Aut}(\mathcal{X})$ with $|S| = p^h$. Then S fixes a point of P of \mathcal{X}, and no non-trivial element in S fixes a point distinct from P.
Lemma

[Bridge lemma] Let \mathcal{X} be a zero p-rank curve, i.e. $\gamma = 0$. Let $S \leq \text{Aut}(\mathcal{X})$ with $|S| = p^h$. Then S fixes a point of P of \mathcal{X}, and no non-trivial element in S fixes a point distinct from P.

Definition

A Sylow p-subgroup S_p of a finite group G is a *trivial intersection set* if S_p meets any other Sylow p-subgroup of G trivially.
Lemma

[Bridge lemma] Let \(\mathcal{X} \) be a zero \(p \)-rank curve, i.e. \(\gamma = 0 \). Let \(S \leq \text{Aut}(\mathcal{X}) \) with \(|S| = p^h \). Then \(S \) fixes a point of \(P \) of \(\mathcal{X} \), and no non-trivial element in \(S \) fixes a point distinct from \(P \).

Definition

A Sylow \(p \)-subgroup \(S_p \) of a finite group \(G \) is a trivial intersection set if \(S_p \) meets any other Sylow \(p \)-subgroup of \(G \) trivially. If this is the case, \(G \) has the TI-condition with respect to the prime \(p \).
Lemma

[Bridge lemma] Let \mathcal{X} be a zero p-rank curve, i.e. $\gamma = 0$. Let $S \leq \text{Aut}(\mathcal{X})$ with $|S| = p^h$. Then S fixes a point of P of \mathcal{X}, and no non-trivial element in S fixes a point distinct from P.

Definition

A Sylow p-subgroup S_p of a finite group G is a trivial intersection set if S_p meets any other Sylow p-subgroup of G trivially. If this is the case, G has the TI-condition with respect to the prime p.

Theorem (Giulietti-K. 2005)

Let \mathcal{X} be a curve with $\gamma = 0$. Then every wild subgroup G of $\text{Aut}(\mathcal{X})$ satisfies the TI-condition for its p-subgroups of Sylow.
[Bridge lemma] Let \mathcal{X} be a zero p-rank curve, i.e. $\gamma = 0$. Let $S \leq \text{Aut}(\mathcal{X})$ with $|S| = p^h$. Then S fixes a point of P of \mathcal{X}, and no non-trivial element in S fixes a point distinct from P.

Definition

A Sylow p-subgroup S_p of a finite group G is a trivial intersection set if S_p meets any other Sylow p-subgroup of G trivially. If this is the case, G has the TI-condition with respect to the prime p.

Theorem (Giulietti-K. 2005)

Let \mathcal{X} be a curve with $\gamma = 0$. Then every wild subgroup G of $\text{Aut}(\mathcal{X})$ satisfies the TI-condition for its p-subgroups of Sylow.
Finite groups satisfying TI-condition for some prime p

Theorem (Burnside-Gow, 1976)

Let G be a finite solvable group satisfying the TI-condition for p. Then a Sylow p-subgroup S_p is either normal or cyclic, or $p = 2$ and S_2 is a generalized quaternion group.

Remark
Non-solvable groups satisfying the TI-condition are also exist. The known examples include the simple groups involved in the examples (II) ... (VI). Their complete classification is not done yet, important partial classifications (under further conditions) were given by Hering, Herzog, Aschbacher, and more recently by Guralnick-Pries-Stevenson.
Theorem (Burnside-Gow, 1976)

Let G be a finite solvable group satisfying the TI-condition for p. Then a Sylow p-subgroup S_p is either normal or cyclic, or $p = 2$ and S_2 is a generalized quaternion group.
Finite groups satisfying TI-condition for some prime p

Theorem (Burnside-Gow, 1976)

Let G be a finite solvable group satisfying the TI-condition for p. Then a Sylow p-subgroup S_p is either normal or cyclic, or $p = 2$ and S_2 is a generalized quaternion group.

Remark

Non-solvable groups satisfying the TI-condition are also exist. The known examples include the simple groups involved in the examples (II) . . . (VI).
Theorem (Burnside-Gow, 1976)

Let G be a finite solvable group satisfying the TI-condition for p. Then a Sylow p-subgroup S_p is either normal or cyclic, or $p = 2$ and S_2 is a generalized quaternion group.

Remark

Non-solvable groups satisfying the TI-condition are also exist. The known examples include the simple groups involved in the examples (II) ... (VI). Their complete classification is not done yet,
Theorem (Burnside-Gow, 1976)
Let G be a finite solvable group satisfying the TI-condition for p. Then a Sylow p-subgroup S_p is either normal or cyclic, or $p = 2$ and S_2 is a generalized quaternion group.

Remark
Non-solvable groups satisfying the TI-condition are also exist. The known examples include the simple groups involved in the examples (II) ... (VI). Their complete classification is not done yet, Important partial classifications (under further conditions) were given by Hering, Herzog, Aschbacher, and more recently by Guralnick-Pries-Stevenson.
Theorem (Giulietti-K. 2010)

Let $p = 2$ and X a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \text{Aut}(X)$ with $2 \mid |G|$. Then one of the following cases holds.

(a) G fixes no point of X and the subgroup N of G generated by all its 2-elements is isomorphic to one of the groups $\text{PSL}(2, n)$, $\text{PSU}(3, n)$, $\text{SU}(3, n)$, $\text{Sz}(n)$ with $n = 2^r \geq 4$; Here N coincides with the commutator subgroup G' of G.

(b) G fixes no point of X and it has a non-trivial normal subgroup of odd order. A Sylow 2-subgroup S_2 of G is either a cyclic group or a generalized quaternion group. Furthermore, either $G = \text{O}(G) \rtimes S_2$, or $G / \text{O}(G) \cong \text{SL}(2, 3)$, or $G / \text{O}(G) \cong \text{GL}(2, 3)$, or $G / \text{O}(G) \cong G_{48}$.

(c) G fixes a point of X, and $G = S_2 \rtimes H$, with a subgroup H of odd order.
Theorem (Giulietti-K. 2010)

Let $p = 2$ and \mathcal{X} a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \text{Aut}(\mathcal{X})$ with $2 \mid |G|$. Then one of the following cases holds.

(a) G fixes no point of \mathcal{X} and the subgroup N of G generated by all its 2-elements is isomorphic to one of the groups $\text{PSL}(2, n)$, $\text{PSU}(3, n)$, $\text{SU}(3, n)$, $\text{Sz}(n)$ with $n = 2^r \geq 4$; Here N coincides with the commutator subgroup G' of G.

(b) G fixes no point of \mathcal{X} and it has a non-trivial normal subgroup of odd order. A Sylow 2-subgroup S_2 of G is either a cyclic group or a generalized quaternion group. Furthermore, either $G = O(G) \rtimes S_2$, or $G/O(G) \cong \text{SL}(2, 3)$, or $G/O(G) \cong \text{GL}(2, 3)$, or $G/O(G) \cong \text{G}_2$.

(c) G fixes a point of \mathcal{X}, and $G = S_2 \rtimes H$, with a subgroup H of odd order.
Theorem (Giulietti-K. 2010)

Let \(p = 2 \) and \(X \) a zero 2-rank algebraic curve of genus \(g \geq 2 \). Let \(G \leq \text{Aut}(X) \) with \(2 \mid |G| \). Then one of the following cases holds.

(a) \(G \) fixes no point of \(X \) and the subgroup \(N \) of \(G \) generated by all its 2-elements is isomorphic to one of the groups

\[
\text{PSL}(2,n), \quad \text{PSU}(3,n), \quad \text{SU}(3,n), \quad \text{Sz}(n) \quad \text{with } n = 2^r \geq 4;
\]

Here \(N \) coincides with the commutator subgroup \(G' \) of \(G \).

(b) \(G \) fixes no point of \(X \) and it has a non-trivial normal subgroup of odd order. A Sylow 2-subgroup \(S_2 \) of \(G \) is either a cyclic group or a generalized quaternion group. Furthermore, either \(G = O(G) \rtimes S_2 \), or \(G/O(G) \cong \text{SL}(2,3) \), or \(G/O(G) \cong \text{GL}(2,3) \), or \(G/O(G) \cong \text{G}_2 \).

(c) \(G \) fixes a point of \(X \), and \(G = S_2 \rtimes H \), with a subgroup \(H \) of odd order.
Theorem (Giulietti-K. 2010)

Let $p = 2$ and \mathcal{X} a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \text{Aut}(\mathcal{X})$ with $2 \mid |G|$. Then one of the following cases holds.

(a) G fixes no point of \mathcal{X} and the subgroup N of G generated by all its 2-elements is isomorphic to one of the groups n : $\text{PSL}(2, n)$, $\text{PSU}(3, n)$, $\text{SU}(3, n)$, $\text{Sz}(n)$ with $n = 2^r \geq 4$; Here N coincides with the commutator subgroup G' of G.
Theorem (Giulietti-K. 2010)

Let $p = 2$ and X a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \text{Aut}(X)$ with $2 \mid |G|$. Then one of the following cases holds.

(a) G fixes no point of X and the subgroup N of G generated by all its 2-elements is isomorphic to one of the groups n : $\text{PSL}(2, n)$, $\text{PSU}(3, n)$, $\text{SU}(3, n)$, $\text{Sz}(n)$ with $n = 2^r \geq 4$; Here N coincides with the commutator subgroup G' of G.

(b) G fixes no point of X and it has a non-trivial normal subgroup of odd order. A Sylow 2-subgroup S_2 of G is either a cyclic group or a generalized quaternion group.
Theorem (Giulietti-K. 2010)

Let $p = 2$ and \mathcal{X} a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \text{Aut}(\mathcal{X})$ with $2 \mid |G|$. Then one of the following cases holds.

(a) G fixes no point of \mathcal{X} and the subgroup N of G generated by all its 2-elements is isomorphic to one of the groups $n : PSL(2, n), PSU(3, n), SU(3, n), Sz(n)$ with $n = 2^r \geq 4$; Here N coincides with the commutator subgroup G' of G.

(b) G fixes no point of \mathcal{X} and it has a non-trivial normal subgroup of odd order. A Sylow 2-subgroup S_2 of G is either a cyclic group or a generalized quaternion group.

Furthermore, either $G = O(G) \rtimes S_2$, or $G/O(G) \cong \text{SL}(2, 3)$, or $G/O(G) \cong \text{GL}(2, 3)$, or $G/O(G) \cong \mathcal{G}_{48}$.
Theorem (Giulietti-K. 2010)

Let \(p = 2 \) and \(\mathcal{X} \) a zero 2-rank algebraic curve of genus \(g \geq 2 \). Let \(G \leq \text{Aut}(\mathcal{X}) \) with \(2 \mid |G| \). Then one of the following cases holds.

(a) \(G \) fixes no point of \(\mathcal{X} \) and the subgroup \(N \) of \(G \) generated by all its 2-elements is isomorphic to one of the groups \(n : \text{PSL}(2, n) , \text{PSU}(3, n) , \text{SU}(3, n) , \text{Sz}(n) \) with \(n = 2^r \geq 4 \); Here \(N \) coincides with the commutator subgroup \(G' \) of \(G \).

(b) \(G \) fixes no point of \(\mathcal{X} \) and it has a non-trivial normal subgroup of odd order. A Sylow 2-subgroup \(S_2 \) of \(G \) is either a cyclic group or a generalized quaternion group.

Furthermore, either \(G = O(G) \rtimes S_2 \), or \(G/O(G) \cong \text{SL}(2, 3) \), or \(G/O(G) \cong \text{GL}(2, 3) \), or \(G/O(G) \cong G_{48} \).

(c) \(G \) fixes a point of \(\mathcal{X} \), and \(G = S_2 \rtimes H \), with a subgroup \(H \) of odd order.
Corollary

Let \mathcal{X} be a zero 2-rank curve such that the subgroup G of $\text{Aut}(\mathcal{X})$ fixes no point of \mathcal{X}.

If G is solvable, then the Hurwitz bound holds for G; more precisely $|G| \leq 72(g - 1)$.

If G is not solvable, then G is known and the possible genera of \mathcal{X} are computed from the order of its commutator subgroup G' provided that G is large enough, namely whenever $|G| \geq 24g(g - 1)$.

Gábor Korchmáros
Curves with many automorphisms
Corollary

Let \mathcal{X} be a zero 2-rank curve such that the subgroup G of $\text{Aut}(\mathcal{X})$ fixes no point of \mathcal{X}.

If G is a solvable, then the Hurwitz bound holds for G; more precisely $|G| \leq 72(g - 1)$.

If G is not solvable, then G is known and the possible genera of \mathcal{X} are computed from the order of its commutator subgroup G' provided that G is large enough, namely whenever $|G| \geq 24g(g - 1)$.
Corollary

Let X be a zero 2-rank curve such that the subgroup G of $\text{Aut}(X)$ fixes no point of X.

- If G is a solvable, then the Hurwitz bound holds for G; more precisely $|G| \leq 72(g - 1)$.
- If G is not solvable, then G is known and the possible genera of X are computed from the order of its commutator subgroup G' provided that G is large enough, namely whenever $|G| \geq 24g(g - 1)$.
Problem 5: Find some more examples of zero 2-rank curves of genus g with $|\text{Aut}(X)| \geq 24g(g - 1)$.

Problem 6: Characterize such examples using their automorphism groups.

Problem 7: How extend the above results to zero p-rank curves for $p > 2$?

Problem 7 (essentially) solved by Guralnick-Malmskog-Pries 2012.
Problem 5: Find some more examples of zero 2-rank curves of genus g with $|\text{Aut}(X)| \geq 24g(g - 1)$.

Problem 6: Characterize such examples using their automorphism groups.
Problem 5: Find some more examples of zero 2-rank curves of genus g with $|\text{Aut}(X)| \geq 24g(g - 1)$.

Problem 6: Characterize such examples using their automorphism groups.
Problem 5: Find some more examples of zero 2-rank curves of genus g with $|\text{Aut}(X)| \geq 24g(g - 1)$.

Problem 6: Characterize such examples using their automorphism groups.

Problem 7: How extend the above results to zero p-rank curves for $p > 2$?
Problem 5: Find some more examples of zero 2-rank curves of genus g with $|\text{Aut}(\mathcal{X})| \geq 24g(g - 1)$.

Problem 6: Characterize such examples using their automorphism groups.

Problem 7: How extend the above results to zero p-rank curves for $p > 2$?

Problem 7 (essentially) solved by Guralnick-Malmskog-Pries 2012.
Maximal curves with few orbits on rational points

Remark
For the Hermitian curve, \(\text{Aut}(X) \) is transitive on \(X(\mathbb{F}_{q^2}) \).
For other two classical maximal curves, \(\text{Aut}(X) \) has two orbits on the set of rational points.

Theorem (Giulietti-K. 2009)
Let \(p = 2 \).
Let \(X \) be an \(\mathbb{F}_{q^2} \)-maximal curve of genus \(g \geq 2 \).
Then \(\text{Aut}(X) \) acts on \(X(\mathbb{F}_{q^2}) \) as a transitive permutation group if and only if \(X \) is the Hermitian curve \(v(Y^n + Y - X^{n+1}) \), with \(q = n \).

Problem 8: Prove a similar characterization theorem for the other "classical" maximal curves.
Maximal curves with few orbits on rational points

Remark

For the Hermitian curve, $\text{Aut}(X)$ is transitive on $X(F_q^2)$.

For other two classical maximal curves, $\text{Aut}(X)$ has two orbits on the set of rational points.

Theorem (Giulietti-K. 2009)

Let $p = 2$. Let X be an F_q^2-maximal curve of genus $g \geq 2$. Then $\text{Aut}(X)$ acts on $X(F_q^2)$ as a transitive permutation group if and only if X is the Hermitian curve $v(Y^n + Y - X^{n+1})$, with $q = n$.

Problem 8: Prove a similar characterization theorem for the other "classical" maximal curves.

Gábor Korchmáros
Curves with many automorphisms
Remark

- For the Hermitian curve, \(\text{Aut}(X) \) is transitive on \(X(\mathbb{F}_{q^2}) \).
Maximal curves with few orbits on rational points

Remark

- For the Hermitian curve, $\text{Aut}(\mathcal{X})$ is transitive on $\mathcal{X}(\mathbb{F}_{q^2})$.
- For other two classical maximal curves, $\text{Aut}(\mathcal{X})$ has two orbits on the set of rational points.

Theorem (Giulietti-K. 2009)

Let $p = 2$. Let \mathcal{X} be an \mathbb{F}_{q^2}-maximal curve of genus $g \geq 2$. Then $\text{Aut}(\mathcal{X})$ acts on $\mathcal{X}(\mathbb{F}_{q^2})$ as a transitive permutation group if and only if \mathcal{X} is the Hermitian curve $v(Y^n + Y - X^{n+1})$, with $q = n$.

Problem 8: Prove a similar characterization theorem for the other "classical" maximal curves.
Remark

- For the Hermitian curve, $\text{Aut}(\mathcal{X})$ is transitive on $\mathcal{X}(\mathbb{F}_{q^2})$.
- For other two classical maximal curves, $\text{Aut}(\mathcal{X})$ has two orbits on the set of rational points.

Theorem (Giulietti-K. 2009)

Let $p = 2$. Let \mathcal{X} be an \mathbb{F}_{q^2}-maximal curve of genus $g \geq 2$. Then $\text{Aut}(\mathcal{X})$ acts on $\mathcal{X}(\mathbb{F}_{q^2})$ as a transitive permutation group if and only if \mathcal{X} is the Hermitian curve $v(Y^n + Y - X^{n+1})$, with $q = n$.
Remark

- For the Hermitian curve, $\text{Aut}(\mathcal{X})$ is transitive on $\mathcal{X}(\mathbb{F}_{q^2})$.
- For other two classical maximal curves, $\text{Aut}(\mathcal{X})$ has two orbits on the set of rational points.

Theorem (Giulietti-K. 2009)

Let $p = 2$. Let \mathcal{X} be an \mathbb{F}_{q^2}-maximal curve of genus $g \geq 2$. Then $\text{Aut}(\mathcal{X})$ acts on $\mathcal{X}(\mathbb{F}_{q^2})$ as a transitive permutation group if and only if \mathcal{X} is the Hermitian curve $\mathbf{v}(Y^n + Y - X^{n+1})$, with $q = n$.

Problem 8: Prove a similar characterization theorem for the other “classical” maximal curves.
Curves with large p-groups of automorphisms, case $\gamma > 0$

$x :=$ curve with genus g and p-rank $\gamma > 0$.

$S := p$-subgroup of $\text{Aut}(x)$;

Nakajima's bound (1987):

$$|S| \leq \begin{cases} 4(\gamma - 1) & \text{for } p = 2, \gamma > 1 \\ p^\gamma - 2(\gamma - 1) & \text{for } p \neq 2, \gamma > 1 \\ g - 1 & \text{for } \gamma = 1 \end{cases}.$$

Problem 9: Determine the possibilities for the structures of S when x extremal w.r. Nakajima's bound, or $|S|$ is closed to it.

Hypothesis (I): $|S| > 2(g - 1)$ (and $|S| \geq 8$), $\Rightarrow p = 2, 3$.

If S fixes a point then $|S| \leq p^g / (p - 1)$.

Hypothesis (II): S fixes no point on x.

Gábor Korchmáros

Curves with many automorphisms
$X :=$ curve with genus g and p-rank $\gamma > 0$.

$S := p$-subgroup of $\text{Aut}(X)$; Nakajima's bound (1987):

$|S| \leq \begin{cases}
4(\gamma - 1) & \text{for } p = 2, \gamma > 1 \\
 p p^{\gamma - 1} & \text{for } p \neq 2, \gamma > 1 \\
g - 1 & \text{for } \gamma = 1
\end{cases}$

Problem 9: Determine the possibilities for the structures of S when X extremal w.r. Nakajima's bound, or $|S|$ is closed to it.

Hypothesis (I): $|S| > 2(g - 1)$ (and $|S| \geq 8$), $\Rightarrow p = 2, 3$.

If S fixes a point then $|S| \leq p g / (p - 1)$.

Hypothesis (II): S fixes no point on X.
\[X := \text{curve with genus } g \text{ and } p\text{-rank } \gamma > 0. \]
\[S := p\text{-subgroup of } \text{Aut}(X); \]
\(\mathcal{X} := \text{curve with genus } g \text{ and } p\text{-rank } \gamma > 0. \)
\(S := p\text{-subgroup of } \text{Aut}(\mathcal{X}); \)
Nakajima’s bound (1987):

|\(|S|\| ≤ \begin{cases} 4(\gamma - 1) & \text{for } p = 2, \gamma > 1 \\ p^p - 2(\gamma - 1) & \text{for } p \neq 2, \gamma > 1 \\ g - 1 & \text{for } \gamma = 1 \end{cases} |

Problem 9: Determine the possibilities for the structures of \(S \) when \(\mathcal{X} \) extremal w.r. Nakajima’s bound, or \(|S|\) is close to it.

Hypothesis (I): \(|S| > 2(g - 1)\) (and \(|S| ≥ 8\)), \(⇒ p = 2, 3\).

If \(S \) fixes a point then \(|S| ≤ pg / (p - 1)\).

Hypothesis (II): \(S \) fixes no point on \(\mathcal{X} \).
\(\mathcal{X} := \text{curve with genus } g \text{ and } p\text{-rank } \gamma > 0. \)

\(S := p\)-subgroup of \(\text{Aut}(\mathcal{X}) \);

Nakajima’s bound (1987):

\[
|S| \leq \begin{cases}
4(\gamma - 1) & \text{for } p = 2, \gamma > 1 \\
\frac{p}{p-2} (\gamma - 1) & \text{for } p \neq 2, \gamma > 1, \\
g - 1 & \text{for } \gamma = 1.
\end{cases}
\]
Curves with large p-groups of automorphisms, case $\gamma > 0$

\mathcal{X}: curve with genus g and p-rank $\gamma > 0$.

S: p-subgroup of $\text{Aut}(\mathcal{X})$;

Nakajima’s bound (1987):

$$|S| \leq \begin{cases}
4(\gamma - 1) & \text{for } p = 2, \gamma > 1 \\
\frac{p}{p-2}(\gamma - 1) & \text{for } p \neq 2, \gamma > 1, \\
g - 1 & \text{for } \gamma = 1.
\end{cases}$$

Problem 9: Determine the possibilities for the structures of S when \mathcal{X} extremal w.r. Nakajima’s bound, or $|S|$ is closed to it.
\(X := \) curve with genus \(g \) and \(p \)-rank \(\gamma > 0 \).
\(S := p \)-subgroup of \(\text{Aut}(X) \);
Nakajima’s bound (1987):

\[
|S| \leq \begin{cases}
4(\gamma - 1) & \text{for } p = 2, \ \gamma > 1 \\
\frac{p}{p-2} (\gamma - 1) & \text{for } p \neq 2, \ \gamma > 1, \\
g - 1 & \text{for } \gamma = 1.
\end{cases}
\]

Problem 9: Determine the possibilities for the structures of \(S \) when \(X \) extremal w.r. Nakajima’s bound, or \(|S| \) is closed to it.

Hypothesis (I): \(|S| > 2(g - 1) \) (and \(|S| \geq 8 \)),
\mathcal{X}: curve with genus g and p-rank $\gamma > 0$.
S: p-subgroup of $\text{Aut}(\mathcal{X})$;
Nakajima’s bound (1987):

$$|S| \leq \begin{cases}
4(\gamma - 1) & \text{for } p = 2, \gamma > 1 \\
\frac{p}{p-2} (\gamma - 1) & \text{for } p \neq 2, \gamma > 1, \\
g - 1 & \text{for } \gamma = 1.
\end{cases}$$

Problem 9: Determine the possibilities for the structures of S when \mathcal{X} extremal w.r. Nakajima’s bound, or $|S|$ is closed to it.

Hypothesis (I): $|S| > 2(g - 1)$ (and $|S| \geq 8$),
$\Rightarrow p = 2, 3$.
Curves with large p-groups of automorphisms, case $\gamma > 0$

\mathcal{X}: curve with genus g and p-rank $\gamma > 0$.
S: p-subgroup of $\text{Aut}(\mathcal{X})$;
Nakajima’s bound (1987):

$$|S| \leq \begin{cases}
4(\gamma - 1) & \text{for } p = 2, \gamma > 1 \\
\frac{p}{p-2} (\gamma - 1) & \text{for } p \neq 2, \gamma > 1, \\
g - 1 & \text{for } \gamma = 1.
\end{cases}$$

Problem 9: Determine the possibilities for the structures of S when \mathcal{X} extremal w.r. Nakajima’s bound, or $|S|$ is closed to it.

Hypothesis (I): $|S| > 2(g - 1)$ (and $|S| \geq 8$),
$\Rightarrow p = 2, 3$.

If S fixes a point then $|S| \leq pg/(p - 1)$.

Gábor Korchmáros
Curves with many automorphisms
Curves with large p-groups of automorphisms, case $\gamma > 0$

\mathcal{X}:= curve with genus g and p-rank $\gamma > 0$.
S:= p-subgroup of $\text{Aut}(\mathcal{X})$;
Nakajima’s bound (1987):

$$|S| \leq \begin{cases}
4(\gamma - 1) & \text{for } p = 2, \gamma > 1 \\
\frac{p}{p-2}(\gamma - 1) & \text{for } p \neq 2, \gamma > 1, \\
g - 1 & \text{for } \gamma = 1.
\end{cases}$$

Problem 9: Determine the possibilities for the structures of S when \mathcal{X} extremal w.r. Nakajima’s bound, or $|S|$ is closed to it.

Hypothesis (I): $|S| > 2(g - 1)$ (and $|S| \geq 8$),
\Rightarrow $p = 2, 3$.

If S fixes a point then $|S| \leq pg/(p - 1)$.

Hypothesis (II): S fixes no point on \mathcal{X}.
Theorem (Giulietti-K. 2013)

Let $p = 3$. If $|S| > 2(g-1)$ and S fixes no point on X, then $g = \gamma$; $|S| = 3(\gamma-1)$ (Extremal curve w.r. Nakajima's bound); S is generated by two elements, S is abelian only for $|S| = 3, 9$; S has two short orbits on X each of size $|S|/3$; S has a normal subgroup M such that $S = M \rtimes \langle \varepsilon \rangle$ with $\varepsilon^3 = 1$ and M semiregular on X; X is an unramified Galois extension of an ordinary genus 2 curve \bar{X} with $\text{Gal}(X|\bar{X}) = M$; if M is abelian then $|Z(S)| = 3$ and S has maximal (nilpotency) class. \Rightarrow the structure of S is known.

Problem 10: Find examples where S has not maximal class.
Case $p = 3$

Theorem (Giulietti-K. 2013)

Let $p = 3$. If $|S| > 2(g - 1)$ and S fixes no point on X, then $g = \gamma$; $|S| = 3(\gamma - 1)$ (Extremal curve w.r. Nakajima's bound); S is generated by two elements, S is abelian only for $|S| = 3, 9$; S has two short orbits on X each of size $|S|/3$; S has a normal subgroup M such that $S = M \rtimes \langle \varepsilon \rangle$ with $\varepsilon^3 = 1$ and M semiregular on X; X is an unramified Galois extension of an ordinary genus 2 curve \bar{X} with $\text{Gal}(X|\bar{X}) = M$; if M is abelian then $|\mathbb{Z}(S)| = 3$ and S has maximal (nilpotency) class. \Rightarrow the structure of S is known.

Problem 10: Find examples where S has not maximal class.
Case $p = 3$

Theorem (Giulietti-K. 2013)

Let $p = 3$. If $|S| > 2(g - 1)$ and S fixes no point on X, then

- $g = \gamma$;

| Problem 10: Find examples where S has not maximal class. |
Theorem (Giulietti-K. 2013)

Let \(p = 3 \). If \(|S| > 2(g - 1) \) and \(S \) fixes no point on \(\mathcal{X} \), then

- \(g = \gamma \);
- \(|S| = 3(\gamma - 1) \) (Extremal curve w.r. Nakajima’s bound);
Case $p = 3$

Theorem (Giulietti-K. 2013)

Let $p = 3$. If $|S| > 2(g - 1)$ and S fixes no point on X, then

- $g = \gamma$;
- $|S| = 3(\gamma - 1)$ (Extremal curve w.r. Nakajima’s bound);
- S is generated by two elements,
Case $p = 3$

Theorem (Giulietti-K. 2013)

Let $p = 3$. If $|S| > 2(g - 1)$ and S fixes no point on \mathcal{X}, then

- $g = \gamma$;
- $|S| = 3(\gamma - 1)$ (Extremal curve w.r. Nakajima’s bound);
- S is generated by two elements, S is abelian only for $|S| = 3, 9$;
Case $p = 3$

Theorem (Giulietti-K. 2013)

Let $p = 3$. If $|S| > 2(g - 1)$ and S fixes no point on X, then

- $g = \gamma$;
- $|S| = 3(\gamma - 1)$ (*Extremal curve w.r. Nakajima’s bound*);
- *S is generated by two elements, S is abelian only for $|S| = 3, 9$*;
- *S has two short orbits on X each of size $|S|/3$*.

⇒ the structure of S is known.

Problem 10: Find examples where S has not maximal class.
Case $p = 3$

Theorem (Giulietti-K. 2013)

Let $p = 3$. If $|S| > 2(g - 1)$ and S fixes no point on \mathcal{X}, then

- $g = \gamma$;
- $|S| = 3(\gamma - 1)$ (Extremal curve w.r. Nakajima’s bound);
- S is generated by two elements, S is abelian only for $|S| = 3, 9$;
- S has two short orbits on \mathcal{X} each of size $|S|/3$;
- S has a normal subgroup M such that $S = M \rtimes \langle \varepsilon \rangle$ with $\varepsilon^3 = 1$ and M semiregular on \mathcal{X};
Case $p = 3$

Theorem (Giulietti-K. 2013)

Let $p = 3$. If $|S| > 2(g - 1)$ and S fixes no point on \mathcal{X}, then

- $g = \gamma$;
- $|S| = 3(\gamma - 1)$ (Extremal curve w.r. Nakajima’s bound);
- S is generated by two elements, S is abelian only for $|S| = 3, 9$;
- S has two short orbits on \mathcal{X} each of size $|S|/3$;
- S has a normal subgroup M such that $S = M \rtimes \langle \varepsilon \rangle$ with $\varepsilon^3 = 1$ and M semiregular on \mathcal{X};
- \mathcal{X} is an unramified Galois extension of an ordinary genus 2 curve $\overline{\mathcal{X}}$ with $\text{Gal}(\mathcal{X}|\overline{\mathcal{X}}) = M$;
Theorem (Giulietti-K. 2013)

Let $p = 3$. If $|S| > 2(g - 1)$ and S fixes no point on \mathcal{X}, then

- $g = \gamma$;
- $|S| = 3(\gamma - 1)$ (Extremal curve w.r. Nakajima’s bound);
- S is generated by two elements, S is abelian only for $|S| = 3, 9$;
- S has two short orbits on \mathcal{X} each of size $|S|/3$;
- S has a normal subgroup M such that $S = M \rtimes \langle \varepsilon \rangle$ with $\varepsilon^3 = 1$ and M semiregular on \mathcal{X};
- \mathcal{X} is an unramified Galois extension of an ordinary genus 2 curve $\overline{\mathcal{X}}$ with $\text{Gal}(\mathcal{X}|\overline{\mathcal{X}}) = M$; $M = \langle \alpha, \beta \rangle$;
Case $p = 3$

Theorem (Giulietti-K. 2013)

Let $p = 3$. If $|S| > 2(g - 1)$ and S fixes no point on \mathcal{X}, then

- $g = \gamma$;
- $|S| = 3(\gamma - 1)$ (Extremal curve w.r. Nakajima’s bound);
- S is generated by two elements, S is abelian only for $|S| = 3, 9$;
- S has two short orbits on \mathcal{X} each of size $|S|/3$;
- S has a normal subgroup M such that $S = M \rtimes \langle \varepsilon \rangle$ with $\varepsilon^3 = 1$ and M semiregular on \mathcal{X};
- \mathcal{X} is an unramified Galois extension of an ordinary genus 2 curve $\overline{\mathcal{X}}$ with $\text{Gal}(\mathcal{X}|\overline{\mathcal{X}}) = M$; $M = \langle \alpha, \beta \rangle$;
- if M is abelian then $|Z(S)| = 3$ and S has maximal (nilpotency) class.
Case $p = 3$

Theorem (Giulietti-K. 2013)

Let $p = 3$. If $|S| > 2(g - 1)$ and S fixes no point on \mathcal{X}, then

- $g = \gamma$;
- $|S| = 3(\gamma - 1)$ (Extremal curve w.r. Nakajima’s bound);
- S is generated by two elements, S is abelian only for $|S| = 3, 9$;
- S has two short orbits on \mathcal{X} each of size $|S|/3$;
- S has a normal subgroup M such that $S = M \rtimes \langle \varepsilon \rangle$ with $\varepsilon^3 = 1$ and M semiregular on \mathcal{X};
- \mathcal{X} is an unramified Galois extension of an ordinary genus 2 curve $\overline{\mathcal{X}}$ with $\text{Gal}(\mathcal{X}|\overline{\mathcal{X}}) = M$; $M = \langle \alpha, \beta \rangle$;
- if M is abelian then $|Z(S)| = 3$ and S has maximal (nilpotency) class. \Rightarrow the structure of S is known.
Case $p = 3$

Theorem (Giulietti-K. 2013)

Let $p = 3$. If $|S| > 2(g - 1)$ and S fixes no point on \mathcal{X}, then

- $g = \gamma$;
- $|S| = 3(\gamma - 1)$ (Extremal curve w.r. Nakajima’s bound);
- S is generated by two elements, S is abelian only for $|S| = 3, 9$;
- S has two short orbits on \mathcal{X} each of size $|S|/3$;
- S has a normal subgroup M such that $S = M \rtimes \langle \varepsilon \rangle$ with $\varepsilon^3 = 1$ and M semiregular on \mathcal{X};
- \mathcal{X} is an unramified Galois extension of an ordinary genus 2 curve $\widetilde{\mathcal{X}}$ with $\text{Gal}(\mathcal{X}|\widetilde{\mathcal{X}}) = M$; $M = \langle \alpha, \beta \rangle$;
- if M is abelian then $|Z(S)| = 3$ and S has maximal (nilpotency) class. \(\Rightarrow \) the structure of S is known.

Problem 10: Find examples where S has not maximal class.
Case $p = 3$, Examples for small genera

If $|S| = 3$ then $X = v \left((X Y^3 - X) - X^2 + c \right)$ with $c \in K^*$.

If $|S| = 9$ then $S = C_3 \times C_3$ and $X = v \left((X^3 - X)(Y^3 - Y) + c \right)$ with $c \in K^*$, $g(X) = 4$.

If $|S| = 27$ then $S = \text{UT}(3, 3)$ and $X = v \left((X^3 - X)(Y^3 - Y) + c, U^3 - U - X \right)$ with $c \in K^*$, $g(X) = 10$.

For $|S| = 81$ an explicit example: $S \sim Syl_3(\text{Sym} \ 9)$, $X = v \left((X^3 - X)(Y^3 - Y) + c, U^3 - U - X \right)$ with $c \in K^*$, $g(X) = 28$.

Gábor Korchmáros
Curves with many automorphisms
Case $p = 3$, Examples for small genera

- If $|S| = 3$ then $\mathcal{X} = v((X(Y^3 - Y) - X^2 + c)$ with $c \in \mathbb{K}^*$.
Case \(p = 3 \), Examples for small genera

- If \(|S| = 3 \) then \(\mathcal{X} = v((X(Y^3 - Y) - X^2 + c) \) with \(c \in \mathbb{K}^* \).
- If \(|S| = 9 \) then \(S = C_3 \times C_3 \) and
 \[\mathcal{X} = v((X^3 - X)((Y^3 - Y) + c) \) with \(c \in \mathbb{K}^* \), \(g(\mathcal{X}) = 4 \).
Case \(p = 3 \), Examples for small genera

- If \(|S| = 3\) then \(\mathcal{X} = v((X(Y^3 - Y) - X^2 + c) \) with \(c \in \mathbb{K}^* \).
- If \(|S| = 9\) then \(S = C_3 \times C_3 \) and
 \(\mathcal{X} = v((X^3 - X)((Y^3 - Y) + c) \) with \(c \in \mathbb{K}^* \), \(g(\mathcal{X}) = 4 \).
- If \(|S| = 27\) then \(S = UT(3, 3) \) and
 \(\mathcal{X} = v((X^3 - X)(Y^3 - Y) + c, Z^3 - Z - X^3 Y + YX^3) \) with
 \(c \in \mathbb{K}^* \), \(g(\mathcal{X}) = 10 \).
Case $p = 3$, Examples for small genera

- If $|S| = 3$ then $\mathcal{X} = v((X(Y^3 - Y) - X^2 + c)$ with $c \in \mathbb{K}^*$.
- If $|S| = 9$ then $S = C_3 \times C_3$ and $\mathcal{X} = v((X^3 - X)((Y^3 - Y) + c)$ with $c \in \mathbb{K}^*$, $g(\mathcal{X}) = 4$.
- If $|S| = 27$ then $S = UT(3, 3)$ and $\mathcal{X} = v((X^3 - X)(Y^3 - Y) + c, Z^3 - Z - X^3 Y + YX^3)$ with $c \in \mathbb{K}^*$, $g(\mathcal{X}) = 10$.
- For $|S| = 81$ an explicit example: $S \cong Syl_3(\text{Sym}_9)$, $\mathcal{X} = v((X^3 - X)(Y^3 - Y) + c, U^3 - U - X, (U - Y)(W^3 - W) - 1, (U - (Y + 1))(T^3 - T) - 1)$ with $c \in \mathbb{K}^*$, $g(\mathcal{X}) = 28$.
Case $p = 3$, infinite families of examples

$$F := K(x, y^3 - y^3 - x^2 + c), \quad c \in K^*;$$

$$g(F) = \gamma(F) = 2.$$

$$\phi := (x, y) \mapsto (x, y + 1), \quad \phi \in \text{Aut}(F).$$

F_N denotes the largest unramified abelian extension of F of exponent N with two generators,

(i) $F_N \mid F$ is an unramified Galois extension of degree $3^2 N$,

(ii) F_N is generated by all function fields which are cyclic unramified extensions of F of degree $p^2 N$,

(iii) $\text{Gal}(F_N \mid F) = C_3^N \times C_3^N$ and $u^3 N = 1$ for every element $u \in \text{Gal}(F_N \mid F)$.

M denotes the Galois closure of $F_N \mid K$.

Lemma $\text{Gal}(M \mid K(x))$ preserves F.

$\Rightarrow \text{Gal}(M \mid K(x)) \leq \text{Aut}(F_N)$.

Corollary F_N is an extremal function field w.r. Nakajima's bound.
Case $p = 3$, infinite families of examples

- $F:=\mathbb{K}(x, y), \ x(y^3 - y) - x^2 + c = 0, \ c \in \mathbb{K}^*$;
 \[g(F) = \gamma(F) = 2. \]
Case $p = 3$, infinite families of examples

- $F := \mathbb{K}(x, y), \ x(y^3 - y) - x^2 + c = 0, \ c \in \mathbb{K}^*$;

 $g(F) = \gamma(F) = 2$.

- $\varphi := (x, y) \mapsto (x, y + 1)$,
Case $p = 3$, infinite families of examples

- $F := \mathbb{K}(x, y), \ x(y^3 - y) - x^2 + c = 0, \ c \in \mathbb{K}^*$;

 $g(F) = \gamma(F) = 2$.

- $\varphi := (x, y) \mapsto (x, y + 1), \varphi \in \text{Aut}(F)$.

Gábor Korchmáros

Curves with many automorphisms
Case $p = 3$, infinite families of examples

- $F := \mathbb{K}(x, y), \ x(y^3 - y) - x^2 + c = 0, \ c \in \mathbb{K}^*$;
 \[g(F) = \gamma(F) = 2. \]
- $\varphi := (x, y) \mapsto (x, y + 1), \ \varphi \in \text{Aut}(F)$.
- $F_N :=$ largest unramified abelian extension of F of exponent N with two generators,
Case $p = 3$, infinite families of examples

- $F := \mathbb{K}(x, y), \ x(y^3 - y) - x^2 + c = 0, \ c \in \mathbb{K}^*$;
 \[g(F) = \gamma(F) = 2. \]
- $\varphi := (x, y) \mapsto (x, y + 1), \ \varphi \in \text{Aut}(F)$.
- $F_N :=$ largest unramified abelian extension of F of exponent N with two generators,
 (i) $F_N|F$ is an unramified Galois extension of degree 3^{2N},
 (ii) F_N is generated by all function fields which are cyclic unramified extensions of F of degree p^N,
 (iii) $\text{Gal}(F_N|F) = C_{3^N} \times C_{3^N}$ and $u^{3^N} = 1$ for every element $u \in \text{Gal}(F_N|F)$.

$M :=$ Galois closure of $F_N|\mathbb{K}$.

Lemma $\text{Gal}(M|\mathbb{K}(x))$ preserves F.

\Rightarrow $\text{Gal}(M|\mathbb{K}) \leq \text{Aut}(F_N)$.

Corollary F_N is an extremal function field w.r. Nakajima's bound.
Case $p = 3$, infinite families of examples

- $F := \mathbb{K}(x, y), \ x(y^3 - y) - x^2 + c = 0, \ c \in \mathbb{K}^*$;
 \[g(F) = \gamma(F) = 2. \]
- $\varphi := (x, y) \mapsto (x, y + 1), \varphi \in \text{Aut}(F)$.
- $F_N := \text{largest unramified abelian extension of } F \text{ of exponent } N \text{ with two generators,}$
 \begin{enumerate}
 \item $F_N|F$ is an unramified Galois extension of degree 3^{2N},
 \item F_N is generated by all function fields which are cyclic unramified extensions of F of degree p^N,
 \item $\text{Gal}(F_N|F) = C_{3^N} \times C_{3^N}$ and $u^{3^N} = 1$ for every element $u \in \text{Gal}(F_N|F)$.
 \end{enumerate}
- $M := \text{Galois closure of } F_N|\mathbb{K}$.
Case $p = 3$, infinite families of examples

- $F := \mathbb{K}(x, y), \ x(y^3 - y) - x^2 + c = 0, \ c \in \mathbb{K}^*$;
 $g(F) = \gamma(F) = 2$.
- $\varphi := (x, y) \mapsto (x, y + 1), \ \varphi \in \text{Aut}(F)$.
- $F_N :=$ largest unramified abelian extension of F of exponent N with two generators,
 \begin{enumerate}
 \item $F_N|F$ is an unramified Galois extension of degree 3^{2N},
 \item F_N is generated by all function fields which are cyclic unramified extensions of F of degree p^N,
 \item $\text{Gal}(F_N|F) = C_{3^N} \times C_{3^N}$ and $u^{3^N} = 1$ for every element $u \in \text{Gal}(F_N|F)$.
 \end{enumerate}
- $M :=$ Galois closure of $F_N|\mathbb{K}$.

Lemma

$\text{Gal}(M|\mathbb{K}(x))$ preserves F.

Gábor Korchmáros

Curves with many automorphisms
Case $p = 3$, infinite families of examples

- $F := \mathbb{K}(x, y), \ x(y^3 - y) - x^2 + c = 0, \ c \in \mathbb{K}^*$;

 $g(F) = \gamma(F) = 2$.

- $\varphi := (x, y) \mapsto (x, y + 1), \ \varphi \in \text{Aut}(F)$.

- $F_N := \text{largest unramified abelian extension of } F \text{ of exponent } N \text{ with two generators}$,

 (i) $F_N|F$ is an unramified Galois extension of degree 3^{2N},

 (ii) F_N is generated by all function fields which are cyclic unramified extensions of F of degree p^N,

 (iii) $\text{Gal}(F_N|F) = C_3^N \times C_3^N$ and $u^{3^N} = 1$ for every element $u \in \text{Gal}(F_N|F)$.

- $M := \text{Galois closure of } F_N|\mathbb{K}$.

Lemma

\[\text{Gal}(M|\mathbb{K}(x)) \text{ preserves } F \implies \text{Gal}(M|\mathbb{K}(x)) \leq \text{Aut}(F_N). \]
Case $p = 3$, infinite families of examples

- $F := \mathbb{K}(x, y)$, $x(y^3 - y) - x^2 + c = 0$, $c \in \mathbb{K}^*$;
 $g(F) = \gamma(F) = 2$.
- $\varphi := (x, y) \mapsto (x, y + 1)$, $\varphi \in \text{Aut}(F)$.
- $F_N :=$ largest unramified abelian extension of F of exponent N with two generators,
 (i) $F_N|F$ is an unramified Galois extension of degree 3^{2N},
 (ii) F_N is generated by all function fields which are cyclic unramified extensions of F of degree p^N,
 (iii) $\text{Gal}(F_N|F) = C_{3N} \times C_{3N}$ and $u^{3N} = 1$ for every element $u \in \text{Gal}(F_N|F)$.
- $M :=$ Galois closure of $F_N|\mathbb{K}$.

Lemma

$\text{Gal}(M|\mathbb{K}(x))$ preserves F. \Rightarrow $\text{Gal}(M|\mathbb{K}(x)) \leq \text{Aut}(F_N)$.

Corollary

F_N is an extremal function field w.r. Nakajima’s bound.
Remark

If \(N \sqsubseteq S \) and \(|S:N| \geq 9 \) then \(X/N \) is also an extremal curve w.r.t. Nakajima's bound.

\[
F := K(x, y) \left(x(y^3 - y) - x^2 + c = 0 \right), \quad c \in K^*.
\]

Let \(F \) be the set of all unramified Galois extensions \(K \) of \(F \) such that \(K \) is extremal w.r.t. Nakajima's bound.

For every \(K \in F \) take the (unique) maximal 3-subgroup of \(\text{Aut}(K) \) together with all surjections of index \(\geq 9 \).

These groups and surjections form an inverse system.

Problem 10: What about the arising profinite group (limit of this inverse system)?
Remark

If $N \triangleleft S$ and $[S : N] \geq 9$ then \mathcal{X}/N is also an extremal curve w.r. Nakajima's bound.
Remark

If $N \trianglelefteq S$ and $[S : N] \geq 9$ then \mathcal{X}/N is also an extremal curve w.r. Nakajima's bound.

$$F := K(x, y), \quad x(y^3 - y) - x^2 + c = 0, \quad c \in K^*, \quad$$
Remark

If $N \trianglelefteq S$ and $[S : N] \geq 9$ then \mathcal{X}/N is also an extremal curve w.r. Nakajima’s bound.

$F:=\mathbb{K}(x, y), \ x(y^3 - y) - x^2 + c = 0, \ c \in \mathbb{K}^*$,

Let \mathcal{F} be the set of all unramified Galois extensions K of F such that K is extremal w.r. Nakajima’s bound.
Remark

If $N \trianglelefteq S$ and $[S : N] \geq 9$ then \mathcal{X}/N is also an extremal curve w.r. Nakajima’s bound.

Let $F := \mathbb{K}(x, y), \quad x(y^3 - y) - x^2 + c = 0, \quad c \in \mathbb{K}^*$, set F be the set of all unramified Galois extensions K of F such that K is extremal w.r. Nakajima’s bound. For every $K \in F$ take the (unique) maximal 3-subgroup of $\text{Aut}(K)$ together with all surjections of index ≥ 9.
Remark

If $N \subseteq S$ and $[S : N] \geq 9$ then \mathcal{X}/N is also an extremal curve w.r. Nakajima's bound.

Let $F := \mathbb{K}(x, y)$, $x(y^3 - y) - x^2 + c = 0$, $c \in \mathbb{K}^*$.

Let \mathcal{F} be the set of all unramified Galois extensions K of F such that K is extremal w.r. Nakajima's bound.

For every $K \in \mathcal{F}$ take the (unique) maximal 3-subgroup of $\text{Aut}(K)$ together with all surjections of index ≥ 9.

These groups and surjections form an inverse system.

Problem 10: What about the arising profinite group (limit of the this inverse system)?
Remark

If \(N \trianglelefteq S \) and \([S : N] \geq 9 \) then \(\mathcal{X}/N \) is also an extremal curve w.r. Nakajima’s bound.

\[
F := \mathbb{K}(x, y), \quad x(y^3 - y) - x^2 + c = 0, \quad c \in \mathbb{K}^*,
\]

Let \(\mathcal{F} \) be the set of all unramified Galois extensions \(K \) of \(F \) such that \(K \) is extremal w.r. Nakajima’s bound.

For every \(K \in \mathcal{F} \) take the (unique) maximal 3-subgroup of \(\text{Aut}(K) \) together with all surjections of index \(\geq 9 \).

These groups and surjections form an inverse system.

Problem 10: What about the arising profinite group (limit of the this inverse system)?
Case $p = 2$

Theorem (Giulietti-K. 2012)

Let $p = 2$. If $|S| > 2(g - 1)$, $|S| \geq 8$ and S fixes no point on X, then one of the following cases occurs

- $|S| = 4(g - 1)$, X is an ordinary bielliptic curve.
- Either (ia) S is dihedral, or (ib) $S = (E \times \langle u \rangle) \rtimes \langle w \rangle$ where E is cyclic group of order $g - 1$ and u and w are involutions.

- $|S| = 2g + 2$, and $S = A \rtimes B$, A is an elementary abelian subgroup of index 2 and $B = 2$; Every central involution of S is inductive.

Involution $u \in Z(S)$ is inductive: $S/\langle u \rangle$, viewed as a subgroup of $\text{Aut}(\bar{X})$ of the quotient curve $X = X/\langle u \rangle$ satisfies the hypotheses of the theorem.
Case \(p = 2 \)

Theorem (Giulietti-K. 2012)

Let \(p = 2 \). If \(|S| > 2(g - 1)\), \(|S| \geq 8\) and \(S \) fixes no point on \(X \), then one of the following cases occurs

\[|S| = 4(g - 1), \quad X \text{ is an ordinary bielliptic curve.} \]

Either (ia) \(S \) is dihedral, or (ib) \(S = (E \times \langle u \rangle) \rtimes \langle w \rangle \) where \(E \) is cyclic group of order \(g - 1 \) and \(u \) and \(w \) are involutions.

\[|S| = 2g + 2, \quad S = A \rtimes B, \quad A \text{ is an elementary abelian subgroup of index } 2 \text{ and } B = 2; \]

Every central involution of \(S \) is inductive.

Involution \(u \in \mathbb{Z}(S) \) is inductive:= \(S/\langle u \rangle \), viewed as a subgroup of \(\text{Aut}(\bar{X}) \) of the quotient curve \(X = X/\langle u \rangle \) satisfies the hypotheses of the theorem.
Theorem (Giulietti-K. 2012)

Let \(p = 2 \). If \(|S| > 2(g - 1) \), \(|S| \geq 8 \) and \(S \) fixes no point on \(\mathcal{X} \), then one of the following cases occurs

\(|S| = 4(g - 1) \), \(\mathcal{X} \) is an ordinary bielliptic curve.

Either (ia) \(S \) is dihedral, or (ib) \(S = (E \times \langle u \rangle) \rtimes \langle w \rangle \) where \(E \) is cyclic group of order \(g - 1 \) and \(u \) and \(w \) are involutions.

\(|S| = 2g + 2 \), and \(S = A \rtimes B \), \(A \) is an elementary abelian subgroup of index 2 and \(B = 2 \);

Every central involution of \(S \) is inductive.

Involution \(u \in Z(S) \) is inductive:= \(S/\langle u \rangle \), viewed as a subgroup of \(\text{Aut}(\bar{\mathcal{X}}) \) of the quotient curve \(\mathcal{X} = \mathcal{X}/\langle u \rangle \) satisfies the hypotheses of the theorem.
Case $p = 2$

Theorem (Giulietti-K. 2012)

Let $p = 2$. If $|S| > 2(g - 1)$, $|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs:

- $|S| = 4(g - 1)$, \mathcal{X} is an ordinary bielliptic curve.
Case $p = 2$

Theorem (Giulietti-K. 2012)

Let $p = 2$. If $|S| > 2(g - 1)$, $|S| \geq 8$ and S fixes no point on X, then one of the following cases occurs

- $|S| = 4(g - 1)$, X is an ordinary bielliptic curve. Either
 - (ia) S is dihedral, or
Case $p = 2$

Theorem (Giulietti-K. 2012)

Let $p = 2$. If $|S| > 2(g - 1)$, $|S| \geq 8$ and S fixes no point on X, then one of the following cases occurs

- $|S| = 4(g - 1)$, X is an ordinary bielliptic curve. Either
 - (ia) S is dihedral, or
 - (ib) $S = (E \times \langle u \rangle) \times \langle w \rangle$ where E is cyclic group of order $g - 1$ and u and w are involutions.
Case $p = 2$

Theorem (Giulietti-K. 2012)

Let $p = 2$. If $|S| > 2(g - 1)$, $|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

- $|S| = 4(g - 1)$, \mathcal{X} is an ordinary bielliptic curve. Either
 - (ia) S is dihedral, or
 - (ib) $S = (E \times \langle u \rangle) \rtimes \langle w \rangle$ where E is cyclic group of order $g - 1$ and u and w are involutions.

- $|S| = 2g + 2$, and $S = A \rtimes B$, A is an elementary abelian subgroup of index 2 and $B = 2$;
Case $p = 2$

Theorem (Giulietti-K. 2012)

Let $p = 2$. If $|S| > 2(g - 1)$, $|S| \geq 8$ and S fixes no point on X', then one of the following cases occurs:

- $|S| = 4(g - 1)$, X' is an ordinary bielliptic curve. Either
 - (ia) S is dihedral, or
 - (ib) $S = (E \times \langle u \rangle) \rtimes \langle w \rangle$ where E is cyclic group of order $g - 1$ and u and w are involutions.

- $|S| = 2g + 2$, and $S = A \rtimes B$, A is an elementary abelian subgroup of index 2 and $B = 2$;

- Every central involution of S is inductive.
Case $p = 2$

Theorem (Giulietti-K. 2012)

Let $p = 2$. If $|S| > 2(g - 1)$, $|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

- $|S| = 4(g - 1)$, \mathcal{X} is an ordinary bielliptic curve. Either
 - (ia) S is dihedral, or
 - (ib) $S = (E \times \langle u \rangle) \rtimes \langle w \rangle$ where E is cyclic group of order $g - 1$ and u and w are involutions.

- $|S| = 2g + 2$, and $S = A \rtimes B$, A is an elementary abelian subgroup of index 2 and $B = 2$;

- Every central involution of S is inductive.

Involution $u \in Z(S)$ is inductive: $= S/\langle u \rangle$, viewed as a subgroup of $\text{Aut}(\overline{\mathcal{X}})$ of the quotient curve $\mathcal{X} = \mathcal{X}/\langle u \rangle$ satisfies the hypotheses of the theorem.
Case $p = 2$, examples

For every $2h$, \exists a curve of type (ia): (extremal curve w.r. Nakajima’s bound with dihedral 2-group of automorphisms).

\exists a sporadic example of type (ib) with $g = 9$ and $S = D_8 \times C_2$.

For $q = 2h$, the hyperelliptic curve $X := v(Y^2 + Y + X)(X^q + X) + \sum_{\alpha \in F_q} X^q + X + \alpha$ has genus $g = q - 1$ and an elementary abelian automorphism group of order 2^q. Examples involving inductive involutions are also known.

Problem 11: Construct infinite family of curves of type (ib).
For every 2^h, there exists a curve of type (ia): (extremal curve w.r. Nakajima’s bound with dihedral 2-group of automorphisms).
Case $p = 2$, examples

- For every 2^h, \exists a curve of type (ia): (extremal curve w.r. Nakajima’s bound with dihedral 2-group of automorphisms).
- \exists a sporadic example of type (ib) with $g = 9$ and $S = D_8 \times C_2$.

Examples involving inductive involutions are also known.

Problem 11: Construct infinite family of curves of type (ib).
Case $p = 2$, examples

- For every 2^h, \exists a curve of type (ia): (extremal curve w.r. Nakajima’s bound with dihedral 2-group of automorphisms).
- \exists a sporadic example of type (ib) with $g = 9$ and $S = D_8 \times C_2$.
- For $q = 2^h$, the hyperelliptic curve

$$\mathcal{X} := v((Y^2 + Y + X)(X^q + X) + \sum_{\alpha \in \mathbb{F}_q} \frac{X^q + X}{X + \alpha})$$

has genus $g = q - 1$ and an elementary abelian automorphism group of order $2q$.

Examples involving inductive involutions are also known.

Problem 11: Construct infinite family of curves of type (ib).
For every 2^h, there exists a curve of type (ia): (extremal curve w.r. Nakajima’s bound with dihedral 2-group of automorphisms).

There exists a sporadic example of type (ib) with $g = 9$ and $S = D_8 \times C_2$.

For $q = 2^h$, the hyperelliptic curve

$$X := v((Y^2 + Y + X)(X^q + X) + \sum_{\alpha \in \mathbb{F}_q} \frac{X^q + X}{X + \alpha})$$

has genus $g = q - 1$ and an elementary abelian automorphism group of order $2q$.

Examples involving inductive involutions are also known.
Case $p = 2$, examples

- For every 2^h, \exists a curve of type (ia): (extremal curve w.r. Nakajima’s bound with dihedral 2-group of automorphisms).
- \exists a sporadic example of type (ib) with $g = 9$ and $S = D_8 \times C_2$.
- For $q = 2^h$, the hyperelliptic curve

$$\mathcal{X} := v((Y^2 + Y + X)(X^q + X) + \sum_{\alpha \in \mathbb{F}_q} \frac{X^q + X}{X + \alpha})$$

has genus $g = q - 1$ and an elementary abelian automorphism group of order $2q$.
- Examples involving inductive involutions are also known.

Problem 11: Construct infinite family of curves of type (ib).