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Elliptic Curve Cryptography

Elliptic Curve E
For P € E and n € Z, nP can be calculated easily.

No efficient algorithm to calculate n from P and nP?

Fast calculation of nP desirablel!
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Double-and-Add Algorithm

Calculating 27P via a doubling and adding scheme using the
standard binary expansion of 27:
27 =(11011)p=1-16+1-8+0-4+1-241-1,
27P = (11011),P =2(2(2(2(P) + P) +0) + P) + P.

@ Number of additions ~ Hamming weight of the binary
expansion (Number of nonzero digits)

@ Number of doublings ~ length of the expansion
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Double, Add, and Subtract Algorithm

Subtraction is as cheap as addition!

27 = (100101),, (1:=-1)
27P = (100101),P = 2(2(2(2(2(P) + 0) + 0) — P) +0) — P.

@ — Use of signed digit expansions

@ Number of additions/subtractions ~ Hamming weight of the
binary expansion

@ Number of multiplications ~ length of the expansion
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Computation of the Standard Binary Expansion

Recall how to compute the standard unsigned binary expansion of
27 from right to left (least significant to most significant digit):

27 =1 (mod 2) go=1

(27 -1)/2=13=1 (mod 2) e1=1

(13-1)/2=6=0 (mod 2) g2 =0

(6—-0)/2=3=1 (mod 2) ez=1

(3-1)/2=1=1 (mod 2) ea=1
(1-1)/2=0=0 (mod 2) g=0, j>5

27 = (...011011),
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Computation of Signed Expansion

Compute a signed binary expansion of 27 with many zeros:

27 =—1 (mod 4) go=—1

(27 — (—1))/2=14=0 (mod 2) e1=0
(14—-0)/2=7= -1 (mod 4) gg=—1
(7—(-1))/2=4=0 (mod 2) e3=0
(4—-0)/2=2=0 (mod 2) €2 =0
(2—-0)/2=1=1 (mod 4) g5 =1
(1-1)/2=0=0 (mod 2) gg=0, j>6

27 = (...0100101),

If nis odd, we use information modulo 4 instead of modulo 2 in
order to guarantee a digit 0 in the next step. (Greedy!)
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Non-Adjacent Form

Theorem (Reitwiesner 1960)

Let n € Z, then there is exactly one signed binary expansion
e € {—1,0,1}"o of n such that

n= Z g, (e is a binary expansion of n),
>0
gjgj+1 =0 for all j > 0.

It is called the Non-Adjacent Form (NAF) of n.
It minimises the Hamming weight amongst all signed binary
expansions with digits {0, £1} of n.
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w-NAF

o Let w > 2. Consider digit set
D, ={0}u{-("1-1),...,-1,1,3,...,2" 1 —1}

Binary digit expansion of n € Z with digits in D,,.
Precompute nP for n € D,, n > 0.

Minimise weight, i.e., number of nonzero digits.

Choose expansion such that each block of w consecutive
digits contains at most one non-zero digit (“w-NAF").

NAF is special case w = 2.
o If nis even, take digit 0.

o If nis odd, take unique digit n € D,, such that n=1
(mod 2%).
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© Complex Base
@ Frobenius Endomorphism and Complex Bases
o D-w-NAF with Base 7
o Existence of the D-w-NAF
@ Optimality Conditions for the D-w-NAF
@ Analysis of the D-w-NAF
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Frobenius Endomorphism

@ Let E be an elliptic curve defined over F.

@ The Frobenius endomorphism
¢ E(Fqm) = E(Fgm); (x,y) = (x%,y7)

fulfils
¢ —tp+qg=0
where t = g+ 1 — #E(Fy).
o As |t| <2,/q (Hasse), ¢ can be identified with an imaginary
quadratic integer 7.
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T-Expansions and Scalar Multiplication

@ Assume that a digit expansion of n to the base of 7 is known,
eg.,n= Zf;é Gl
@ Then
(coam P+ o2+ 33+t at+ )P =
e(e(p(p(p(co-1P)+croP)+ci3P)- -+ )+cP)+cP

Frobenius-and-Add-Algorithm

Frobenius endomorphism ¢ much faster than doubling

Number of (fast) Frobenius applications: length of the
expansion.

e Number of Additions/Subtractions: Hamming weight
(number of nonzero digits) of the expansion (minus one).
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D-w-NAF with Base 7

@ Aim: Generalise w-NAF to base 7.

e Digit set: D = {0} UD* where D* consists of one
representative of minimal norm from every residue class
modulo 7% which is not divisible by 7 ( “digit set of minimal
norm representatives” ).

e A D-w-NAF is an expansion of z € Z[r] such that every block
of w consecutive digits contains at most one non-zero digit.
@ Questions:
o Existence: Does every z € Z[7] admit a D-w-NAF?
o Optimality: Does the D-w-NAF minimise the weight over all
expansions over the same digit set?
o Analysis: Expected weight?
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Existence of the w-NAF

Theorem (CH, Daniel Krenn 2013)

Let 7 be an imaginary quadratic integer, w > 2 and D be a digit
set of minimal norm representatives.

Then every element in Z[7]| admits a w-NAF to the base of T with
digits in D.
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Optimality Results for Quadratic Integer Bases
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Digit Counting in w-NAFs to Imaginary Quadratic Bases

Theorem (CH, Daniel Krenn 2013)

Let T be an imaginary quadratic integer, w > 2, D be a digit set of
minimal norm representatives, 0 = n € D and N > 0.

Let z € Z[7] with |z| < N be a random element (under
equidistribution).

Then the expected number of occurrences of the digit ) in the
D-w-NAF of z is

ew log|-| N + ¢y (log|,| N) + o(1),

where
1

T FRPOED((r2 = Dw + 1)

and 1y (x) is a 1-periodic continuous function.

€w

AAAAAAAAAAAAAAAAAAA



Characteristic Sets (1)




Characteristic Sets (2)

T=1+i,w=4 T=+v-3, w=2
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© Symmetry
@ Action of Roots of Unity

@ Structural Digit Set
@ Scalar Multiplication using the Structural Digit Set
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Curves

o y? = x4 Ax over Fpm with p =1 (mod 4), A€ F}.
End(E) ~ Z][i].

o y> = x>+ B over Fym with p=1 (mod 6), B € F.
End(E) ~ Z[(] for a primitive sixth root of unity .

@ Ternary Koblitz curve: Defined over F3 by equation

Y2=X3—X—pu, with pe{£1}.

Supersingular, hence interesting for pairing-based
cryptography.
Sixth roots of unity in endomorphism ring.

For this talk: focus on y? = x3 + Ax.
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Using Rotations to Reduce Precomputation

y?2=x3+ Ax over Fym, p=1 (mod 4), A€ Fy.

[T1(x,¥) = o(x,y) = (xP, yP),
[1(x,y) = (=x, —vy)

where v € [F,, is an element of order 4.

o Choose digit set D such that in € D for each n € D, i.e.,, D is
invariant under rotation.

@ Only precompute nP for one representative 1 of each orbit of
D under rotation by i, generate i*nP on the fly.
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Structural Digit Set

@ Replace minimum norm digit set by a “structurally defined”
digit set.

Aim: Reduce precomputation/storage.
Assume that p =5 (mod 8).
o Write

(Z[i]/ 7 ZIi)* = (i) x (o).
Here, o is an element of order (p — 1)p"~1/4.

o can be determined modulo 72.

Choose digit set

(p-—l)pw‘l}.

D:{mu{ﬁw|oga<mogb< ;
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Structural Digit Set

e Is D a valid digit set, i.e., does every z € Z[7] admit an
expansion

4
zZ = Zdﬂ"
i=0

with d; € D and fulfilling the width-w non-adjacency
condition?

@ Algorithmically, this is not important:

o For the last “few” positions, we can simply relax the
non-adjacency condition, dropping back to the case w = 1.

@ This does not alter the asymptotic behaviour of the
algorithms.
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Using the Structural Digit Set

o Write [a] for the action of a € Z[i] as an endomorphism of E.

o Consider expansion

V4
z= Z EjUbjTJ
j=0

of z € Z[i] with ¢; € {0,£1, £i}.

@ Write scalar multiplication as

(P_I)PW71 1
14 ) V4
zP = Zejabfo]P — Z Z[ 7P [0]°P.
Jj=0 b=0 Jj=0
b=b
@ Here, [U]bP is stored. l.lnLPEN-nDRm
UNIVERSITAT
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Using the Structural Digit Set — Algorithm 1

Input: P = (x,y) € E(Fpm), scalar z = Zf:o gjobirs
Output: zP
Q+0
for b=(p—1)p*1/4—-1to0do
Q<+ [0]Q, R+0
for j =/ to 0 do
R« [7T|R
if ¢; # 0 and b; = b then
R+ R+ [6j](P)
Q«Q+R
return Q
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Algorithm 1: Comments

o No storage for precomputed points
@ Many applications of 7

@ no problem when normal bases are used
o for polynomial bases, we use the following variant (Algorithm
2)
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Using the Structural Digit Set — Algorithm 2 (Variant)

Input: P = (x,y) € E(Fpn), scalar z = Y7o g0l
Output: zP
Q < 0, P + normal_basis(P)
for b= (p—1)p"~1/4—1to 0 do
Q — [O’]Q, R« 0
for j=0to ¢ do
if ¢; # 0 and b; = b then
R+~ R+ [EJ‘]polynomial,basis(fff?)
RQ+Q+R
return Q
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Examples

p T unit group bound MNR | 1-NADS
5 14+2i (i) 1 yes yes
13 | =34+2i | () x(1+1) 1 yes yes
29 5420 | (i)yx(=1—1i) 4 no yes
37 1+ 6i (i) x (L4 1) 10 no yes
53 | —7+2i | (i x{(1-=1) 104 no yes
61 54 6i (iy x (1 —1) 354 no yes
101 | 1410/ (iy x (1 —=1) 204850 no no
109 | —=3410i | (i) x (241) huge no no
149 | =74 10/ | (i) x (=1+41) 547186713 no no
157 | =1146i | (i) x (241) huge no no
173 | 1342i | (i) x(1+41) 29778077114 no no
181 | 9+10i | (i) x (—1+i) | 113430097979 | no 7
107 | 1+147 | (i) x (—1— /) | 1656430250748 | no no
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