Good covering codes from algebraic curves

Massimo Giulietti

University of Perugia (Italy)

Special Semester on Applications of Algebra and Number Theory
Workshop 2: Algebraic curves over finite fields
Linz, 14 November 2013
coverings codes

\((\mathbb{F}_q^n, d)\) \quad d \text{ Hamming distance} \quad C \subset \mathbb{F}_q^n
covering codes

\((\mathbb{F}_q^n, d)\) \quad \text{d Hamming distance} \quad C \subset \mathbb{F}_q^n

- covering radius of \(C\)

\[R(C) := \max_{v \in \mathbb{F}_q^n} d(v, C) \]
covering codes

$((\mathbb{F}_q^n, d))$ d Hamming distance $C \subset \mathbb{F}_q^n$

covering radius of C

$R(C) := \max_{v \in \mathbb{F}_q^n} d(v, C)$
covering codes

(\mathbb{F}_q^n, d) \hspace{1cm} d Hamming distance \hspace{1cm} $C \subset \mathbb{F}_q^n$

- covering radius of C

\[
R(C) := \max_{v \in \mathbb{F}_q^n} d(v, C)
\]

- covering density of C

\[
\mu(C) := \# C \cdot \frac{\text{size of a sphere of radius } R(C)}{q^n}
\]
covering codes

\((\mathbb{F}_q^n, d)\) \hspace{1cm} \text{d Hamming distance} \quad \text{C} \subset \mathbb{F}_q^n

- covering radius of \text{C}

\[R(C) := \max_{v \in \mathbb{F}_q^n} d(v, C) \]

\(\mathbb{F}_q^n \)

- covering density of \text{C}

\[\mu(C) := \#C \cdot \frac{\text{size of a sphere of radius } R(C)}{q^n} \geq 1 \]
linear codes

\[k = \text{dim } C \quad r = n - k \]

\[\mu(C) = \frac{1 + n(q - 1) + \binom{n}{2}(q - 1)^2 + \ldots + \binom{n}{R(C)}(q - 1)^{R(C)}}{q^r} \]
linear codes

\[k = \dim C \quad r = n - k \]

\[
\mu(C) = \frac{1 + n(q - 1) + \binom{n}{2}(q - 1)^2 + \ldots + \binom{n}{R(C)}(q - 1)^{R(C)}}{q^r}
\]

\[
\ell(r, q)_R := \min n \text{ for which there exists } C \subset \mathbb{F}_q^n \text{ with } R(C) = R, \quad n - \dim(C) = r
\]
linear codes

\[k = \dim C \quad r = n - k \]

\[\mu(C) = \frac{1 + n(q - 1) + \binom{n}{2}(q - 1)^2 + \ldots + \binom{n}{R(C)}(q - 1)^{R(C)}}{q^r} \]

\[\ell(r, q)_R, d := \min n \text{ for which there exists } C \subset \mathbb{F}_q^n \text{ with } \]
\[R(C) = R, \quad n - \dim(C) = r, \quad d(C) = d \]
linear codes

\[k = \dim C \quad r = n - k \]

\[
\mu(C) = \frac{1 + n(q - 1) + \binom{n}{2}(q - 1)^2 + \ldots + \binom{n}{R(C)}(q - 1)^{R(C)}}{q^r}
\]

\[
\ell(r, q)_{R,d} := \min n \text{ for which there exists } C \subset \mathbb{F}_q^n \text{ with}\]
\[
R(C) = R, \quad n - \dim(C) = r, \quad d(C) = d
\]

\[R = 2, \quad d = 4 \quad \text{(quasi-perfect codes)} \]

\[R = r - 1, \quad d = r + 1 \quad \text{(MDS codes)} \]

\[q \text{ odd} \]
\(l(3, q)_{2,4} \)
in geometrical terms...

$$\Sigma = \Sigma(2, q)$$

Galois plane over the finite field \mathbb{F}_q
in geometrical terms...

\[\Sigma = \Sigma(2, q)\]

Galois plane over the finite field \(\mathbb{F}_q\)

\(S \subset \Sigma\) is a **saturating** set if every point in \(\Sigma \setminus S\) is collinear with two points in \(S\)

![Diagram](image)
in geometrical terms...

\[\Sigma = \Sigma(2, q) \]

Galois plane over the finite field \(\mathbb{F}_q \)

- \(S \subset \Sigma \) is a **saturating** set if every point in \(\Sigma \setminus S \) is collinear with two points in \(S \)
in geometrical terms...

$$\Sigma = \Sigma(2, q)$$

Galois plane over the finite field \mathbb{F}_q

$S \subset \Sigma$ is a **saturating** set if every point in $\Sigma \setminus S$ is collinear with two points in S
\[\Sigma = \Sigma(2, q) \]

Galois plane over the finite field \(\mathbb{F}_q \)

\(S \subset \Sigma \) is a **saturating** set if every point in \(\Sigma \setminus S \) is collinear with two points in \(S \)
in geometrical terms...

\[\Sigma = \Sigma(2, q) \]

Galois plane over the finite field \(\mathbb{F}_q \)

- \(S \subset \Sigma \) is a **saturating** set if every point in \(\Sigma \setminus S \) is collinear with two points in \(S \)
- a **complete cap** is a saturating set which does not contain 3 collinear points
in geometrical terms...

\[\Sigma = \Sigma(2, q) \]

Galois plane over the finite field \(\mathbb{F}_q \)

- \(S \subset \Sigma \) is a **saturating** set if every point in \(\Sigma \setminus S \) is collinear with two points in \(S \)

- a **complete cap** is a saturating set which does not contain 3 collinear points

\[\ell(3, q)_{2,4} = \text{minimum size of a complete cap in } \mathbb{P}^2(\mathbb{F}_q) \]
plane complete caps

- TLB:
 \[#S > \sqrt{2q} + 1 \]
plane complete caps

- TLB:
 \[\#S > \sqrt{2q} + 1 \]

- in \(\mathbb{P}^2(\mathbb{F}_q) \) there exists a complete cap \(S \) of size
 \[\#S \leq D\sqrt{q} \log^{C} q \]

(Kim-Vu, 2003)
plane complete caps

- TLB:
 \[\#S > \sqrt{2q} + 1 \]

- in \(\mathbb{P}^2(\mathbb{F}_q) \) there exists a complete cap \(S \) of size
 \[\#S \leq D\sqrt{q} \log^C q \]
 (Kim-Vu, 2003)

- for every \(q \) prime \(q < 67000 \) there exists a complete cap \(S \) of size
 \[\#S \leq \sqrt{q} \log q \]
 (Bartoli-Davydov-Faina-Marcugini-Pambianco, 2012)
plane complete caps

- TLB:
 \[\#S > \sqrt{2q} + 1 \]

- In \(\mathbb{P}^2(\mathbb{F}_q) \) there exists a complete cap \(S \) of size
 \[\#S \leq D \sqrt{q} \log^C q \]
 (Kim-Vu, 2003)

- For every prime \(q < 67000 \) there exists a complete cap \(S \) of size
 \[\#S \leq \sqrt{q} \log q \]
 (Bartoli-Davydov-Faina-Marcugini-Pambianco, 2012)
• *naive* construction method:
naive construction method:

\[S = \{ P_1, P_2, \} \]
naive construction method:

\[S = \{ P_1, P_2, P_3, \} \]
naive construction method:

$$S = \{P_1, P_2, P_3, P_4, \}$$
naive construction method:

\[S = \{ P_1, P_2, P_3, P_4, \ldots, \} \]
naive construction method:

\[S = \{P_1, P_2, P_3, P_4, \ldots, P_n\} \]

- naive vs. theoretical
Naive algorithm
\(\sqrt{q} \cdot (\log q)^{0.75} \) →

\(\sqrt{3q + 1/2} \)

← Naive algorithm

TLB
\mathcal{X} plane irreducible cubic curve
\mathcal{X} plane irreducible cubic curve

$G = \mathcal{X}(\mathbb{F}_q) \setminus \text{Sing}(\mathcal{X})$

- If O is an inflection point of \mathcal{X}, then $P, Q, T \in G$ are collinear if and only if

 $P \oplus Q \oplus T = O$
If O is an inflection point of \mathcal{X}, then $P, Q, T \in G$ are collinear if and only if $P \oplus Q \oplus T = O$.

For a subgroup K of index m with $(3, m) = 1$, no 3 points in a coset $S = K \oplus Q$, $Q \notin K$ are collinear.
classification \((p > 3)\)
classification \((p > 3)\)
classification ($p > 3$)
classification \((p > 3)\)
Y = X^3

XY = (X - 1)^3

Y(X^2 - \beta) = 1

Y^2 = X^3 + AX + B
how to prove completeness?

- S parametrized by polynomials defined over \mathbb{F}_q

$$S = \{(f(t), g(t)) | t \in \mathbb{F}_q\} \subset \mathbb{A}^2(\mathbb{F}_q)$$
how to prove completeness?

- S parametrized by polynomials defined over \mathbb{F}_q

\[S = \{(f(t), g(t)) \mid t \in \mathbb{F}_q \} \subset \mathbb{A}^2(\mathbb{F}_q) \]

- $P = (a, b)$ collinear with two points in S if there exist $x, y \in \mathbb{F}_q$ with

\[
\det \begin{pmatrix} a & b & 1 \\ f(x) & g(x) & 1 \\ f(y) & g(y) & 1 \end{pmatrix} = 0
\]
How to prove completeness?

- \(S \) parametrized by polynomials defined over \(\mathbb{F}_q \)

\[
S = \{(f(t), g(t)) \mid t \in \mathbb{F}_q\} \subset \mathbb{A}^2(\mathbb{F}_q)
\]

- \(P = (a, b) \) collinear with two points in \(S \) if there exist \(x, y \in \mathbb{F}_q \) with \(F_{a,b}(x, y) = 0 \), where

\[
F_{a,b}(x, y) := \det \begin{pmatrix}
a & b & 1 \\
f(x) & g(x) & 1 \\
f(y) & g(y) & 1
\end{pmatrix}
\]
how to prove completeness?

- S parametrized by polynomials defined over \mathbb{F}_q
 \[S = \{(f(t), g(t)) \mid t \in \mathbb{F}_q\} \subset \mathbb{A}^2(\mathbb{F}_q) \]

- $P = (a, b)$ collinear with two points in S if there exist $x, y \in \mathbb{F}_q$ with $F_{a,b}(x, y) = 0$, where
 \[F_{a,b}(x, y) := \det \begin{pmatrix} a & b & 1 \\ f(x) & g(x) & 1 \\ f(y) & g(y) & 1 \end{pmatrix} \]

- $P = (a, b)$ collinear with two points in S if the algebraic curve
 \[C_P : F_{a,b}(X, Y) = 0 \]
 has a suitable \mathbb{F}_q-rational point (x, y)
how to prove completeness?

- S parametrized by polynomials defined over \mathbb{F}_q

$$S = \{(f(t), g(t)) \mid t \in \mathbb{F}_q\} \subset \mathbb{A}^2(\mathbb{F}_q)$$

- $P = (a, b)$ collinear with two points in S if there exist $x, y \in \mathbb{F}_q$ with $F_{a,b}(x, y) = 0$, where

$$F_{a,b}(x, y) := \det \begin{pmatrix} a & b & 1 \\ f(x) & g(x) & 1 \\ f(y) & g(y) & 1 \end{pmatrix}$$

- $P = (a, b)$ collinear with two points in S if the algebraic curve

$$C_P : F_{a,b}(X, Y) = 0$$

has a suitable \mathbb{F}_q-rational point (x, y)
cuspidal case: $Y = X^3$

- G is an elementary abelian p-group
 - $q = p^h$
cuspidal case: $Y = X^3$

- G is an elementary abelian p-group $q = p^h$

$$K = \left\{ (t^p - t, (t^p - t)^3) \mid t \in \mathbb{F}_q \right\}$$
kuspidal case: \(Y = X^3 \)

- \(G \) is an elementary abelian \(p \)-group \(\quad q = p^h \)

\[
K = \{ (t^p - t, (t^p - t)^3) \mid t \in \mathbb{F}_q \}
\]

\[
S = \{ \underbrace{(t^p - t + \bar{t}, (t^p - t + \bar{t})^3)}_{P_t} \mid t \in \mathbb{F}_q \}
\]
cuspidal case: \(Y = X^3 \)

- \(G \) is an elementary abelian \(p \)-group \(q = p^h \)

\[
K = \{ (t^p - t, (t^p - t)^3) \mid t \in \mathbb{F}_q \}
\]

\[
S = \{ \underbrace{(t^p - t + \bar{t}, (t^p - t + \bar{t})^3)}_{P_t} \mid t \in \mathbb{F}_q \}
\]

- \(P = (a, b) \) is collinear with \(P_x \) and \(P_y \) if and only if

\[
F_{a,b}(x, y) := a + (x^p - x + \bar{t})(y^p - y + \bar{t})^2 +
(x^p - x + \bar{t})^2(y^p - y + \bar{t}) - b((x^p - x + \bar{t})^2
+(x^p - x + \bar{t})(y^p - y + \bar{t}) + (y^p - y + \bar{t})^2) = 0
\]
cuspidal case: \(Y = X^3 \)

- \(G \) is an elementary abelian \(p \)-group \quad \(q = p^h \)

\[
K = \{ (t^p - t, (t^p - t)^3) \mid t \in \mathbb{F}_q \}
\]

\[
S = \{ \{(t^p - t + \bar{t}, (t^p - t + \bar{t})^3) \mid t \in \mathbb{F}_q \}
\]

- \(P = (a, b) \) is collinear with \(P_x \) and \(P_y \) if and only if

\[
F_{a,b}(x, y) := a + (x^p - x + \bar{t})(y^p - y + \bar{t})^2 + (x^p - x + \bar{t})^2(y^p - y + \bar{t}) - b((x^p - x + \bar{t})^2 + (x^p - x + \bar{t})(y^p - y + \bar{t}) + (y^p - y + \bar{t})^2) = 0
\]

- the curve \(C_P \) then is \(F_{a,b}(X, Y) = 0 \)
applying Segre's criterion

(Segre, 1962)

if there exists a point $P \in C$ and a tangent ℓ of C at P such that
- ℓ counts once among the tangents of C at P,
- the intersection multiplicity of C and ℓ at P equals $\deg(C)$,
- C has no linear components through P,
then C is irreducible.
applying Segre's criterion

(Segre, 1962)

if there exists a point $P \in C$ and a tangent ℓ of C at P such that
- ℓ counts once among the tangents of C at P,
- the intersection multiplicity of C and ℓ at P equals $\deg(C)$,
- C has no linear components through P,

then C is irreducible.

$$F_{a,b}(X, Y) := a + (X^p - X + \bar{t})(Y^p - Y + \bar{t})^2 + (X^p - X + \bar{t})^2(Y^p - Y + \bar{t}) - b((X^p - X + \bar{t})^2 + (X^p - X + \bar{t})(Y^p - Y + \bar{t}) + (Y^p - Y + \bar{t})^2) = 0$$
applying Segre’s criterion

(Segre, 1962)

if there exists a point $P \in C$ and a tangent ℓ of C at P such that

- ℓ counts once among the tangents of C at P,
- the intersection multiplicity of C and ℓ at P equals $\deg(C)$,
- C has no linear components through P,

then C is irreducible.

$$F_{a,b}(X, Y) := a + (X^p - X + \bar{t})(Y^p - Y + \bar{t})^2 + (X^p - X + \bar{t})^2(Y^p - Y + \bar{t}) - b((X^p - X + \bar{t})^2 + (X^p - X + \bar{t})(Y^p - Y + \bar{t}) + (Y^p - Y + \bar{t})^2) = 0$$

at $P = X_\infty$ the tangents are $\ell : Y = \beta$ with $\beta^p - \beta + \bar{t} = b$
applying Segre’s criterion

(Segre, 1962)

if there exists a point \(P \in C \) and a tangent \(\ell \) of \(C \) at \(P \) such that
- \(\ell \) counts once among the tangents of \(C \) at \(P \),
- the intersection multiplicity of \(C \) and \(\ell \) at \(P \) equals \(\text{deg}(C) \),
- \(C \) has no linear components through \(P \),

then \(C \) is irreducible.

\[
F_{a,b}(X, Y) := a + (X^p - X + \bar{t})(Y^p - Y + \bar{t})^2 + (X^p - X + \bar{t})^2(Y^p - Y + \bar{t}) - b((X^p - X + \bar{t})^2 + (X^p - X + \bar{t})(Y^p - Y + \bar{t}) + (Y^p - Y + \bar{t})^2) = 0
\]

at \(P = X_\infty \) the tangents are \(\ell : Y = \beta \) with \(\beta^p - \beta + \bar{t} = b \)

\[
F_{a,b}(X, \beta) = a - b^3
\]
applying Segre's criterion

(Segre, 1962)

if there exists a point $P \in C$ and a tangent ℓ of C at P such that
- ℓ counts once among the tangents of C at P,
- the intersection multiplicity of C and ℓ at P equals $\deg(C)$,
- C has no linear components through P,

then C is irreducible.

$$F_{a,b}(X, Y) := a + (X^p - X + \bar{t})(Y^p - Y + \bar{t})^2 + (X^p - X + \bar{t})^2(Y^p - Y + \bar{t}) - b((X^p - X + \bar{t})^2 + (X^p - X + \bar{t})(Y^p - Y + \bar{t}) + (Y^p - Y + \bar{t})^2) = 0$$

at $P = X_\infty$ the tangents are $\ell : Y = \beta$ with $\beta^p - \beta + \bar{t} = b$

if $P \notin \mathcal{X}$

$$F_{a,b}(X, \beta) = a - b^3$$

C_P is irreducible of genus $g \leq 3p^2 - 3p + 1$
applying Segre’s criterion

(Segre, 1962)

if there exists a point $P \in C$ and a tangent ℓ of C at P such that

- ℓ counts once among the tangents of C at P,
- the intersection multiplicity of C and ℓ at P equals $\deg(C)$,
- C has no linear components through P,

then C is irreducible.

$$F_{a, b}(X, Y) := a + (X^p - X + \bar{t})(Y^p - Y + \bar{t})^2 +
(X^p - X + \bar{t})^2(Y^p - Y + \bar{t}) - b((X^p - X + \bar{t})^2
+ (X^p - X + \bar{t})(Y^p - Y + \bar{t}) + (Y^p - Y + \bar{t})^2) = 0$$

at $P = X_\infty$ the tangents are $\ell : Y = \beta$ with $\beta^p - \beta + \bar{t} = b$

if $P \notin X$

- C_P is irreducible of genus $g \leq 3p^2 - 3p + 1$
- C_P has at least $q + 1 - (6p^2 - 6p + 2)\sqrt{q}$ points
cuspidal case: $Y = X^3$

- G is elementary abelian, isomorphic to $(\mathbb{F}_q, +)$
cuspidal case: $Y = X^3$

- G is elementary abelian, isomorphic to $(\mathbb{F}_q, +)$

$$S = \{(L(t) + \bar{t}, (L(t) + \bar{t})^3) \mid t \in \mathbb{F}_q\}$$

$$L(T) = \prod_{\alpha \in M} (T - \alpha), \quad M < (\mathbb{F}_q, +), \quad \#M = m$$
cuspidal case: \(Y = X^3 \)

- \(G \) is elementary abelian, isomorphic to \((\mathbb{F}_q, +)\)

\[
S = \{(L(t) + \bar{t}, (L(t) + \bar{t})^3) \mid t \in \mathbb{F}_q\}
\]

\[
L(T) = \prod_{\alpha \in M} (T - \alpha), \quad M < (\mathbb{F}_q, +), \quad \#M = m
\]

- \(P = (a, b) \) is collinear with \(P_x \) and \(P_y \) if and only if

\[
F_{a,b}(x, y) := a + (L(x) + \bar{t})(L(y) + \bar{t})^2 + \\
(L(x) + \bar{t})^2(L(y) + \bar{t}) - b((L(x) + \bar{t})^2 \\
+ (L(x) + \bar{t})(L(y) + \bar{t}) + (L(y) + \bar{t})^2) = 0
\]
cuspidal case: \(Y = X^3 \)

- \(G \) is elementary abelian, isomorphic to \((\mathbb{F}_q,+)\)

\[
S = \left\{ \left((L(t) + \bar{t}, (L(t) + \bar{t})^3) \right) \middle| t \in \mathbb{F}_q \right\}
\]

\[
L(T) = \prod_{\alpha \in M} (T - \alpha), \quad M < (\mathbb{F}_q,+), \quad \#M = m
\]

- \(P = (a, b) \) is collinear with \(P_x \) and \(P_y \) if and only if

\[
F_{a,b}(x, y) := a + (L(x) + \bar{t})(L(y) + \bar{t})^2 + (L(x) + \bar{t})^2(L(y) + \bar{t}) - b((L(x) + \bar{t})^2 + (L(x) + \bar{t})(L(y) + \bar{t}) + (L(y) + \bar{t})^2) = 0
\]

if \(P \notin \mathcal{X} \)

- \(C_P \) is irreducible of genus \(g \leq 3m^2 - 3m + 1 \)
cuspidal case: $Y = X^3$

- G is elementary abelian, isomorphic to $(\mathbb{F}_q, +)$

$$S = \left\{ (L(t) + \bar{t}, (L(t) + \bar{t})^3) \mid t \in \mathbb{F}_q \right\}$$

$$L(T) = \prod_{\alpha \in M} (T - \alpha), \quad M < (\mathbb{F}_q, +), \quad \#M = m$$

- $P = (a, b)$ is collinear with P_x and P_y if and only if

$$F_{a, b}(x, y) := a + (L(x) + \bar{t})(L(y) + \bar{t})^2 + (L(x) + \bar{t})^2(L(y) + \bar{t}) - b((L(x) + \bar{t})^2 + (L(x) + \bar{t})(L(y) + \bar{t}) + (L(y) + \bar{t})^2) = 0$$

if $P \notin \mathcal{X}$

- C_P is irreducible of genus $g \leq 3m^2 - 3m + 1$

- C_P has at least $q + 1 - (6m^2 - 6m + 2)\sqrt{q}$ points
let $P = (a, b)$ be a point in $\mathbb{A}^2(\mathbb{F}_q) \setminus \mathcal{X}$; if

$$m < \sqrt[q/36]{q}$$

then there is a secant of S passing through P.

(Szőnyi, 1985 - Anbar, Bartoli, G., Platoni, 2013)
(Szőnyi, 1985 - Anbar, Bartoli, G., Platoni, 2013)

let $P = (a, b)$ be a point in $\mathbb{A}^2(F_q) \setminus \mathcal{X}$; if

$$m < \frac{4\sqrt{q}}{36}$$

then there is a secant of S passing through P.

- m is a power of p
let $P = (a, b)$ be a point in $\mathbb{A}^2(\mathbb{F}_q) \setminus \mathcal{X}$; if

$$m < \sqrt[4]{q/36}$$

then there is a secant of S passing through P.

- m is a power of p
- the points in $\mathcal{X} \setminus S$ need to be dealt with
(Szőnyi, 1985 - Anbar, Bartoli, G., Platoni, 2013)

let $P = (a, b)$ be a point in $\mathbb{A}^2(\mathbb{F}_q) \setminus \mathcal{X}$; if

$$m < \frac{4\sqrt{q}}{36}$$

then there is a secant of S passing through P.

- m is a power of p
- the points in $\mathcal{X} \setminus S$ need to be dealt with

Theorem

if $m < \frac{4\sqrt{q}}{36}$, then there exists a complete cap in $\mathbb{A}^2(\mathbb{F}_q)$ with size

$$m + \frac{q}{m} - 3$$
(Szőnyi, 1985 - Anbar, Bartoli, G., Platoni, 2013)

let $P = (a, b)$ be a point in $\mathbb{A}^2(\mathbb{F}_q) \setminus \mathcal{X}$; if

$$m < \sqrt[4]{q/36}$$

then there is a secant of S passing through P.

- m is a power of p
- the points in $\mathcal{X} \setminus S$ need to be dealt with

theorem

if $m < \sqrt[4]{q/36}$, then there exists a complete cap in $\mathbb{A}^2(\mathbb{F}_q)$ with size

$$m + \frac{q}{m} - 3 \sim p^{1/4} \cdot q^{3/4}$$
nodal case: $XY = (X - 1)^3$

- G is isomorphic to (\mathbb{F}_q^*, \cdot)

$$G \rightarrow \mathbb{F}_q^* \quad \left(v, \frac{(v - 1)^3}{v} \right) \mapsto v$$
nodal case: $XY = (X - 1)^3$

- G is isomorphic to \((\mathbb{F}_q^*, \cdot)\)
 $$G \to \mathbb{F}_q^* \quad \left(v, \frac{(v - 1)^3}{v} \right) \mapsto v$$

- the subgroup of index m (m a divisor of $q - 1$):
 $$K = \left\{ \left(t^m, \frac{(t^m - 1)^3}{t^m} \right) \mid t \in \mathbb{F}_q^* \right\}$$
nodal case: $XY = (X - 1)^3$

- G is isomorphic to (\mathbb{F}_q^*, \cdot)

 $$G \rightarrow \mathbb{F}_q^* \quad \left(v, \frac{(v - 1)^3}{v} \right) \mapsto v$$

- the subgroup of index m (m a divisor of $q - 1$):

 $$K = \left\{ \left(t^m, \frac{1 - t^m}{t^m} \right) \mid t \in \mathbb{F}_q^* \right\}$$

- a coset:

 $$S = \left\{ \left(\overline{tt}^m, \frac{1 - \overline{tt}^m}{\overline{tt}^m} \right) \mid t \in \mathbb{F}_q^* \right\}$$
nodal case: \(XY = (X - 1)^3 \)

- \(G \) is isomorphic to \((\mathbb{F}_q^*, \cdot)\)

\[
G \rightarrow \mathbb{F}_q^* \quad \left(v, \frac{(v - 1)^3}{v} \right) \mapsto v
\]

- the subgroup of index \(m \) (\(m \) a divisor of \(q - 1 \)):

\[
K = \left\{ \left(t^m, \frac{(t^m - 1)^3}{t^m} \right) \mid t \in \mathbb{F}_q^* \right\}
\]

- a coset:

\[
S = \left\{ \left(\tt t^m, \frac{(tt^m - 1)^3}{tt^m} \right) \mid t \in \mathbb{F}_q^* \right\}
\]
nodal case: $XY = (X - 1)^3$

- G is isomorphic to $\left(\mathbb{F}_q^*, \cdot \right)$
 $$G \rightarrow \mathbb{F}_q^* \quad \left(v, \frac{(v - 1)^3}{v} \right) \mapsto v$$
- the subgroup of index m (m a divisor of $q - 1$):
 $$K = \left\{ \left(t^m, \frac{(t^m - 1)^3}{t^m} \right) \mid t \in \mathbb{F}_q^* \right\}$$
- a coset:
 $$S = \left\{ \left(\tilde{t} t^m, \frac{(\tilde{t} t^m - 1)^3}{\tilde{t} t^m} \right) \mid t \in \mathbb{F}_q^* \right\}$$

- the curve C_P:
 $$F_{a, b}(X, Y) = a(\tilde{t}^3 X^{2m} Y^m + \tilde{t}^3 X^m Y^{2m} - 3 \tilde{t}^2 X^m Y^m + 1)$$
 $$- b \tilde{t}^2 X^m Y^m - \tilde{t}^4 X^{2m} Y^{2m} + 3 \tilde{t}^2 X^m Y^m$$
 $$- \tilde{t} X^m - \tilde{t} Y^m = 0$$
let P be a point in $\mathbb{A}^2(\mathbb{F}_q) \setminus \mathcal{X}$; if

$$m < \sqrt[4]{q}/36$$

then there is a secant of S passing through P
let P be a point in $\mathbb{A}^2(\mathbb{F}_q) \setminus \mathcal{X}$; if

$$m < \frac{4 \sqrt{q}}{36}$$

then there is a secant of S passing through P

- m is a divisor of $q - 1$
(Anbar-Bartoli-G.-Platoni, 2013)

let P be a point in $\mathbb{A}^2(\mathbb{F}_q) \setminus \mathcal{X}$; if

$$m < \frac{4\sqrt{q}}{36}$$

then there is a secant of S passing through P

- m is a divisor of $q - 1$
- some points from $\mathcal{X} \setminus S$ need to be added to S
let P be a point in $\mathbb{A}^2(F_q) \setminus \mathcal{X}$; if

$$m < \sqrt[4]{q/36}$$

then there is a secant of S passing through P

- m is a divisor of $q - 1$
- some points from $\mathcal{X} \setminus S$ need to be added to S

Theorem

if m is a divisor of $q - 1$ with $m < \sqrt[4]{q/36}$, and in addition $(m, \frac{q-1}{m}) = 1$, then there exists a complete cap in $\mathbb{A}^2(F_q)$ with size

$$m + \frac{q-1}{m} - 3$$
(Anbar-Bartoli-G.-Platoni, 2013)

let P be a point in $\mathbb{A}^2(F_q) \setminus \mathcal{X}$; if

$$m < \frac{4\sqrt{q}}{36}$$

then there is a secant of S passing through P

- m is a divisor of $q - 1$
- some points from $\mathcal{X} \setminus S$ need to be added to S

Theorem

if m is a divisor of $q - 1$ with $m < \frac{4\sqrt{q}}{36}$, and in addition $(m, \frac{q-1}{m}) = 1$, then there exists a complete cap in $\mathbb{A}^2(F_q)$ with size

$$m + \frac{q-1}{m} - 3 \sim q^{3/4}$$
isolated double point case: \(Y(X^2 - \beta) = 1 \)

- \(G \) cyclic of order \(q + 1 \)
isolated double point case: \(Y(X^2 - \beta) = 1 \)

- \(G \) cyclic of order \(q + 1 \)

(Anbar-Bartoli-G.-Platoni, 2013)

if \(m \) is a divisor of \(q + 1 \) with \(m < \frac{4}{36} \sqrt{q} \), and in addition \((m, \frac{q+1}{m}) = 1 \), then there exists a complete cap in \(\mathbb{A}^2(\mathbb{F}_q) \) with size at most

\[
m + \frac{q+1}{m}
\]
isolated double point case: \(Y(X^2 - \beta) = 1 \)

- \(G \) cyclic of order \(q + 1 \)

(Anbar-Bartoli-G.-Platoni, 2013)

if \(m \) is a divisor of \(q + 1 \) with \(m < \sqrt[4]{q/36} \), and in addition \((m, \frac{q+1}{m}) = 1\), then there exists a complete cap in \(\mathbb{A}^2(\mathbb{F}_q) \) with size at most

\[
m + \frac{q + 1}{m} \sim q^{3/4}
\]
elliptic case: \(Y^2 = X^3 + AX + B \)

if
\[
n \in [q + 1 - 2\sqrt{q}, q + 1 + 2\sqrt{q}] \quad n \not\equiv q + 1 \pmod{p}
\]

there exists an elliptic cubic curve \(\mathcal{C} \) over \(\mathbb{F}_q \) with \(\#G = n \)
elliptic case: $Y^2 = X^3 + AX + B$

if

$$n \in [q + 1 - 2\sqrt{q}, q + 1 + 2\sqrt{q}] \quad n \not\equiv q + 1 \pmod{p}$$

there exists an elliptic cubic curve \mathcal{X} over \mathbb{F}_q with $\#G = n$

(Voloch, 1988)

if p does not divide $\#G - 1$, then G can be assumed to be cyclic
elliptic case: \(Y^2 = X^3 + AX + B \)

if
\[
n \in [q + 1 - 2\sqrt{q}, q + 1 + 2\sqrt{q}] \quad n \not\equiv q + 1 \pmod{p}
\]
then there exists an elliptic cubic curve \(\mathcal{X} \) over \(\mathbb{F}_q \) with \(\#G = n \)

(Voloch, 1988)

if \(p \) does not divide \(\#G - 1 \), then \(G \) can be assumed to be cyclic

- **Problem:** no polynomial or rational parametrization of the points of \(S \) is possible
elliptic case: \(Y^2 = X^3 + AX + B \)

if

\[
n \in [q + 1 - 2\sqrt{q}, q + 1 + 2\sqrt{q}] \quad n \not\equiv q + 1 \pmod{p}
\]

there exists an elliptic cubic curve \(\mathcal{X} \) over \(\mathbb{F}_q \) with \(\#G = n \)

(Voloch, 1988)

if \(p \) does not divide \(\#G - 1 \), then \(G \) can be assumed to be cyclic

- **problem**: no polynomial or rational parametrization of the points of \(S \) is possible
- Voloch’s solution (1990): implicit description of \(C_p \)
elliptic case: $Y^2 = X^3 + AX + B$

if

$$n \in [q + 1 - 2\sqrt{q}, q + 1 + 2\sqrt{q}] \quad n \not\equiv q + 1 \pmod{p}$$

there exists an elliptic cubic curve \mathcal{X} over \mathbb{F}_q with $\#G = n$

(Voloch, 1988)

if p does not divide $\#G - 1$, then G can be assumed to be cyclic

- **problem**: no polynomial or rational parametrization of the points of S is possible
- Voloch's solution (1990): implicit description of C_P
- Voloch's result would provide complete caps of size $\sim q^{3/4}$ for every q large enough
elliptic case: $Y^2 = X^3 + AX + B$

if

$$n \in [q + 1 - 2\sqrt{q}, q + 1 + 2\sqrt{q}] \quad n \not\equiv q + 1 \pmod{p}$$

there exists an elliptic cubic curve \mathcal{C} over \mathbb{F}_q with $\#G = n$

(Voloch, 1988)

if p does not divide $\#G - 1$, then G can be assumed to be cyclic

- **Problem**: no polynomial or rational parametrization of the points of S is possible
- Voloch's solution (1990): implicit description of C_P
- Voloch's result would provide complete caps of size $\sim q^{3/4}$ for every q large enough
elliptic case

G cyclic $\quad m \mid q - 1 \quad m$ prime
elliptic case

G cyclic
$m \mid q - 1$
m prime

- Tate-Lichtenbaum Pairing

$\langle \cdot, \cdot \rangle: G[m] \times G/K \rightarrow \mathbb{F}_q^* / (\mathbb{F}_q^*)^m$
elliptic case

\[G \text{ cyclic} \quad m \mid q - 1 \quad m \text{ prime} \]

- Tate-Lichtenbaum Pairing

\[< \cdot, \cdot > : G[m] \times G/K \rightarrow \mathbb{F}_q^*/(\mathbb{F}_q^*)^m \]

- If \(m^2 \) does not divide \(\#G \), then for some \(T \) in \(G[m] \)

\[< T, \cdot > : G/K \rightarrow \mathbb{F}_q^*/(\mathbb{F}_q^*)^m \]

is an isomorphism such that

\[K \oplus Q \mapsto [\alpha_T(Q)] \]

where \(\alpha_T \) is a rational function on \(\mathcal{X} \)
elliptic case

\[G \text{ cyclic} \quad m \mid q - 1 \quad m \text{ prime} \]

- Tate-Lichtenbaum Pairing

\[< \cdot, \cdot > : G[m] \times G/K \rightarrow \mathbb{F}_q^*/(\mathbb{F}_q^*)^m \]

- if \(m^2 \) does not divide \#G, then for some \(T \) in \(G[m] \)

\[< T, \cdot > : G/K \rightarrow \mathbb{F}_q^*/(\mathbb{F}_q^*)^m \]

is an isomorphism such that

\[K \oplus Q \mapsto [\alpha_T(Q)] \]

where \(\alpha_T \) is a rational function on \(X \)

\[S = \{ R \in G \mid \alpha_T(R) = dt^m \text{ for some } t \in \mathbb{F}_q \} \]
elliptic case

$$S = \{ R \in \mathcal{X} \mid \alpha(R) = dt^m \text{ for some } t \in \mathbb{F}_q \}$$
elliptic case

\[S = \{ R \in \mathcal{X} \mid \alpha(R) = dt^m \text{ for some } t \in \mathbb{F}_q \} \]
elliptic case

\[S = \{ R \in \mathcal{X} \mid \alpha(R) = dt^m \text{ for some } t \in \mathbb{F}_q \} \]

\(P = (a, b) \) collinear with two points \((x, y), (u, v) \in S\) if there exist \(x, y, u, v, t, z \in \mathbb{F}_q\) with
elliptic case

\[S = \{ R \in \mathcal{X} \mid \alpha(R) = dt^m \text{ for some } t \in \mathbb{F}_q \} \]

\[P = (a, b) \text{ collinear with two points } (x, y), (u, v) \in S \text{ if there exist } \]
\[x, y, u, v, t, z \in \mathbb{F}_q \text{ with } \]
\[
\left\{
\begin{align*}
y^2 &= x^3 + Ax + B \\
v^2 &= u^3 + Au + B
\end{align*}
\right.
\]
elliptic case

\[S = \{ R \in X \mid \alpha(R) = dt^m \text{ for some } t \in \mathbb{F}_q \} \]

\(P = (a, b) \) collinear with two points \((x, y), (u, v) \in S\) if there exist \(x, y, u, v, t, z \in \mathbb{F}_q\) with

\[
\begin{align*}
 y^2 &= x^3 + Ax + B \\
 v^2 &= u^3 + Au + B \\
 \alpha(x, y) &= dt^m \\
 \alpha(u, v) &= dz^m
\end{align*}
\]
elliptic case

\[S = \{ R \in \mathcal{X} \mid \alpha(R) = dt^m \text{ for some } t \in \mathbb{F}_q \} \]

\[P = (a, b) \text{ collinear with two points } (x, y), (u, v) \in S \text{ if there exist } x, y, u, v, t, z \in \mathbb{F}_q \text{ with} \]

\[
\begin{align*}
 y^2 &= x^3 + Ax + B \\
 v^2 &= u^3 + Au + B \\
 \alpha(x, y) &= dt^m \\
 \alpha(u, v) &= dz^m \\
 \det \begin{pmatrix} a & b & 1 \\ x & y & 1 \\ u & v & 1 \end{pmatrix} &= 0
\end{align*}
\]
elliptic case

\[S = \{ R \in \mathcal{X} \mid \alpha(R) = dt^m \text{ for some } t \in \mathbb{F}_q \} \]

\(P = (a, b) \) collinear with two points \((x, y), (u, v) \in S\) if there exist \(x, y, u, v, t, z \in \mathbb{F}_q\) with

\[
C_P : \begin{cases}
 y^2 = x^3 + Ax + B \\
 v^2 = u^3 + Au + B \\
 \alpha(x, y) = dt^m \\
 \alpha(u, v) = dz^m \\
 \det \begin{pmatrix} a & b & 1 \\ x & y & 1 \\ u & v & 1 \end{pmatrix} = 0
\end{cases}
\]
(Anbar-G., 2012)

if $A \neq 0$, then C_P is irreducible or admits an irreducible \mathbb{F}_q-rational component
(Anbar-G., 2012)

if $A \neq 0$, then C_P is irreducible or admits an irreducible \mathbb{F}_q-rational component

if m is a prime divisor of $q - 1$ with $m < \sqrt[4]{q/64}$, then there exists a complete cap in $\mathbb{A}^2(\mathbb{F}_q)$ with size at most

$$m + \left\lfloor \frac{q - 2\sqrt{q} + 1}{m} \right\rfloor + 31$$
(Anbar-G., 2012)

if $A \neq 0$, then C_P is irreducible or admits an irreducible \mathbb{F}_q-rational component

if m is a prime divisor of $q - 1$ with $m < \sqrt[4]{q/64}$, then there exists a complete cap in $\mathbb{A}^2(\mathbb{F}_q)$ with size at most

$$m + \left\lfloor \frac{q - 2\sqrt{q} + 1}{m} \right\rfloor + 31 \sim q^{3/4}$$
\ell (r, q)_{2,4}
in geometrical terms...

Proposition

\[\ell(r, q)_{2,4} = \text{minimum size of a complete cap in } \mathbb{P}^{r-1}(\mathbb{F}_q) \]
in geometrical terms...

proposition

$$\ell(r, q)_{2,4} = \text{minimum size of a complete cap in } \mathbb{P}^{r-1}(\mathbb{F}_q)$$

trivial lower bound

$$\#S \geq \sqrt{2}q^{(N-1)/2} \text{ in } \mathbb{P}^N(\mathbb{F}_q)$$
proposition

\[\ell(r, q)_{2,4} = \text{minimum size of a complete cap in } \mathbb{P}^{r-1}(\mathbb{F}_q) \]

trivial lower bound

\[\# S \geq \sqrt{2q^{(N-1)/2}} \text{ in } \mathbb{P}^N(\mathbb{F}_q) \]
TLB:

\[\sqrt{2} \cdot q \]
TLB:

\[
\sqrt{2} \cdot q
\]

\[
\frac{1}{2} q \sqrt{q} + 2
\]

(Pellegrino, 1999)
\(N = 3 \)

- **TLB:**

\[
\sqrt{2} \cdot q
\]

(Pellegrino, 1999)

\[
\frac{1}{2} q \sqrt{q} + 2
\]

(Faina, Faina-Pambianco, Hadnagy 1988-1999)

\[
\frac{q^2}{3}
\]
$N = 3$

- TLB:

$\sqrt{2} \cdot q$

(Pellegrino, 1999)
computational results
recursive constructions of complete caps

blow-up

\[S \text{ cap in } \mathbb{A}^r(\mathbb{F}_{q^s}) \]
recursive constructions of complete caps

blow-up

- S cap in $\mathbb{A}^r (\mathbb{F}_{q^s})$
- for each P in S, substitute each coordinate in \mathbb{F}_{q^s} with its expansion over \mathbb{F}_q

\[
(x_1, x_2, \ldots, x_r) \in \mathbb{A}^r (\mathbb{F}_{q^s})
\]

\[
(x_1^1, x_1^2, \ldots, x_1^s, \ldots, x_r^1, \ldots, x_r^s) \in \mathbb{A}^{rs} (\mathbb{F}_q)
\]
recursive constructions of complete caps

blow-up

- S cap in $\mathbb{A}^r(F_{q^s})$
- for each P in S, substitute each coordinate in F_{q^s} with its expansion over F_q

\[
(x_1, x_2, \ldots, x_r) \in \mathbb{A}^r(F_{q^s})
\]

\[
(x_1^1, x_2^1, \ldots, x_1^s, \ldots, x_r^1, \ldots, x_r^s) \in \mathbb{A}^{rs}(F_q)
\]

- the resulting subset of $\mathbb{A}^{rs}(F_q)$ is a cap
recursive constructions of complete caps

blow-up

- S cap in $\mathbb{A}^r(\mathbb{F}_{q^s})$
- for each P in S, substitute each coordinate in \mathbb{F}_{q^s} with its expansion over \mathbb{F}_q

\[
(x_1, x_2, \ldots, x_r) \in \mathbb{A}^r(\mathbb{F}_{q^s})
\]

\[
(x_1^1, x_1^2, \ldots, x_1^s, \ldots, x_r^1, \ldots, x_r^s) \in \mathbb{A}^{rs}(\mathbb{F}_q)
\]

- the resulting subset of $\mathbb{A}^{rs}(\mathbb{F}_q)$ is a cap

product

- S_1 cap in $\mathbb{A}^r(\mathbb{F}_q)$, S_2 cap in $\mathbb{A}^s(\mathbb{F}_q)$
recursive constructions of complete caps

blow-up

- S cap in $\mathbb{A}^r(F_{q^s})$
- for each P in S, substitute each coordinate in F_{q^s} with its expansion over \mathbb{F}_q

\[
(x_1, x_2, \ldots, x_r) \in \mathbb{A}^r(F_{q^s})
\]

\[
(x_1^1, x_2^2, \ldots, x_1^s, \ldots, x_r^1, \ldots, x_r^s) \in \mathbb{A}^{rs}(\mathbb{F}_q)
\]

- the resulting subset of $\mathbb{A}^{rs}(\mathbb{F}_q)$ is a cap

product

- S_1 cap in $\mathbb{A}^r(\mathbb{F}_q)$, S_2 cap in $\mathbb{A}^s(\mathbb{F}_q)$
- $S_1 \times S_2$ is a cap in $\mathbb{A}^{r+s}(\mathbb{F}_q)$
recursive constructions of complete caps

blow-up

- S cap in $\mathbb{A}^r(F_{q^s})$
- for each P in S, substitute each coordinate in F_{q^s} with its expansion over F_q

\[
(x_1, x_2, \ldots, x_r) \in \mathbb{A}^r(F_{q^s})
\]

\[
(x_1^1, x_1^2, \ldots, x_1^s, \ldots, x_r^1, \ldots, x_r^s) \in \mathbb{A}^{rs}(F_q)
\]

- the resulting subset of $\mathbb{A}^{rs}(F_q)$ is a cap

product

- S_1 cap in $\mathbb{A}^r(F_q)$, S_2 cap in $\mathbb{A}^s(F_q)$
- $S_1 \times S_2$ is a cap in $\mathbb{A}^{r+s}(F_q)$

- do such constructions preserve completeness?
recursive constructions of complete caps

T_N blow-up of a parabola of $\mathbb{A}^2(\mathbb{F}_{q^{N/2}})$
recursive constructions of complete caps

T_N blow-up of a parabola of $\mathbb{A}^2(F_{q^{N/2}})$

(Davydov-Östergård, 2001)

T_N is complete in $\mathbb{A}^N(F_q) \iff N/2$ is odd.
recursive constructions of complete caps

\[T_N \] blow-up of a parabola of \(\mathbb{A}^2(\mathbb{F}_{q^{N/2}}) \)

(Davydov-Östergård, 2001)

\(T_N \) is complete in \(\mathbb{A}^N(\mathbb{F}_q) \) \(\iff \) \(N/2 \) is odd.

Problem: When \(T_N \times S \) is complete?
external/internal points to a segment
external/internal points to a segment

(Segre, 1973)

P, P_1, P_2 distinct collinear points in $\mathbb{A}^2(\mathbb{F}_q)$
external/internal points to a segment

(Segre, 1973)

P, P_1, P_2 distinct collinear points in $\mathbb{A}^2(\mathbb{F}_q)$

the point P is internal or external to the segment P_1P_2 if

$$(x - x_1)(x - x_2)$$

is a non-square in \mathbb{F}_q or not,

x, x_1, x_2 coordinates of P, P_1, P_2 w.r.t. any affine frame of ℓ.

bicovering and almost bicovering caps
bicovering and almost bicovering caps

let S be a complete cap in $\mathbb{A}^2(\mathbb{F}_q)$.
Let S be a complete cap in $\mathbb{A}^2(\mathbb{F}_q)$.

A point $P \notin S$ is **bicovery by S** if it is external to a segment P_1P_2, with $P_1, P_2 \in S$ and internal to another segment P_3P_4, with $P_3, P_4 \in S$.
bicovering and almost bicovering caps

let S be a complete cap in $\mathbb{A}^2(\mathbb{F}_q)$.

a point $P \notin S$ is **bicovery by S** if it is external to a segment P_1P_2, with $P_1, P_2 \in S$ and internal to another segment P_3P_4, with $P_3, P_4 \in S$
let \(S \) be a complete cap in \(\mathbb{A}^2(\mathbb{F}_q) \).

a point \(P \notin S \) is \textit{bicovered by} \(S \) if it is external to a segment \(P_1P_2 \), with \(P_1, P_2 \in S \) and internal to another segment \(P_3P_4 \), with \(P_3, P_4 \in S \).
bicovering and almost bicovering caps

Let \(S \) be a complete cap in \(\mathbb{A}^2(\mathbb{F}_q) \).

A point \(P \notin S \) is bicovered by \(S \) if it is external to a segment \(P_1P_2 \), with \(P_1, P_2 \in S \) and internal to another segment \(P_3P_4 \), with \(P_3, P_4 \in S \).

Definition

\(S \) is said to be

- bicovering if for every \(P \notin S \) is bicovered by \(S \)
bicovering and almost bicovering caps

let S be a complete cap in $\mathbb{A}^2(\mathbb{F}_q)$.

a point $P \not\in S$ is **bicovered by S** if it is external to a segment P_1P_2, with $P_1, P_2 \in S$ and internal to another segment P_3P_4, with $P_3, P_4 \in S$

definition

S is said to be

- **bicovering** if for every $P \not\in S$ is bicovered by S
- **almost bicovering** if there exists precisely one point not bicovered by S
recursive constructions of complete caps

- T_N blow-up of a parabola in $\mathbb{A}^N(\mathbb{F}_q)$, $N \equiv 2 \pmod{4}$
- S complete cap in $\mathbb{A}^2(\mathbb{F}_q)$
recursive constructions of complete caps

- T_N blow-up of a parabola in $\mathbb{A}^N(\mathbb{F}_q)$, $N \equiv 2 \pmod{4}$
- S complete cap in $\mathbb{A}^2(\mathbb{F}_q)$

(G., 2007)

(i) $K_S = T_N \times S$ is complete if and only if S is bicovering
recursive constructions of complete caps

- \(T_N \) blow-up of a parabola in \(\mathbb{A}^N(\mathbb{F}_q) \), \(N \equiv 2 \pmod{4} \)
- \(S \) complete cap in \(\mathbb{A}^2(\mathbb{F}_q) \)

(G., 2007)

(i) \(K_S = T_N \times S \) is complete if and only if \(S \) is bicovering

(ii) if \(S \) is almost bicovering, then

\[
K_S \cup \{(a, a^2 - z_0, x_0, y_0) \mid a \in \mathbb{F}_{q^{N/2}}\}
\]

is complete for some \(x_0, y_0, z_0 \in \mathbb{F}_q \)
bicovering caps in $\mathbb{A}^2(F_q)$

remarks:

- no probabilistic result is known
bicovering caps in $\mathbb{A}^2(\mathbb{F}_q)$

Remarks:
- no probabilistic result is known
- no computational constructive method is known
bicovering caps in $\mathbb{A}^2(\mathbb{F}_q)$

remarks:
- no probabilistic result is known
- no computational constructive method is known
- in the Euclidean plane, no conic is bicovering or almost bicovering
bicovering caps in $\mathbb{A}^2(\mathbb{F}_q)$

remarks:
- no probabilistic result is known
- no computational constructive method is known
- in the Euclidean plane, no conic is bicovering or almost bicovering

(Segre, 1973)

if $q > 13$, ellipses and hyperbolas are almost bicovering caps
bicovering caps in $\mathbb{A}^2(F_q)$

Remarks:

- no probabilistic result is known
- no computational constructive method is known
- in the Euclidean plane, no conic is bicovering or almost bicovering

(Segre, 1973)

if $q > 13$, ellipses and hyperbolas are almost bicovering caps

let $N \equiv 0 \pmod{4}$; if $q > 13$, then there exists a complete cap of size

$\# T_{N-2} \cdot [(q - 1) + 1] = q^{\frac{N}{2}}$
how to prove that an algebraic cap is bicoverying

$$S = \{(f(t), g(t)) \mid t \in \mathbb{F}_q\}$$
how to prove that an algebraic cap is bicoverying

\[S = \{(f(t), g(t)) \mid t \in \mathbb{F}_q\} \]

\[P = (a, b) \in \mathbb{A}^2(\mathbb{F}_q) \]
how to prove that an algebraic cap is bicovering

\[S = \left\{ (f(t), g(t)) \mid t \in \mathbb{F}_q \right\} \]

\[P = (a, b) \in \mathbb{A}^2(\mathbb{F}_q) \]

(1) consider the space curve

\[\mathcal{Y}_P : \begin{cases} F_P(X, Y) = 0 \\ (a - f(X))(a - f(Y)) = Z^2 \end{cases} \]
how to prove that an algebraic cap is bica
cov
ering

\[S = \{ (f(t), g(t)) \mid t \in \mathbb{F}_q \} \]

\(P = (a, b) \in \mathbb{A}^2(\mathbb{F}_q) \)

(1) consider the space curve

\[\mathcal{Y}_P : \left\{ \begin{aligned} F_P(X, Y) &= 0 \\ (a - f(X))(a - f(Y)) &= Z^2 \end{aligned} \right\} \]

(2) apply Hasse-Weil to \(\mathcal{Y}_P \) (if possible) and find a suitable point \((x, y, z) \in \mathcal{Y}_P(\mathbb{F}_q)\)
how to prove that an algebraic cap is bicovering

\[S = \{ (f(t), g(t)) \mid t \in \mathbb{F}_q \} \]

\[P = (a, b) \in \mathbb{A}^2(\mathbb{F}_q) \]

(1) consider the space curve

\[\mathcal{Y}_P : \begin{cases} F_P(X, Y) = 0 \\ (a - f(X))(a - f(Y)) = Z^2 \end{cases} \]

(2) apply Hasse-Weil to \(\mathcal{Y}_P \) (if possible) and find a suitable point \((x, y, z) \in \mathcal{Y}_P(\mathbb{F}_q)\)

the point \(P \) is external to the segment joining \(P_x \) and \(P_y \)
how to prove that an algebraic cap is bicoverying

$$S = \left\{ (f(t), g(t)) \mid t \in \mathbb{F}_q \right\}_{P_t}$$

$$P = (a, b) \in \mathbb{A}^2(\mathbb{F}_q)$$

(1) consider the space curve

$$\mathcal{Y}_{P,c} : \begin{cases} F_P(X, Y) = 0 \\ (a - f(X))(a - f(Y)) = cZ^2 \end{cases}$$

(2) apply Hasse-Weil to $$\mathcal{Y}_P$$ (if possible) and find a suitable point $$(x, y, z) \in \mathcal{Y}_P(\mathbb{F}_q)$$

the point $$P$$ is external to the segment joining $$P_x$$ and $$P_y$$

(3) fix a non-square $$c$$ in $$\mathbb{F}_q^*$$ and repeat for $$\mathcal{Y}_{P,c}$$
bicovering caps from cubic curves

the method works well for S a coset of a cubic \mathcal{C}, and P a point off the cubic.
bicovering caps from cubic curves

- the method works well for S a coset of a cubic \mathcal{X}, and P a point off the cubic.
- in order to bicover the points on the cubics, more cosets of the same subgroup are needed: the cosets corresponding to a maximal 3-independent subset in the factor group G/K
bicovering caps from cubic curves

- the method works well for S a coset of a cubic \mathcal{C}, and P a point off the cubic.
- in order to bicover the points on the cubics, more cosets of the same subgroup are needed: the cosets corresponding to a maximal 3-independent subset in the factor group G/K
- in the best case bicovering caps of size approximately $q^{7/8}$ are obtained
bicovering caps from cubic curves

- the method works well for S a coset of a cubic x, and P a point off the cubic.
- in order to bicover the points on the cubics, more cosets of the same subgroup are needed: the cosets corresponding to a maximal 3-independent subset in the factor group G/K
- in the best case bicovering caps of size approximately $q^{7/8}$ are obtained.
- for $N \equiv 0 \pmod{4}$ complete caps of size approximately $q^{N/2 - 1/8}$ are obtained, provided that suitable divisors of $q, q - 1, q + 1$ exist.
bicovering caps from cubic curves

- the method works well for S a coset of a cubic \mathcal{X}, and P a point off the cubic.
- in order to bicover the points on the cubics, more cosets of the same subgroup are needed: the cosets corresponding to a maximal 3-independent subset in the factor group G/K
- in the best case bicovering caps of size approximately $q^{7/8}$ are obtained
- for $N \equiv 0 \pmod{4}$ complete caps of size approximately $q^{N/2 - 1/8}$ are obtained, provided that suitable divisors of $q, q - 1, q + 1$ exist
- if Voloch’s gap is filled, we will have bicovering caps with roughly $q^{7/8}$ points for any odd q
the cuspidal case

\[\mathcal{X} : Y - X^3 = 0 \]

(Anbar-Bartoli-G.-Platoni, 2013)

Let

- \(q = p^h \), with \(p > 3 \) a prime
- \(m = p^{h'} \), with \(h' < h \) and \(m \leq \frac{\sqrt[4]{q}}{4} \)

then there exists an almost biconvexing cap contained in \(\mathcal{X} \), of size

\[
n = \left\{ \begin{array}{ll}
(2\sqrt{m} - 3) \frac{q}{m}, & \text{if } h' \text{ is even} \\
\left(\sqrt{\frac{m}{p}} + \sqrt{mp} - 3 \right) \frac{q}{m}, & \text{if } h' \text{ is odd}
\end{array} \right.
\]

\(\sim q^{7/8} \)
the nodal case

\[\mathcal{X} : XY - (X - 1)^3 = 0 \]

(Anbar-Bartoli-G.-Platoni, 2013)

assume that

- \(q = p^h \), with \(p > 3 \) a prime
- \(m \) is an odd divisor of \(q - 1 \), with \((3, m) = 1 \) and \(m \leq \frac{\sqrt[3]{q}}{3.5} \)
- \(m = m_1 m_2 \) s.t. \((m_1, m_2) = 1 \) and \(m_1, m_2 \geq 4 \)

then there exists a bicovering cap contained in \(\mathcal{X} \) of size

\[n \leq \frac{m_1 + m_2}{m}(q - 1) \sim q^{7/8} \]
the isolated double point case

\[\mathcal{X} : Y(X^2 - \beta) = 1 \]

(Anbar-Bartoli-G.-Platoni, 2013)

assume that

- \(q = p^h \), with \(p > 3 \) a prime
- \(m \) is a proper divisor of \(q + 1 \) such that \((m, 6) = 1 \) and \(m \leq \frac{\sqrt[4]{q}}{4} \)
- \(m = m_1m_2 \) with \((m_1, m_2) = 1 \)

then there exists an almost bicovering cap contained in \(\mathcal{X} \) of size less than or equal to

\[(m_1 + m_2 - 3) \cdot \frac{q + 1}{m} + 3 \sim q^{7/8} \]
the elliptic case

\[\mathcal{X} : Y^2 - X^3 - AX - B = 0 \]

(Anbar-G., 2012)

assume that

- \(q = p^h \), with \(p > 3 \) a prime
- \(m \) is a prime divisor of \(q - 1 \), with \(7 < m < \frac{1}{8} \sqrt[4]{q} \)

then there exists a bicovering cap contained in \(\mathcal{X} \) of size

\[n \leq 2\sqrt{m} \left(\left\lfloor \frac{q - 2\sqrt{q} + 1}{m} \right\rfloor + 31 \right) \sim q^{7/8} \]
\ell(r, q)_{r-1, r+1}
Reed-Solomon codes: $\ell(r, q)_{r-1, r+1} \leq q + 1$
AG codes from elliptic curves

- $\mathcal{C}: Y^2 = X^3 + AX + B \quad 4A^3 + 27B^2 \neq 0$
- O common pole of x and y
- P_1, \ldots, P_n rational points of \mathcal{C} (distinct from O)
AG codes from elliptic curves

- $\mathcal{C} : Y^2 = X^3 + AX + B \quad 4A^3 + 27B^2 \neq 0$
- O common pole of x and y
- P_1, \ldots, P_n rational points of \mathcal{C} (distinct from O)

\[C_r = C(D, G)^\perp, \quad \text{where } G = rO, D = P_1 + \ldots + P_n, \quad n > r \]
AG codes from elliptic curves

- \(\mathcal{X} : Y^2 = X^3 + AX + B \quad 4A^3 + 27B^2 \neq 0 \)
- \(O \) common pole of \(x \) and \(y \)
- \(P_1, \ldots, P_n \) rational points of \(\mathcal{X} \) (distinct from \(O \))

\[
C_r = C(D, G)^\perp, \quad \text{where } G = rO, D = P_1 + \ldots + P_n, \quad n > r
\]

- \(C_r \) is an \([n, n - r, r + 1]_q\)-MDS-code if and only if for every \(P_{i_1}, \ldots, P_{i_r} \)
 \[
 P_{i_1} \oplus \ldots \oplus P_{i_r} \neq O
 \]
AG codes from elliptic curves

- $\mathcal{X} : Y^2 = X^3 + AX + B \quad 4A^3 + 27B^2 \neq 0$
- O common pole of x and y
- P_1, \ldots, P_n rational points of \mathcal{X} (distinct from O)

$$C_r = C(D, G)^\perp, \quad \text{where } G = rO, D = P_1 + \ldots + P_n, \quad n > r$$

- C_r is an $[n, n - r, r + 1]_q$-MDS-code if and only if for every P_{i_1}, \ldots, P_{i_r}
 $$P_{i_1} \oplus \ldots \oplus P_{i_r} \neq O$$

(Munuera, 1993)

If C_r is MDS then, for $n > r + 2$,

$$n \leq \frac{1}{2}(\#\mathcal{X}(\mathbb{F}_q) - 3 + 2r)$$
covering radius of elliptic MDS codes

A subset T of an abelian group H is r-independent if for each $a_1, \ldots, a_r \in T$,

$$a_1 + a_2 + \ldots + a_r \neq 0$$
covering radius of elliptic MDS codes

A subset T of an abelian group H is r-independent if for each $a_1, \ldots, a_r \in T$,

$$a_1 + a_2 + \ldots + a_r \neq 0$$

$\{P_1, \ldots, P_n\}$ maximal r-independent subset of $\mathcal{X}(\mathbb{F}_q)$
covering radius of elliptic MDS codes

a subset T of an abelian group H is r-independent if for each $a_1, \ldots, a_r \in T$,

$$a_1 + a_2 + \ldots + a_r \neq 0$$

$$\{P_1, \ldots, P_n\}$$ maximal r-independent subset of $\mathcal{X}(\mathbb{F}_q)$

- let

$$\phi_r : \mathcal{X} \rightarrow \mathbb{P}^{r-1} \quad \phi_r = (1 : f_1 : \ldots : f_{r-1})$$

with

$$1, f_1, \ldots, f_{r-1}$$ basis of $L(rO)$
covering radius of elliptic MDS codes

a subset T of an abelian group H is \textit{r-independent} if for each $a_1, \ldots, a_r \in T$,

$$a_1 + a_2 + \ldots + a_r \neq 0$$

$\{P_1, \ldots, P_n\}$ maximal r-independent subset of $X(\mathbb{F}_q)$

- let
 $$\phi_r : X \rightarrow \mathbb{P}^{r-1} \quad \phi_r = (1 : f_1 : \ldots : f_{r-1})$$
 with
 $$1, f_1, \ldots, f_{r-1} \quad \text{basis of } L(rO)$$

- $R(C_r) = r - 1$ if and only if each point in $\mathbb{P}^{r-1}(\mathbb{F}_q)$ belongs to the hyperplane generated by some
 $$\phi_r(P_{i_1}), \phi_r(P_{i_2}), \ldots, \phi_r(P_{i_{r-1}})$$
(Bartoli-G.-Platoni, 2013)

if

- \((\mathcal{X}(\mathbb{F}_q), \oplus) \cong \mathbb{Z}_m \times K\) cyclic for \(m > 3\) a prime
- \(S = K \oplus P\) covers all the points in \(\mathbb{A}^2(\mathbb{F}_q)\) off \(\mathcal{X}\)
- \(T \supset S\) is a maximal \(r\)-independent subset of \(\mathcal{X}(\mathbb{F}_q)\)
(Bartoli-G.-Platoni, 2013)

if

- $(\mathcal{X}(\mathbb{F}_q), \oplus) \cong \mathbb{Z}_m \times K$ cyclic for $m > 3$ a prime
- $S = K \oplus P$ covers all the points in $\mathbb{A}^2(\mathbb{F}_q)$ off \mathcal{X}
- $T \supset S$ is a maximal r-independent subset of $\mathcal{X}(\mathbb{F}_q)$

then almost every point in $\mathbb{P}^{r-1}(\mathbb{F}_q)$ belongs to some hyperplane generated by $r-1$ points of $\phi_r(T)$
if
- \((\mathcal{X}(\mathbb{F}_q), \oplus) \cong \mathbb{Z}_m \times K\) cyclic for \(m > 3\) a prime
- \(S = K \oplus P\) covers all the points in \(\mathbb{A}^2(\mathbb{F}_q)\) off \(\mathcal{X}\)
- \(T \supset S\) is a maximal \(r\)-independent subset of \(\mathcal{X}(\mathbb{F}_q)\)

then almost every point in \(\mathbb{P}^{r-1}(\mathbb{F}_q)\) belongs to some hyperplane generated by \(r - 1\) points of \(\phi_r(T)\)

• if \(m\) is a prime divisor of \(q - 1\) with \(m < \sqrt[4]{q/64}\), then

\[
\ell(r, q)_{r-1,r+1} \leq ([r/2] - 1)(|S| - 1) + 2 \frac{m + 1}{r - 2} + 2r
\]
if
- \((\mathcal{X}(\mathbb{F}_q), \oplus) \cong \mathbb{Z}_m \times K\) cyclic for \(m > 3\) a prime
- \(S = K \oplus P\) covers all the points in \(\mathbb{A}^2(\mathbb{F}_q)\) off \(\mathcal{X}\)
- \(T \supset S\) is a maximal \(r\)-independent subset of \(\mathcal{X}(\mathbb{F}_q)\)

then almost every point in \(\mathbb{P}^{r-1}(\mathbb{F}_q)\) belongs to some hyperplane generated by \(r - 1\) points of \(\phi_r(T)\)

if \(m\) is a prime divisor of \(q - 1\) with \(m < \sqrt[4]{q/64}\), then

\[\ell(r, q)_{r-1, r+1} \leq ([r/2] - 1)(|S| - 1) + 2 \frac{m + 1}{r - 2} + 2r \sim ([r/2] - 1)q^{3/4}\]
(Bartoli-G.-Platoni, 2013)

if

- $(\mathcal{X}(\mathbb{F}_q), \oplus) \cong \mathbb{Z}_m \times K$ cyclic for $m > 3$ a prime
- $S = K \oplus P$ covers all the points in $\mathbb{A}^2(\mathbb{F}_q)$ off \mathcal{X}
- $T \supset S$ is a maximal r-independent subset of $\mathcal{X}(\mathbb{F}_q)$

then almost every point in $\mathbb{P}^{r-1}(\mathbb{F}_q)$ belongs to some hyperplane generated by $r - 1$ points of $\phi_r(T)$

if m is a prime divisor of $q - 1$ with $m < \sqrt[4]{q/64}$, then

$$\ell(r, q)_{r-1,r+1} \leq (\lceil r/2 \rceil - 1)(|S| - 1) + 2\frac{m + 1}{r - 2} + 2r \sim (\lceil r/2 \rceil - 1)q^{3/4}$$
problems

- explanation for experimental results
problems

- explanation for experimental results
- Voloch's proof for plane caps in elliptic cubics
problems

- explanation for experimental results
- Voloch's proof for plane caps in elliptic cubics
- bicovering caps in dimensions different from 2
problems

- explanation for experimental results
- Voloch's proof for plane caps in elliptic cubics
- bicovering caps in dimensions different from 2
- non-recursive constructions in higher dimensions
problems

- explanation for experimental results
- Voloch's proof for plane caps in elliptic cubics
- bicovering caps in dimensions different from 2
- non-recursive constructions in higher dimensions
- probabilistic results intrinsic to higher dimensions