Weierstrass semigroups at several points, total inflection points on curves and coding theory

Cícero Carvalho
Faculdade de Matemática
Universidade Federal de Uberlândia

Algebraic curves over finite fields
RICAM - November 11–15, 2013

Partially supported by CNPq, FAPEMIG and CAPES
Weierstrass semigroup at several points

Let X be a smooth complete irreducible curve of genus $g \geq 1$ defined over a field \mathbb{F}, assumed to be the full field of constants of $\mathbb{F}(X)$.

Let P_1, \ldots, P_m be distinct rational points of X.

Definition The Weierstrass semigroup at P_1, \ldots, P_m is defined as

$$H = H(P_1, \ldots, P_m) := \{(\alpha_1, \ldots, \alpha_m) \in \mathbb{N}_0^m \mid \exists f \in \mathbb{F}(X) \text{ with} \quad \text{div}_\infty(f) = \alpha_1 P_1 + \cdots + \alpha_m P_m\}$$

Its systematic study was initiated by S. J. Kim and M. Homma in mid 90’s. They studied specially the case $m = 2$; investigated properties of H and its relationship with the theory of algebraic geometry (Goppa) codes.

In a joint work with F. Torres we extended their results for any value of m, and also applied the results to obtain better lower bounds for the minimum distance of certain algebraic geometry codes.

A similar application of these semigroups was recently done by Korchmáros and Nagy, which improved such bounds for certain codes previously studied by Matthews and Michel.
Weierstrass semigroup at several points

Let X be a smooth complete irreducible curve of genus $g \geq 1$ defined over a field \mathbb{F}, assumed to be the full field of constants of $\mathbb{F}(X)$.

Let P_1, \ldots, P_m be distinct rational points of X.

Definition The **Weierstrass semigroup** at P_1, \ldots, P_m is defined as

$$H = H(P_1, \ldots, P_m) := \{(\alpha_1, \ldots, \alpha_m) \in \mathbb{N}_0^m \mid \exists f \in \mathbb{F}(X) \text{ with } \text{div}_\infty(f) = \alpha_1 P_1 + \cdots + \alpha_m P_m\}$$

Its systematic study was initiated by S. J. Kim and M. Homma in mid 90’s. They studied specially the case $m = 2$; investigated properties of H and its relationship with the theory of algebraic geometry (Goppa) codes.

In a joint work with F. Torres we extended their results for any value of m, and also applied the results to obtain better lower bounds for the minimum distance of certain algebraic geometry codes.

A similar application of these semigroups was recently done by Korchmáros and Nagy, which improved such bounds for certain codes previously studied by Matthews and Michel.
Let \(X \) be a smooth complete irreducible curve of genus \(g \geq 1 \) defined over a field \(\mathbb{F} \), assumed to be the full field of constants of \(\mathbb{F}(X) \).

Let \(P_1, \ldots, P_m \) be distinct rational points of \(X \).

Definition The Weierstrass semigroup at \(P_1, \ldots, P_m \) is defined as

\[
H = H(P_1, \ldots, P_m) := \{(\alpha_1, \ldots, \alpha_m) \in \mathbb{N}_0^m \mid \exists f \in \mathbb{F}(X) \text{ with } \text{div}_\infty(f) = \alpha_1 P_1 + \cdots + \alpha_m P_m\}
\]

Its systematic study was initiated by S. J. Kim and M. Homma in mid 90’s. They studied specially the case \(m = 2 \); investigated properties of \(H \) and its relationship with the theory of algebraic geometry (Goppa) codes.

In a joint work with F. Torres we extended their results for any value of \(m \), and also applied the results to obtain better lower bounds for the minimum distance of certain algebraic geometry codes.

A similar application of these semigroups was recently done by Korchmáros and Nagy, which improved such bounds for certain codes previously studied by Matthews and Michel.
Weierstrass semigroup at several points

Let X be a smooth complete irreducible curve of genus $g \geq 1$ defined over a field \mathbb{F}, assumed to be the full field of constants of $\mathbb{F}(X)$.

Let P_1, \ldots, P_m be distinct rational points of X.

Definition The **Weierstrass semigroup** at P_1, \ldots, P_m is defined as

$$H = H(P_1, \ldots, P_m) := \{ (\alpha_1, \ldots, \alpha_m) \in \mathbb{N}_0^m \mid \exists f \in \mathbb{F}(X) \text{ with } \text{div}_\infty(f) = \alpha_1 P_1 + \cdots + \alpha_m P_m \}$$

Its systematic study was initiated by S. J. Kim and M. Homma in mid 90’s. They studied specially the case $m = 2$; investigated properties of H and its relationship with the theory of algebraic geometry (Goppa) codes. In a joint work with F. Torres we extended their results for any value of m, and also applied the results to obtain better lower bounds for the minimum distance of certain algebraic geometry codes.

A similar application of these semigroups was recently done by Korchmáros and Nagy, which improved such bounds for certain codes previously studied by Matthews and Michel.
Weierstrass semigroup at several points

Let X be a smooth complete irreducible curve of genus $g \geq 1$ defined over a field \mathbb{F}, assumed to be the full field of constants of $\mathbb{F}(X)$.

Let P_1, \ldots, P_m be distinct rational points of X.

Definition The **Weierstrass semigroup** at P_1, \ldots, P_m is defined as

$$H = H(P_1, \ldots, P_m) := \{(\alpha_1, \ldots, \alpha_m) \in \mathbb{N}_0^m \mid \exists f \in \mathbb{F}(X) \text{ with}$$

$$\text{div}_\infty(f) = \alpha_1 P_1 + \cdots + \alpha_m P_m\}$$

Its systematic study was initiated by S. J. Kim and M. Homma in mid 90’s. They studied specially the case $m = 2$; investigated properties of H and its relationship with the theory of algebraic geometry (Goppa) codes.

In a joint work with F. Torres we extended their results for any value of m, and also applied the results to obtain better lower bounds for the minimum distance of certain algebraic geometry codes.

A similar application of these semigroups was recently done by Korchmáros and Nagy, which improved such bounds for certain codes previously studied by Matthews and Michel.
Weierstrass semigroup at several points

Let X be a smooth complete irreducible curve of genus $g \geq 1$ defined over a field \mathbb{F}, assumed to be the full field of constants of $\mathbb{F}(X)$.

Let P_1, \ldots, P_m be distinct rational points of X.

Definition The Weierstrass semigroup at P_1, \ldots, P_m is defined as

$$H = H(P_1, \ldots, P_m) := \{(\alpha_1, \ldots, \alpha_m) \in \mathbb{N}_0^m \mid \exists f \in \mathbb{F}(X) \text{ with}$$

$$\text{div}_\infty(f) = \alpha_1 P_1 + \cdots + \alpha_m P_m\}$$

Its systematic study was initiated by S. J. Kim and M. Homma in mid 90’s. They studied specially the case $m = 2$; investigated properties of H and its relationship with the theory of algebraic geometry (Goppa) codes.

In a joint work with F. Torres we extended their results for any value of m, and also applied the results to obtain better lower bounds for the minimum distance of certain algebraic geometry codes.

A similar application of these semigroups was recently done by Korchmáros and Nagy, which improved such bounds for certain codes previously studied by Matthews and Michel.
Weierstrass semigroup at several points

Let \(X \) be a smooth complete irreducible curve of genus \(g \geq 1 \) defined over a field \(\mathbb{F} \), assumed to be the full field of constants of \(\mathbb{F}(X) \).

Let \(P_1, \ldots, P_m \) be distinct rational points of \(X \).

Definition The **Weierstrass semigroup** at \(P_1, \ldots, P_m \) is defined as

\[
H = H(P_1, \ldots, P_m) := \{ (\alpha_1, \ldots, \alpha_m) \in \mathbb{N}_0^m \mid \exists f \in \mathbb{F}(X) \text{ with } \text{div}_\infty(f) = \alpha_1 P_1 + \cdots + \alpha_m P_m \}
\]

Its systematic study was initiated by S. J. Kim and M. Homma in mid 90’s. They studied specially the case \(m = 2 \); investigated properties of \(H \) and its relationship with the theory of algebraic geometry (Goppa) codes.

In a joint work with F. Torres we extended their results for any value of \(m \), and also applied the results to obtain better lower bounds for the minimum distance of certain algebraic geometry codes.

A similar application of these semigroups was recently done by Korchmáros and Nagy, which improved such bounds for certain codes previously studied by Matthews and Michel.
Weierstrass semigroup at several points

Let X be a smooth complete irreducible curve of genus $g \geq 1$ defined over a field \mathbb{F}, assumed to be the full field of constants of $\mathbb{F}(X)$.

Let P_1, \ldots, P_m be distinct rational points of X.

Definition The **Weierstrass semigroup** at P_1, \ldots, P_m is defined as

$$H = H(P_1, \ldots, P_m) := \{(\alpha_1, \ldots, \alpha_m) \in \mathbb{N}_0^m \mid \exists f \in \mathbb{F}(X) \text{ with } \text{div}_\infty(f) = \alpha_1 P_1 + \cdots + \alpha_m P_m\}$$

Its systematic study was initiated by S. J. Kim and M. Homma in mid 90’s. They studied specially the case $m = 2$; investigated properties of H and its relationship with the theory of algebraic geometry (Goppa) codes.

In a joint work with F. Torres we extended their results for any value of m, and also applied the results to obtain better lower bounds for the minimum distance of certain algebraic geometry codes.

A similar application of these semigroups was recently done by Korchnáros and Nagy, which improved such bounds for certain codes previously studied by Matthews and Michel.
We will write $n := (n_1, \ldots, n_m) \in \mathbb{N}_0^m$, $e_i \in \mathbb{N}_0^m$ for the m-tuple that has 1 in the i-th position and 0 in the others, $L(n) := L(n_1P_1 + \cdots + n_mP_m)$ and $\ell(n) := \dim L(n)$.

Lemma. The following are equivalent:
(i) $n \in H$;
(ii) $\ell(n) = \ell(n - e_i) + 1$ for all $i = 1, \ldots, m$;
(iii) The linear system $|n_1P_1 + \cdots + n_mP_m|$ is base-point free.

We call $\mathbb{N}_0^m \setminus H$ the set of gaps of H, it is a finite set whose cardinality may vary with P_1, \ldots, P_m. For example, if X is a hyperelliptic curve of genus 4, and $m = 2$ we get:

9 gaps if P_1 and P_2 are not W. points of X

26 gaps if P_1 and P_2 are both W. points of X
We will write \(\mathbf{n} := (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), \(\mathbf{e}_i \in \mathbb{N}_0^m \) for the \(m \)-tuple that has 1 in the \(i \)-th position and 0 in the others, \(L(\mathbf{n}) := L(n_1P_1 + \cdots + n_mP_m) \) and \(\ell(\mathbf{n}) := \dim L(\mathbf{n}) \).

Lemma. The following are equivalent:

(i) \(\mathbf{n} \in H \);
(ii) \(\ell(\mathbf{n}) = \ell(\mathbf{n} - \mathbf{e}_i) + 1 \) for all \(i = 1, \ldots, m \);
(iii) The linear system \(|n_1P_1 + \cdots + n_mP_m| \) is base-point free.

We call \(\mathbb{N}_0^m \setminus H \) the set of gaps of \(H \), it is a finite set whose cardinality may vary with \(P_1, \ldots, P_m \). For example, if \(X \) is a hyperelliptic curve of genus 4, and \(m = 2 \) we get:

9 gaps if \(P_1 \) and \(P_2 \) are not W. points of \(X \)

26 gaps if \(P_1 \) and \(P_2 \) are both W. points of \(X \)
Weierstrass semigroup at several points

We will write \(\mathbf{n} := (n_1, \ldots, n_m) \in \mathbb{N}_0^m, \mathbf{e}_i \in \mathbb{N}_0^m \) for the \(m \)-tuple that has 1 in the \(i \)-th position and 0 in the others, \(L(\mathbf{n}) := L(n_1P_1 + \cdots + n_mP_m) \) and \(\ell(\mathbf{n}) := \dim L(\mathbf{n}) \).

Lemma. The following are equivalent:
(i) \(\mathbf{n} \in H \);
(ii) \(\ell(\mathbf{n}) = \ell(\mathbf{n} - \mathbf{e}_i) + 1 \) for all \(i = 1, \ldots, m \);
(iii) The linear system \(|n_1P_1 + \cdots + n_mP_m| \) is base-point free.

We call \(\mathbb{N}_0^m \setminus H \) the set of gaps of \(H \), it is a finite set whose cardinality may vary with \(P_1, \ldots, P_m \). For example, if \(X \) is a hyperelliptic curve of genus 4, and \(m = 2 \) we get:

9 gaps if \(P_1 \) and \(P_2 \) are not W. points of \(X \)

26 gaps if \(P_1 \) and \(P_2 \) are both W. points of \(X \)
We will write \(n := (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), \(e_i \in \mathbb{N}_0^m \) for the \(m \)-tuple that has 1 in the \(i \)-th position and 0 in the others, \(L(n) := L(n_1P_1 + \cdots + n_mP_m) \) and \(\ell(n) := \dim L(n) \).

Lemma. The following are equivalent:
(i) \(n \in H \);
(ii) \(\ell(n) = \ell(n - e_i) + 1 \) for all \(i = 1, \ldots, m \);
(iii) The linear system \(|n_1P_1 + \cdots + n_mP_m| \) is base-point free.

We call \(\mathbb{N}_0^m \setminus H \) the set of gaps of \(H \), it is a finite set whose cardinality may vary with \(P_1, \ldots, P_m \). For example, if \(X \) is a hyperelliptic curve of genus 4, and \(m = 2 \) we get:

9 gaps if \(P_1 \) and \(P_2 \) are not W. points of \(X \)

26 gaps if \(P_1 \) and \(P_2 \) are both W. points of \(X \)
We will write \(\mathbf{n} := (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), \(\mathbf{e}_i \in \mathbb{N}_0^m \) for the \(m \)-tuple that has 1 in the \(i \)-th position and 0 in the others, \(L(\mathbf{n}) := L(n_1P_1 + \cdots + n_mP_m) \) and \(\ell(\mathbf{n}) := \dim L(\mathbf{n}) \).

Lemma. The following are equivalent:

(i) \(\mathbf{n} \in H \);
(ii) \(\ell(\mathbf{n}) = \ell(\mathbf{n} - \mathbf{e}_i) + 1 \) for all \(i = 1, \ldots, m \);
(iii) The linear system \(|n_1P_1 + \cdots + n_mP_m| \) is base-point free.

We call \(\mathbb{N}_0^m \setminus H \) the set of gaps of \(H \), it is a finite set whose cardinality may vary with \(P_1, \ldots, P_m \). For example, if \(X \) is a hyperelliptic curve of genus 4, and \(m = 2 \) we get:
We will write \(n := (n_1, \ldots, n_m) \in \mathbb{N}_0^m, \ e_i \in \mathbb{N}_0^m \) for the \(m \)-tuple that has 1 in the \(i \)-th position and 0 in the others, \(L(n) := L(n_1P_1 + \cdots + n_mP_m) \) and \(\ell(n) := \dim L(n) \).

Lemma. The following are equivalent:

(i) \(n \in H \);

(ii) \(\ell(n) = \ell(n - e_i) + 1 \) for all \(i = 1, \ldots, m \);

(iii) The linear system \(|n_1P_1 + \cdots + n_mP_m| \) is base-point free.

We call \(\mathbb{N}_0^m \setminus H \) the **set of gaps** of \(H \), it is a finite set whose cardinality may vary with \(P_1, \ldots, P_m \). For example, if \(X \) is a hyperelliptic curve of genus 4, and \(m = 2 \) we get:

- 9 gaps if \(P_1 \) and \(P_2 \) are not W. points of \(X \)
- 26 gaps if \(P_1 \) and \(P_2 \) are both W. points of \(X \)
We will write $\mathbf{n} := (n_1, \ldots, n_m) \in \mathbb{N}_0^m$, $\mathbf{e}_i \in \mathbb{N}_0^m$ for the m-tuple that has 1 in the i-th position and 0 in the others, $L(\mathbf{n}) := L(n_1P_1 + \cdots + n_mP_m)$ and $\ell(\mathbf{n}) := \dim L(\mathbf{n})$.

Lemma. The following are equivalent:

(i) $\mathbf{n} \in H$;
(ii) $\ell(\mathbf{n}) = \ell(\mathbf{n} - \mathbf{e}_i) + 1$ for all $i = 1, \ldots, m$;
(iii) The linear system $|n_1P_1 + \cdots + n_mP_m|$ is base-point free.

We call $\mathbb{N}_0^m \setminus H$ the set of gaps of H, it is a finite set whose cardinality may vary with P_1, \ldots, P_m. For example, if X is a hyperelliptic curve of genus 4, and $m = 2$ we get:

- 9 gaps if P_1 and P_2 are not W. points of X
- 26 gaps if P_1 and P_2 are both W. points of X
Weierstrass semigroup at several points

We will write \(\mathbf{n} := (n_1, \ldots, n_m) \in \mathbb{N}_0^m, ~ \mathbf{e}_i \in \mathbb{N}_0^m \) for the \(m \)-tuple that has 1 in the \(i \)-th position and 0 in the others, \(L(\mathbf{n}) := L(n_1P_1 + \cdots + n_mP_m) \) and \(\ell(\mathbf{n}) := \dim L(\mathbf{n}) \).

Lemma. The following are equivalent:

(i) \(\mathbf{n} \in H \);
(ii) \(\ell(\mathbf{n}) = \ell(\mathbf{n} - \mathbf{e}_i) + 1 \) for all \(i = 1, \ldots, m \);
(iii) The linear system \(|n_1P_1 + \cdots + n_mP_m| \) is base-point free.

We call \(\mathbb{N}_0^m \setminus H \) the set of gaps of \(H \), it is a finite set whose cardinality may vary with \(P_1, \ldots, P_m \). For example, if \(X \) is a hyperelliptic curve of genus 4, and \(m = 2 \) we get:

![Diagram](image1)

9 gaps if \(P_1 \) and \(P_2 \) are not W. points of \(X \)

![Diagram](image2)

26 gaps if \(P_1 \) and \(P_2 \) are both W. points of \(X \)
We will write \(\mathbf{n} := (n_1, \ldots, n_m) \in \mathbb{N}_0^m, \, \mathbf{e}_i \in \mathbb{N}_0^m \) for the \(m \)-tuple that has 1 in the \(i \)-th position and 0 in the others, \(L(\mathbf{n}) := L(n_1P_1 + \cdots + n_mP_m) \) and \(\ell(\mathbf{n}) := \dim L(\mathbf{n}) \).

Lemma. The following are equivalent:

(i) \(\mathbf{n} \in H \);
(ii) \(\ell(\mathbf{n}) = \ell(\mathbf{n} - \mathbf{e}_i) + 1 \) for all \(i = 1, \ldots, m \);
(iii) The linear system \(|n_1P_1 + \cdots + n_mP_m| \) is base-point free.

We call \(\mathbb{N}_0^m \setminus H \) the set of gaps of \(H \), it is a finite set whose cardinality may vary with \(P_1, \ldots, P_m \). For example, if \(X \) is a hyperelliptic curve of genus 4, and \(m = 2 \) we get:

9 gaps if \(P_1 \) and \(P_2 \) are not W. points of \(X \)

26 gaps if \(P_1 \) and \(P_2 \) are both W. points of \(X \)
We will write \(n := (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), \(e_i \in \mathbb{N}_0^m \) for the \(m \)-tuple that has 1 in the \(i \)-th position and 0 in the others, \(L(n) := L(n_1 P_1 + \cdots + n_m P_m) \) and \(\ell(n) := \dim L(n) \).

Lemma. The following are equivalent:

(i) \(n \in H \);
(ii) \(\ell(n) = \ell(n - e_i) + 1 \) for all \(i = 1, \ldots, m; \)
(iii) The linear system \(|n_1 P_1 + \cdots + n_m P_m|\) is base-point free.

We call \(\mathbb{N}_0^m \setminus H \) the set of gaps of \(H \), it is a finite set whose cardinality may vary with \(P_1, \ldots, P_m \). For example, if \(X \) is a hyperelliptic curve of genus 4, and \(m = 2 \) we get:

9 gaps if \(P_1 \) and \(P_2 \) are not W. points of \(X \)

26 gaps if \(P_1 \) and \(P_2 \) are both W. points of \(X \)
We will write \(n := (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), \(e_i \in \mathbb{N}_0^m \) for the \(m \)-tuple that has 1 in the \(i \)-th position and 0 in the others, \(L(n) := L(n_1P_1 + \cdots + n_mP_m) \) and \(\ell(n) := \dim L(n) \).

Lemma. The following are equivalent:

(i) \(n \in H \);

(ii) \(\ell(n) = \ell(n - e_i) + 1 \) for all \(i = 1, \ldots, m \);

(iii) The linear system \(|n_1P_1 + \cdots + n_mP_m| \) is base-point free.

We call \(\mathbb{N}_0^m \setminus H \) the **set of gaps** of \(H \), it is a finite set whose cardinality may vary with \(P_1, \ldots, P_m \). For example, if \(X \) is a hyperelliptic curve of genus 4, and \(m = 2 \) we get:

9 gaps if \(P_1 \) and \(P_2 \) are not W. points of \(X \)

26 gaps if \(P_1 \) and \(P_2 \) are both W. points of \(X \)
We will write $n := (n_1, \ldots, n_m) \in \mathbb{N}_0^m$, $e_i \in \mathbb{N}_0^m$ for the m-tuple that has 1 in the i-th position and 0 in the others, $L(n) := L(n_1P_1 + \cdots + n_mP_m)$ and $\ell(n) := \dim L(n)$.

Lemma. The following are equivalent:
(i) $n \in H$;
(ii) $\ell(n) = \ell(n - e_i) + 1$ for all $i = 1, \ldots, m$;
(iii) The linear system $|n_1P_1 + \cdots + n_mP_m|$ is base-point free.

We call $\mathbb{N}_0^m \setminus H$ the set of gaps of H, it is a finite set whose cardinality may vary with P_1, \ldots, P_m. For example, if X is a hyperelliptic curve of genus 4, and $m = 2$ we get:

- 9 gaps if P_1 and P_2 are not W. points of X
- 26 gaps if P_1 and P_2 are both W. points of X
We will write \(\mathbf{n} := (n_1, \ldots, n_m) \in \mathbb{N}_0^m, \ e_i \in \mathbb{N}_0^m \) for the \(m \)-tuple that has 1 in the \(i \)-th position and 0 in the others, \(L(\mathbf{n}) := L(n_1 P_1 + \cdots + n_m P_m) \) and \(\ell(\mathbf{n}) := \dim L(\mathbf{n}) \).

Lemma. The following are equivalent:

(i) \(\mathbf{n} \in H \);
(ii) \(\ell(\mathbf{n}) = \ell(\mathbf{n} - e_i) + 1 \) for all \(i = 1, \ldots, m \);
(iii) The linear system \(|n_1 P_1 + \cdots + n_m P_m| \) is base-point free.

We call \(\mathbb{N}_0^m \setminus H \) the set of gaps of \(H \), it is a finite set whose cardinality may vary with \(P_1, \ldots, P_m \). For example, if \(X \) is a hyperelliptic curve of genus 4, and \(m = 2 \) we get:

9 gaps if \(P_1 \) and \(P_2 \) are not W. points of \(X \)

26 gaps if \(P_1 \) and \(P_2 \) are both W. points of \(X \)
We will write $n := (n_1, \ldots, n_m) \in \mathbb{N}_0^m$, $e_i \in \mathbb{N}_0^m$ for the m-tuple that has 1 in the i-th position and 0 in the others, $L(n) := L(n_1 P_1 + \cdots + n_m P_m)$ and $\ell(n) := \dim L(n)$.

Lemma. The following are equivalent:

(i) $n \in H$;
(ii) $\ell(n) = \ell(n - e_i) + 1$ for all $i = 1, \ldots, m$;
(iii) The linear system $|n_1 P_1 + \cdots + n_m P_m|$ is base-point free.

We call $\mathbb{N}_0^m \setminus H$ the set of gaps of H, it is a finite set whose cardinality may vary with P_1, \ldots, P_m. For example, if X is a hyperelliptic curve of genus 4, and $m = 2$ we get:

9 gaps if P_1 and P_2 are not W. points of X

26 gaps if P_1 and P_2 are both W. points of X
Weierstrass semigroup at several points

From now on we assume that \(\#(F) \geq m \).

Properties of \(H \):

- For all \(i = 1, \ldots, m \) we get that \(a \in H(P_i) \) if and only if \(a.e_i \in H \).
- Let \((n_1, \ldots, n_m), (p_1, \ldots, p_m) \in H\) and set \(q_i := \max\{n_i, p_i\} \), \(i = 1, \ldots, m \). Then \((q_1, \ldots, q_m) \in H\).

Define \((n_1, \ldots, n_m) \preceq (p_1, \ldots, p_m)\) if \(n_i \leq p_i \ \forall i = 1, \ldots, m \). Then \(\preceq \) is a partial order in \(\mathbb{N}_0^m \).

Let \(i \in \{1, \ldots, m\} \), let \(n_i \in \mathbb{N}_0 \) and let \(n = (n_1, \ldots, n_m) \) be a minimal element (w.r.t. \(\preceq \)) of the set \(\{(p_1, \ldots, p_m) \in H \mid p_i = n_i\} \). If \(n_i > 0 \) and \(n_j > 0 \) for some \(j \in \{1, \ldots, m\} \), \(j \neq i \), then:

(i) \(n_i e_i \notin H \) (hence \(n_i \notin H(P_i) \));

(ii) \(n \) is a minimal element of the set \(\{(p_1, \ldots, p_m) \in H \mid p_j = n_j\} \), so \(n_j \notin H(P_j) \).
Weierstrass semigroup at several points

From now on we assume that \(\#(\mathbb{F}) \geq m \).

Properties of \(H \):

• For all \(i = 1, \ldots, m \) we get that \(a \in H(P_i) \) if and only if \(a.e_i \in H \).

• Let \((n_1, \ldots, n_m), (p_1, \ldots, p_m) \in H\) and set \(q_i := \max\{n_i, p_i\}, i = 1, \ldots, m \). Then \((q_1, \ldots, q_m) \in H\).

Define \((n_1, \ldots, n_m) \preceq (p_1, \ldots, p_m)\) if \(n_i \leq p_i \ \forall i = 1, \ldots, m \). Then \(\preceq \) is a partial order in \(\mathbb{N}_0^m \).

Let \(i \in \{1, \ldots, m\} \), let \(n_i \in \mathbb{N}_0 \) and let \(n = (n_1, \ldots, n_m) \) be a minimal element (w.r.t. \(\preceq \)) of the set \(\{(p_1, \ldots, p_m) \in H \mid p_i = n_i\} \). If \(n_i > 0 \) and \(n_j > 0 \) for some \(j \in \{1, \ldots, m\}, j \neq i \), then:

(i) \(n_i.e_i \notin H \) (hence \(n_i \notin H(P_i) \));

(ii) \(n \) is a minimal element of the set \(\{(p_1, \ldots, p_m) \in H \mid p_j = n_j\} \), so \(n_j \notin H(P_j) \).
Weierstrass semigroup at several points

From now on we assume that \(\#(F) \geq m \).

Properties of \(H \):

- For all \(i = 1, \ldots, m \) we get that \(a \in H(P_i) \) if and only if \(a.e_i \in H \).
- Let \((n_1, \ldots, n_m), (p_1, \ldots, p_m) \in H \) and set \(q_i := \max\{n_i, p_i\} \), \(i = 1, \ldots, m \). Then \((q_1, \ldots, q_m) \in H \).

Define \((n_1, \ldots, n_m) \preceq (p_1, \ldots, p_m) \) if \(n_i \leq p_i \ \forall i = 1, \ldots, m \). Then \(\preceq \) is a partial order in \(\mathbb{N}_0^m \).

Let \(i \in \{1, \ldots, m\} \), let \(n_i \in \mathbb{N}_0 \) and let \(n = (n_1, \ldots, n_m) \) be a minimal element (w.r.t. \(\preceq \)) of the set \(\{(p_1, \ldots, p_m) \in H \mid p_i = n_i\} \).

If \(n_i > 0 \) and \(n_j > 0 \) for some \(j \in \{1, \ldots, m\}, j \neq i \), then:

(i) \(n_i.e_i \notin H \) (hence \(n_i \notin H(P_i) \));
(ii) \(n \) is a minimal element of the set \(\{(p_1, \ldots, p_m) \in H \mid p_j = n_j\} \), so \(n_j \notin H(P_j) \).
Weierstrass semigroup at several points

From now on we assume that $\#(F) \geq m$.

Properties of H:

- For all $i = 1, \ldots, m$ we get that $a \in H(P_i)$ if and only if $a.e_i \in H$.
- Let $(n_1, \ldots, n_m), (p_1, \ldots, p_m) \in H$ and set $q_i := \max\{n_i, p_i\}, i = 1, \ldots, m$. Then $(q_1, \ldots, q_m) \in H$.

Define $(n_1, \ldots, n_m) \preceq (p_1, \ldots, p_m)$ if $n_i \leq p_i \ \forall i = 1, \ldots, m$. Then \preceq is a partial order in \mathbb{N}_0^m.

Let $i \in \{1, \ldots, m\}$, let $n_i \in \mathbb{N}_0$ and let $n = (n_1, \ldots, n_m)$ be a minimal element (w.r.t. \preceq) of the set $\{(p_1, \ldots, p_m) \in H \ | \ p_i = n_i\}$. If $n_i > 0$ and $n_j > 0$ for some $j \in \{1, \ldots, m\}$, $j \neq i$, then:

(i) $n_i.e_i \notin H$ (hence $n_i \notin H(P_i)$);
(ii) n is a minimal element of the set $\{(p_1, \ldots, p_m) \in H \ | \ p_j = n_j\}$, so $n_j \notin H(P_j)$.
Weierstrass semigroup at several points

From now on we assume that \(\#(\mathbb{F}) \geq m \).

Properties of \(H \):

- For all \(i = 1, \ldots, m \) we get that \(a \in H(P_i) \) if and only if \(a.e_i \in H \).

- Let \((n_1, \ldots, n_m), (p_1, \ldots, p_m) \in H \) and set \(q_i := \max\{n_i, p_i\} \), \(i = 1, \ldots, m \). Then \((q_1, \ldots, q_m) \in H \).

Define \((n_1, \ldots, n_m) \preceq (p_1, \ldots, p_m) \) if \(n_i \leq p_i \ \forall i = 1, \ldots, m \). Then \(\preceq \) is a partial order in \(\mathbb{N}_0^m \).

Let \(i \in \{1, \ldots, m\} \), let \(n_i \in \mathbb{N}_0 \) and let \(n = (n_1, \ldots, n_m) \) be a minimal element (w.r.t. \(\preceq \)) of the set \(\{(p_1, \ldots, p_m) \in H \mid p_i = n_i\} \). If \(n_i > 0 \) and \(n_j > 0 \) for some \(j \in \{1, \ldots, m\} \), \(j \neq i \), then:

(i) \(n_i e_i \notin H \) (hence \(n_i \notin H(P_i) \));

(ii) \(n \) is a minimal element of the set \(\{(p_1, \ldots, p_m) \in H \mid p_j = n_j\} \), so \(n_j \notin H(P_j) \).
Weierstrass semigroup at several points

From now on we assume that \(\#(\mathbb{F}) \geq m \).

Properties of \(H \):

- For all \(i = 1, \ldots, m \) we get that \(a \in H(P_i) \) if and only if \(a.e_i \in H \).

- Let \((n_1, \ldots, n_m), (p_1, \ldots, p_m) \in H\) and set \(q_i := \max\{n_i, p_i\} \), \(i = 1, \ldots, m \). Then \((q_1, \ldots, q_m) \in H\).

Define \((n_1, \ldots, n_m) \preceq (p_1, \ldots, p_m)\) if \(n_i \leq p_i \ \forall i = 1, \ldots, m \). Then \(\preceq \) is a partial order in \(\mathbb{N}_0^m \).

Let \(i \in \{1, \ldots, m\} \), let \(n_i \in \mathbb{N}_0 \) and let \(\mathbf{n} = (n_1, \ldots, n_m) \) be a minimal element (w.r.t. \(\preceq \)) of the set \(\{(p_1, \ldots, p_m) \in H \mid p_i = n_i\} \). If \(n_i > 0 \) and \(n_j > 0 \) for some \(j \in \{1, \ldots, m\}, j \neq i \), then:

(i) \(n_i e_i \notin H \) (hence \(n_i \notin H(P_i) \));

(ii) \(\mathbf{n} \) is a minimal element of the set \(\{(p_1, \ldots, p_m) \in H \mid p_j = n_j\} \), so \(n_j \notin H(P_j) \).
Weierstrass semigroup at several points

From now on we assume that \(\#(\mathbb{F}) \geq m \).

Properties of \(H \):

• For all \(i = 1, \ldots, m \) we get that \(a \in H(P_i) \) if and only if \(a.e_i \in H \).

• Let \((n_1, \ldots, n_m), (p_1, \ldots, p_m) \in H \) and set \(q_i := \max\{n_i, p_i\}, \)
 \(i = 1, \ldots, m \). Then \((q_1, \ldots, q_m) \in H \).

Define \((n_1, \ldots, n_m) \preceq (p_1, \ldots, p_m) \) if \(n_i \leq p_i \ \forall i = 1, \ldots, m \). Then \(\preceq \) is a partial order in \(\mathbb{N}_0^m \).

Let \(i \in \{1, \ldots, m\} \), let \(n_i \in \mathbb{N}_0 \) and let \(n = (n_1, \ldots, n_m) \) be a minimal element (w.r.t. \(\preceq \))
of the set \(\{(p_1, \ldots, p_m) \in H \mid p_i = n_i\} \). If \(n_i > 0 \) and \(n_j > 0 \) for some \(j \in \{1, \ldots, m\} \), \(j \neq i \), then:

(i) \(n_i e_i \notin H \) (hence \(n_i \notin H(P_i) \));

(ii) \(n \) is a minimal element of the set
 \(\{(p_1, \ldots, p_m) \in H \mid p_j = n_j\} \), so \(n_j \notin H(P_j) \).
Weierstrass semigroup at several points

From now on we assume that $\#(\mathbb{F}) \geq m$.

Properties of H:

• For all $i = 1, \ldots, m$ we get that $a \in H(P_i)$ if and only if $a.e_i \in H$.

• Let $(n_1, \ldots, n_m), (p_1, \ldots, p_m) \in H$ and set $q_i := \max\{n_i, p_i\}$, $i = 1, \ldots, m$. Then $(q_1, \ldots, q_m) \in H$.

Define $(n_1, \ldots, n_m) \preceq (p_1, \ldots, p_m)$ if $n_i \leq p_i \ \forall i = 1, \ldots, m$. Then \preceq is a partial order in \mathbb{N}_0^m.

Let $i \in \{1, \ldots, m\}$, let $n_i \in \mathbb{N}_0$ and let $n = (n_1, \ldots, n_m)$ be a minimal element (w.r.t. \preceq) of the set $\{(p_1, \ldots, p_m) \in H \mid p_i = n_i\}$. If $n_i > 0$ and $n_j > 0$ for some $j \in \{1, \ldots, m\}$, $j \neq i$, then:

(i) $n_i e_i \notin H$ (hence $n_i \notin H(P_i)$);

(ii) n is a minimal element of the set $\{(p_1, \ldots, p_m) \in H \mid p_j = n_j\}$, so $n_j \notin H(P_j)$.
Weierstrass semigroup at several points

From now on we assume that \(\#(\mathbb{F}) \geq m \).

Properties of \(H \):

- For all \(i = 1, \ldots, m \) we get that \(a \in H(P_i) \) if and only if \(a.e_i \in H \).

- Let \((n_1, \ldots, n_m), (p_1, \ldots, p_m) \in H \) and set \(q_i := \max\{n_i, p_i\} \), \(i = 1, \ldots, m \). Then \((q_1, \ldots, q_m) \in H \).

Define \((n_1, \ldots, n_m) \preceq (p_1, \ldots, p_m) \) if \(n_i \leq p_i \ \forall i = 1, \ldots, m \). Then \(\preceq \) is a partial order in \(\mathbb{N}_0^m \).

Let \(i \in \{1, \ldots, m\} \), let \(n_i \in \mathbb{N}_0 \) and let \(\mathbf{n} = (n_1, \ldots, n_m) \) be a minimal element (w.r.t. \(\preceq \)) of the set \(\{(p_1, \ldots, p_m) \in H \mid p_i = n_i\} \). If \(n_i > 0 \) and \(n_j > 0 \) for some \(j \in \{1, \ldots, m\}, j \neq i \), then:

(i) \(n_i e_i \notin H \) (hence \(n_i \notin H(P_i) \));

(ii) \(\mathbf{n} \) is a minimal element of the set \(\{(p_1, \ldots, p_m) \in H \mid p_j = n_j\} \), so \(n_j \notin H(P_j) \).
Weierstrass semigroup at several points

From now on we assume that \(\#(\mathbb{F}) \geq m \).

Properties of \(H \):

• For all \(i = 1, \ldots, m \) we get that \(a \in H(P_i) \) if and only if \(a.e_i \in H \).

• Let \((n_1, \ldots, n_m), (p_1, \ldots, p_m) \in H\) and set \(q_i := \max\{n_i, p_i\} \), \(i = 1, \ldots, m \). Then \((q_1, \ldots, q_m) \in H\).

Define \((n_1, \ldots, n_m) \preceq (p_1, \ldots, p_m)\) if \(n_i \leq p_i \ \forall i = 1, \ldots, m \). Then \(\preceq \) is a partial order in \(\mathbb{N}_0^m \).

Let \(i \in \{1, \ldots, m\} \), let \(n_i \in \mathbb{N}_0 \) and let \(\mathbf{n} = (n_1, \ldots, n_m) \) be a minimal element (w.r.t. \(\preceq \)) of the set \(\{ (p_1, \ldots, p_m) \in H \mid p_i = n_i \} \). If \(n_i > 0 \) and \(n_j > 0 \) for some \(j \in \{1, \ldots, m\} \), \(j \neq i \), then:

(i) \(n_i e_i \notin H \) (hence \(n_i \notin H(P_i) \));

(ii) \(\mathbf{n} \) is a minimal element of the set \(\{ (p_1, \ldots, p_m) \in H \mid p_j = n_j \} \), so \(n_j \notin H(P_j) \).
Weierstrass semigroup at several points

From now on we assume that $\#(\mathbb{F}) \geq m$.

Properties of H:

• For all $i = 1, \ldots, m$ we get that $a \in H(P_i)$ if and only if $a \cdot e_i \in H$.

• Let $(n_1, \ldots, n_m), (p_1, \ldots, p_m) \in H$ and set $q_i := \max\{n_i, p_i\}$, $i = 1, \ldots, m$. Then $(q_1, \ldots, q_m) \in H$.

Define $(n_1, \ldots, n_m) \preceq (p_1, \ldots, p_m)$ if $n_i \leq p_i \ \forall i = 1, \ldots, m$. Then \preceq is a partial order in \mathbb{N}_0^m.

Let $i \in \{1, \ldots, m\}$, let $n_i \in \mathbb{N}_0$ and let $\mathbf{n} = (n_1, \ldots, n_m)$ be a minimal element (w.r.t. \preceq) of the set $\{(p_1, \ldots, p_m) \in H \mid p_i = n_i\}$. If $n_i > 0$ and $n_j > 0$ for some $j \in \{1, \ldots, m\}$, $j \neq i$, then:

(i) $n_i e_i \notin H$ (hence $n_i \notin H(P_i)$);

(ii) \mathbf{n} is a minimal element of the set $\{(p_1, \ldots, p_m) \in H \mid p_j = n_j\}$, so $n_j \notin H(P_j)$.

Cícero Carvalho (UFU)
Given \(\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), define
\[
\nabla_i(\mathbf{n}) := \{(p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \ \forall j \neq i\}
\]

Lemma. Let \(\mathbf{n} \in \mathbb{N}_0^m \). The following are equivalent:

(i) \(\mathbf{n} \notin H \);
(ii) \(\nabla_i(\mathbf{n}) = \emptyset \) for some \(i \in \{1, \ldots, m\} \).

We say that \(\mathbf{n} \in \mathbb{N}_0^m \) is a pure gap if \(\nabla_i(\mathbf{n}) = \emptyset \) for all \(i \in \{1, \ldots, m\} \).

Denote the set of pure gaps by \(G_0 \).

Lemma: Let \(\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \).

(i) If \(\mathbf{n} \in G_0 \) then \(n_i \notin H(P_i) \) for all \(i = 1, \ldots, m \).
(ii) If \(1 + \sum_i n_i \leq \gamma \), where \(\gamma \) is the gonality of \(X \), then \(\mathbf{n} \in G_0 \).
Given \(n = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), define
\[
\nabla_i(n) := \{(p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \ \forall j \neq i\}
\]

Lemma. Let \(n \in \mathbb{N}_0^m \). The following are equivalent:
1. \(n \notin H \);
2. \(\nabla_i(n) = \emptyset \) for some \(i \in \{1, \ldots, m\} \).

We say that \(n \in \mathbb{N}_0^m \) is a **pure gap** if \(\nabla_i(n) = \emptyset \) for all \(i \in \{1, \ldots, m\} \).

Denote the set of pure gaps by \(G_0 \).

Lemma: Let \(n = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \).
1. If \(n \in G_0 \) then \(n_i \notin H(P_i) \) for all \(i = 1, \ldots, m \).
2. If \(1 + \sum_i n_i \leq \gamma \), where \(\gamma \) is the gonality of \(X \), then \(n \in G_0 \).
Given $\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m$, define

$$\nabla_i(\mathbf{n}) := \{(p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \ \forall j \neq i\}$$

Lemma. Let $\mathbf{n} \in \mathbb{N}_0^m$. The following are equivalent:

(i) $\mathbf{n} \notin H$;
(ii) $\nabla_i(\mathbf{n}) = \emptyset$ for some $i \in \{1, \ldots, m\}$.

We say that $\mathbf{n} \in \mathbb{N}_0^m$ is a pure gap if $\nabla_i(\mathbf{n}) = \emptyset$ for all $i \in \{1, \ldots, m\}$.

Denote the set of pure gaps by \mathcal{G}_0.

Lemma: Let $\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m$.

(i) If $\mathbf{n} \in \mathcal{G}_0$ then $n_i \notin H(P_i)$ for all $i = 1, \ldots, m$.
(ii) If $1 + \sum_i n_i \leq \gamma$, where γ is the gonality of X, then $\mathbf{n} \in \mathcal{G}_0$.
Weierstrass semigroup and AG codes

Given \(n = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), define
\[
\nabla_i(n) := \{ (p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \ \forall j \neq i \}
\]

Lemma. Let \(n \in \mathbb{N}_0^m \). The following are equivalent:
(i) \(n \notin H \);
(ii) \(\nabla_i(n) = \emptyset \) for some \(i \in \{1, \ldots, m\} \).

We say that \(n \in \mathbb{N}_0^m \) is a pure gap if \(\nabla_i(n) = \emptyset \) for all \(i \in \{1, \ldots, m\} \).

Denote the set of pure gaps by \(G_0 \).

Lemma: Let \(n = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \).
(i) If \(n \in G_0 \) then \(n_i \notin H(P_i) \) for all \(i = 1, \ldots, m \).
(ii) If \(1 + \sum_i n_i \leq \gamma \), where \(\gamma \) is the gonality of \(X \), then \(n \in G_0 \).
Given \(n = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), define
\[
\nabla_i(n) := \{(p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \ \forall j \neq i\}
\]

Lemma. Let \(n \in \mathbb{N}_0^m \). The following are equivalent:
(i) \(n \notin H \);
(ii) \(\nabla_i(n) = \emptyset \) for some \(i \in \{1, \ldots, m\} \).

We say that \(n \in \mathbb{N}_0^m \) is a pure gap if \(\nabla_i(n) = \emptyset \) for all \(i \in \{1, \ldots, m\} \).

Denote the set of pure gaps by \(G_0 \).

Lemma: Let \(n = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \).
(i) If \(n \in G_0 \) then \(n_i \notin H(P_i) \) for all \(i = 1, \ldots, m \).
(ii) If \(1 + \sum_i n_i \leq \gamma \), where \(\gamma \) is the gonality of \(X \), then \(n \in G_0 \).
Weierstrass semigroup and AG codes

Given $\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m$, define
$$\nabla_i(\mathbf{n}) := \{(p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \forall j \neq i\}$$

Lemma. Let $\mathbf{n} \in \mathbb{N}_0^m$. The following are equivalent:
(i) $\mathbf{n} \notin H$;
(ii) $\nabla_i(\mathbf{n}) = \emptyset$ for some $i \in \{1, \ldots, m\}$.

We say that $\mathbf{n} \in \mathbb{N}_0^m$ is a pure gap if $\nabla_i(\mathbf{n}) = \emptyset$ for all $i \in \{1, \ldots, m\}$.

Denote the set of pure gaps by \mathbf{G}_0.

Lemma: Let $\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m$.
(i) If $\mathbf{n} \in \mathbf{G}_0$ then $n_i \notin H(P_i)$ for all $i = 1, \ldots, m$.
(ii) If $1 + \sum_i n_i \leq \gamma$, where γ is the gonality of X, then $\mathbf{n} \in \mathbf{G}_0$.
Given $\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m$, define
\[
\nabla_i(\mathbf{n}) := \{(p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \ \forall j \neq i\}
\]

Lemma. Let $\mathbf{n} \in \mathbb{N}_0^m$. The following are equivalent:
(i) $\mathbf{n} \not\in H$;
(ii) $\nabla_i(\mathbf{n}) = \emptyset$ for some $i \in \{1, \ldots, m\}$.

We say that $\mathbf{n} \in \mathbb{N}_0^m$ is a **pure gap** if $\nabla_i(\mathbf{n}) = \emptyset$ for all $i \in \{1, \ldots, m\}$.

Denote the set of pure gaps by \mathbf{G}_0.

Lemma: Let $\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m$.
(i) If $\mathbf{n} \in \mathbf{G}_0$ then $n_i \not\in H(P_i)$ for all $i = 1, \ldots, m$.
(ii) If $1 + \sum_i n_i \leq \gamma$, where γ is the gonality of X, then $\mathbf{n} \in \mathbf{G}_0$.
Given \(\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), define
\[
\nabla_i(\mathbf{n}) := \{(p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \ \forall j \neq i\}
\]

Lemma. Let \(\mathbf{n} \in \mathbb{N}_0^m \). The following are equivalent:

(i) \(\mathbf{n} \notin H \);

(ii) \(\nabla_i(\mathbf{n}) = \emptyset \) for some \(i \in \{1, \ldots, m\} \).

We say that \(\mathbf{n} \in \mathbb{N}_0^m \) is a pure gap if \(\nabla_i(\mathbf{n}) = \emptyset \) for all \(i \in \{1, \ldots, m\} \).

Denote the set of pure gaps by \(\mathbf{G}_0 \).

Lemma: Let \(\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \).

(i) If \(\mathbf{n} \in \mathbf{G}_0 \) then \(n_i \notin H(P_i) \) for all \(i = 1, \ldots, m \).

(ii) If \(1 + \sum_i n_i \leq \gamma \), where \(\gamma \) is the gonality of \(X \), then \(\mathbf{n} \in \mathbf{G}_0 \).
Given $n = (n_1, \ldots, n_m) \in \mathbb{N}_0^m$, define
\[\nabla_i(n) := \{(p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \ \forall j \neq i\} \]

Lemma. Let $n \in \mathbb{N}_0^m$. The following are equivalent:
(i) $n \notin H$;
(ii) $\nabla_i(n) = \emptyset$ for some $i \in \{1, \ldots, m\}$.

We say that $n \in \mathbb{N}_0^m$ is a pure gap if $\nabla_i(n) = \emptyset$ for all $i \in \{1, \ldots, m\}$.

Denote the set of pure gaps by G_0.

Lemma: Let $n = (n_1, \ldots, n_m) \in \mathbb{N}_0^m$.
(i) If $n \in G_0$ then $n_i \notin H(P_i)$ for all $i = 1, \ldots, m$.
(ii) If $1 + \sum_i n_i \leq \gamma$, where γ is the gonality of X, then $n \in G_0$.
Weierstrass semigroup and AG codes

Given \(\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), define
\[
\nabla_i(\mathbf{n}) := \{ (p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \; \forall j \neq i \}
\]

Lemma. Let \(\mathbf{n} \in \mathbb{N}_0^m \). The following are equivalent:
(i) \(\mathbf{n} \notin H \);
(ii) \(\nabla_i(\mathbf{n}) = \emptyset \) for some \(i \in \{1, \ldots, m\} \).

We say that \(\mathbf{n} \in \mathbb{N}_0^m \) is a pure gap if \(\nabla_i(\mathbf{n}) = \emptyset \) for all \(i \in \{1, \ldots, m\} \).

Denote the set of pure gaps by \(\mathbf{G}_0 \).

Lemma: Let \(\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \).
(i) If \(\mathbf{n} \in \mathbf{G}_0 \) then \(n_i \notin H(P_i) \) for all \(i = 1, \ldots, m \).
(ii) If \(1 + \sum_i n_i \leq \gamma \), where \(\gamma \) is the gonality of \(X \), then \(\mathbf{n} \in \mathbf{G}_0 \).
Weierstrass semigroup and AG codes

Given \(\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), define
\[
\nabla_i(\mathbf{n}) := \{(p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \forall j \neq i\}
\]

Lemma. Let \(\mathbf{n} \in \mathbb{N}_0^m \). The following are equivalent:
(i) \(\mathbf{n} \notin H \);
(ii) \(\nabla_i(\mathbf{n}) = \emptyset \) for some \(i \in \{1, \ldots, m\} \).

We say that \(\mathbf{n} \in \mathbb{N}_0^m \) is a pure gap if \(\nabla_i(\mathbf{n}) = \emptyset \) for all \(i \in \{1, \ldots, m\} \).

Denote the set of pure gaps by \(\mathbf{G}_0 \).

Lemma: Let \(\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \).
(i) If \(\mathbf{n} \in \mathbf{G}_0 \) then \(n_i \notin H(P_i) \) for all \(i = 1, \ldots, m \).
(ii) If \(1 + \sum_i n_i \leq \gamma \), where \(\gamma \) is the gonality of \(X \), then \(\mathbf{n} \in \mathbf{G}_0 \).
Weierstrass semigroup and AG codes

Given $\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m$, define
$$\nabla_i(\mathbf{n}) := \{ (p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \forall j \neq i \}$$

Lemma. Let $\mathbf{n} \in \mathbb{N}_0^m$. The following are equivalent:
(i) $\mathbf{n} \notin H$;
(ii) $\nabla_i(\mathbf{n}) = \emptyset$ for some $i \in \{1, \ldots, m\}$.

We say that $\mathbf{n} \in \mathbb{N}_0^m$ is a pure gap if $\nabla_i(\mathbf{n}) = \emptyset$ for all $i \in \{1, \ldots, m\}$.

Denote the set of pure gaps by \mathbf{G}_0.

Lemma: Let $\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m$.
(i) If $\mathbf{n} \in \mathbf{G}_0$ then $n_i \notin H(P_i)$ for all $i = 1, \ldots, m$.
(ii) If $1 + \sum_i n_i \leq \gamma$, where γ is the gonality of X, then $\mathbf{n} \in \mathbf{G}_0$.
Given \(\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), define

\[
\nabla_i(\mathbf{n}) := \{(p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \forall j \neq i\}
\]

Lemma. Let \(\mathbf{n} \in \mathbb{N}_0^m \). The following are equivalent:

(i) \(\mathbf{n} \notin H \);
(ii) \(\nabla_i(\mathbf{n}) = \emptyset \) for some \(i \in \{1, \ldots, m\} \).

We say that \(\mathbf{n} \in \mathbb{N}_0^m \) is a **pure gap** if \(\nabla_i(\mathbf{n}) = \emptyset \) for all \(i \in \{1, \ldots, m\} \).

Denote the set of pure gaps by \(\mathcal{G}_0 \).

Lemma: Let \(\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \).

(i) If \(\mathbf{n} \in \mathcal{G}_0 \) then \(n_i \notin H(P_i) \) for all \(i = 1, \ldots, m \).
(ii) If \(1 + \sum_i n_i \leq \gamma \), where \(\gamma \) is the gonality of \(X \), then \(\mathbf{n} \in \mathcal{G}_0 \).
Given \(n = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), define
\[
\nabla_i(n) := \{(p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \; \forall j \neq i\}
\]

Lemma. Let \(n \in \mathbb{N}_0^m \). The following are equivalent:
(i) \(n \notin H \);
(ii) \(\nabla_i(n) = \emptyset \) for some \(i \in \{1, \ldots, m\} \).

We say that \(n \in \mathbb{N}_0^m \) is a pure gap if \(\nabla_i(n) = \emptyset \) for all \(i \in \{1, \ldots, m\} \).

Denote the set of pure gaps by \(G_0 \).

Lemma: Let \(n = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \).
(i) If \(n \in G_0 \) then \(n_i \notin H(P_i) \) for all \(i = 1, \ldots, m \).
(ii) If \(1 + \sum_i n_i \leq \gamma \), where \(\gamma \) is the gonality of \(X \), then \(n \in G_0 \).
Given \(\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), define
\[
\nabla_i(\mathbf{n}) := \{(p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \forall j \neq i\}
\]

Lemma. Let \(\mathbf{n} \in \mathbb{N}_0^m \). The following are equivalent:
(i) \(\mathbf{n} \notin H \);
(ii) \(\nabla_i(\mathbf{n}) = \emptyset \) for some \(i \in \{1, \ldots, m\} \).

We say that \(\mathbf{n} \in \mathbb{N}_0^m \) is a pure gap if \(\nabla_i(\mathbf{n}) = \emptyset \) for all \(i \in \{1, \ldots, m\} \).

Denote the set of pure gaps by \(G_0 \).

Lemma: Let \(\mathbf{n} = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \).
(i) If \(\mathbf{n} \in G_0 \) then \(n_i \notin H(P_i) \) for all \(i = 1, \ldots, m \).
(ii) If \(1 + \sum_i n_i \leq \gamma \), where \(\gamma \) is the gonality of \(X \), then \(\mathbf{n} \in G_0 \).
Given \(n = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), define
\[
\nabla_i(n) := \{(p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \, \forall \, j \neq i\}
\]

Lemma. Let \(n \in \mathbb{N}_0^m \). The following are equivalent:
(i) \(n \notin H \);
(ii) \(\nabla_i(n) = \emptyset \) for some \(i \in \{1, \ldots, m\} \).

We say that \(n \in \mathbb{N}_0^m \) is a pure gap if \(\nabla_i(n) = \emptyset \) for all \(i \in \{1, \ldots, m\} \).

Denote the set of pure gaps by \(G_0 \).

Lemma: Let \(n = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \).
(i) If \(n \in G_0 \) then \(n_i \notin H(P_i) \) for all \(i = 1, \ldots, m \).
(ii) If \(1 + \sum_i n_i \leq \gamma \), where \(\gamma \) is the gonality of \(X \), then \(n \in G_0 \).
Weierstrass semigroup and AG codes

Given \(n = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \), define
\[
\nabla_i(n) := \{(p_1, \ldots, p_m) \in H \mid p_i = n_i \text{ and } p_j \leq n_j \ \forall j \neq i\}
\]

Lemma. Let \(n \in \mathbb{N}_0^m \). The following are equivalent:
(i) \(n \notin H \);
(ii) \(\nabla_i(n) = \emptyset \) for some \(i \in \{1, \ldots, m\} \).

We say that \(n \in \mathbb{N}_0^m \) is a pure gap if \(\nabla_i(n) = \emptyset \) for all \(i \in \{1, \ldots, m\} \).

Denote the set of pure gaps by \(G_0 \).

Lemma: Let \(n = (n_1, \ldots, n_m) \in \mathbb{N}_0^m \).
(i) If \(n \in G_0 \) then \(n_i \notin H(P_i) \) for all \(i = 1, \ldots, m \).
(ii) If \(1 + \sum n_i \leq \gamma \), where \(\gamma \) is the gonality of \(X \), then \(n \in G_0 \).
Weierstrass semigroup and AG codes

Assume that \mathbb{F} is a finite field, let $D := Q_1 + \cdots + Q_n$, where Q_1, \ldots, Q_n are distinct rational points of X, all distinct from P_1, \ldots, P_m, and let G be a divisor with support on P_1, \ldots, P_m.

Let $C_\Omega(D, G)$ be the algebraic geometry code which is the image of the map $\varphi : \Omega(G - D) \to \mathbb{F}^n$ defined by $\varphi(\eta) = (\text{res}_{Q_1}(\eta), \ldots, \text{res}_{Q_n}(\eta))$.

We know that $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2)$.

Building on previous work by Homma, Kim and Matthews, F. Torres and myself proved the following results.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, and let $G = \sum_{i=1}^{m}(n_i + p_i - 1)P_i$. Then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m$.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, with $n_i \leq p_i$ for all $i = 1, \ldots, m$, and that (q_1, \ldots, q_m) is also a pure gap whenever $n_i \leq q_i \leq p_i$, for all $i = 1, \ldots, m$. Let $G = \sum_{i=1}^{m}(n_i + p_i - 1)P_i$, then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m + \sum_{i=1}^{n}(p_i - n_i)$.
Weierstrass semigroup and AG codes

Assume that \mathbb{F} is a finite field, let $D := Q_1 + \cdots + Q_n$, where Q_1, \ldots, Q_n are distinct rational points of X, all distinct from P_1, \ldots, P_m, and let G be a divisor with support on P_1, \ldots, P_m.

Let $C_\Omega(D, G)$ be the algebraic geometry code which is the image of the map $\varphi : \Omega(G - D) \to \mathbb{F}^n$ defined by $\varphi(\eta) = (\text{res}_{Q_1}(\eta), \ldots, \text{res}_{Q_n}(\eta))$.

We know that $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2)$.

Building on previous work by Homma, Kim and Matthews, F. Torres and myself proved the following results.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, and let $G = \sum_{i=1}^{m} (n_i + p_i - 1)P_i$. Then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m$.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, with $n_i \leq p_i$ for all $i = 1, \ldots, m$, and that (q_1, \ldots, q_m) is also a pure gap whenever $n_i \leq q_i \leq p_i$, for all $i = 1, \ldots, m$. Let $G = \sum_{i=1}^{m} (n_i + p_i - 1)P_i$,

then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m + \sum_{i=1}^{n} (p_i - n_i)$.
Assume that \(\mathbb{F} \) is a finite field, let \(D := Q_1 + \cdots + Q_n \), where \(Q_1, \ldots, Q_n \) are distinct rational points of \(X \), all distinct from \(P_1, \ldots, P_m \), and let \(G \) be a divisor with support on \(P_1, \ldots, P_m \).

Let \(C_Ω(D, G) \) be the algebraic geometry code which is the image of the map \(ϕ : Ω(G − D) → \mathbb{F}^n \) defined by \(ϕ(η) = (\text{res}_{Q_1}(η), \ldots, \text{res}_{Q_n}(η)) \).

We know that \(C_Ω(D, G) \) is an \([n, k, d]\)-code, with \(d ≥ \deg(G) − (2g − 2) \).

Building on previous work by Homma, Kim and Matthews, F. Torres and myself proved the following results.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H \), and let \(G = \sum_{i=1}^m (n_i + p_i − 1)P_i \). Then \(C_Ω(D, G) \) is an \([n, k, d]\)-code, with \(d ≥ \deg(G) − (2g − 2) + m \).

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H \), with \(n_i ≤ p_i \) for all \(i = 1, \ldots, m \), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i ≤ q_i ≤ p_i \), for all \(i = 1, \ldots, m \). Let \(G = \sum_{i=1}^m (n_i + p_i − 1)P_i \), then \(C_Ω(D, G) \) is an \([n, k, d]\)-code, with \(d ≥ \deg(G) − (2g − 2) + m + \sum_{i=1}^n (p_i − n_i) \).
Weierstrass semigroup and AG codes

Assume that \mathbb{F} is a finite field, let $D := Q_1 + \cdots + Q_n$, where Q_1, \ldots, Q_n are distinct rational points of X, all distinct from P_1, \ldots, P_m, and let G be a divisor with support on P_1, \ldots, P_m.

Let $C_\Omega(D, G)$ be the algebraic geometry code which is the image of the map $\varphi : \Omega(G - D) \to \mathbb{F}^n$ defined by $\varphi(\eta) = (\mathrm{res}_{Q_1}(\eta), \ldots, \mathrm{res}_{Q_n}(\eta))$.

We know that $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2)$.

Building on previous work by Homma, Kim and Matthews, F. Torres and myself proved the following results.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, and let $G = \sum_{i=1}^{m} (n_i + p_i - 1)P_i$. Then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m$.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, with $n_i \leq p_i$ for all $i = 1, \ldots, m$, and that (q_1, \ldots, q_m) is also a pure gap whenever $n_i \leq q_i \leq p_i$, for all $i = 1, \ldots, m$. Let $G = \sum_{i=1}^{m} (n_i + p_i - 1)P_i$, then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m + \sum_{i=1}^{n} (p_i - n_i)$.
Weierstrass semigroup and AG codes

Assume that \mathbb{F} is a finite field, let $D := Q_1 + \cdots + Q_n$, where Q_1, \ldots, Q_n are distinct rational points of X, all distinct from P_1, \ldots, P_m, and let G be a divisor with support on P_1, \ldots, P_m.

Let $C_\Omega(D, G)$ be the algebraic geometry code which is the image of the map $\varphi : \Omega(G - D) \to \mathbb{F}^n$ defined by $\varphi(\eta) = (\text{res}_{Q_1}(\eta), \ldots, \text{res}_{Q_n}(\eta))$.

We know that $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2)$.

Building on previous work by Homma, Kim and Matthews, F. Torres and myself proved the following results.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, and let $G = \sum_{i=1}^m (n_i + p_i - 1)P_i$. Then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m$.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, with $n_i \leq p_i$ for all $i = 1, \ldots, m$, and that (q_1, \ldots, q_m) is also a pure gap whenever $n_i \leq q_i \leq p_i$, for all $i = 1, \ldots, m$. Let $G = \sum_{i=1}^m (n_i + p_i - 1)P_i$, then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m + \sum_{i=1}^n(p_i - n_i)$.
Assume that \mathbb{F} is a finite field, let $D := Q_1 + \cdots + Q_n$, where Q_1, \ldots, Q_n are distinct rational points of X, all distinct from P_1, \ldots, P_m, and let G be a divisor with support on P_1, \ldots, P_m.

Let $C_\Omega(D, G)$ be the algebraic geometry code which is the image of the map $\varphi : \Omega(G - D) \to \mathbb{F}^n$ defined by $\varphi(\eta) = (\text{res}_{Q_1}(\eta), \ldots, \text{res}_{Q_n}(\eta))$.

We know that $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2)$.

Building on previous work by Homma, Kim and Matthews, F. Torres and myself proved the following results.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, and let $G = \sum_{i=1}^m (n_i + p_i - 1) P_i$. Then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m$.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, with $n_i \leq p_i$ for all $i = 1, \ldots, m$, and that (q_1, \ldots, q_m) is also a pure gap whenever $n_i \leq q_i \leq p_i$, for all $i = 1, \ldots, m$. Let $G = \sum_{i=1}^m (n_i + p_i - 1) P_i$, then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m + \sum_{i=1}^n (p_i - n_i)$.
Weierstrass semigroup and AG codes

Assume that \mathbb{F} is a finite field, let $D := Q_1 + \cdots + Q_n$, where Q_1, \ldots, Q_n are distinct rational points of X, all distinct from P_1, \ldots, P_m, and let G be a divisor with support on P_1, \ldots, P_m.

Let $C_\Omega(D, G)$ be the algebraic geometry code which is the image of the map $\varphi : \Omega(G - D) \to \mathbb{F}^n$ defined by $\varphi(\eta) = (\text{res}_{Q_1}(\eta), \ldots, \text{res}_{Q_n}(\eta))$.

We know that $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2)$.

Building on previous work by Homma, Kim and Matthews, F. Torres and myself proved the following results.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, and let $G = \sum_{i=1}^{m} (n_i + p_i - 1)P_i$. Then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m$.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, with $n_i \leq p_i$ for all $i = 1, \ldots, m$, and that (q_1, \ldots, q_m) is also a pure gap whenever $n_i \leq q_i \leq p_i$, for all $i = 1, \ldots, m$. Let $G = \sum_{i=1}^{m} (n_i + p_i - 1)P_i$, then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m + \sum_{i=1}^{n} (p_i - n_i)$.
Weierstrass semigroup and AG codes

Assume that \(F \) is a finite field, let \(D := Q_1 + \cdots + Q_n \), where \(Q_1, \ldots, Q_n \) are distinct rational points of \(X \), all distinct from \(P_1, \ldots, P_m \), and let \(G \) be a divisor with support on \(P_1, \ldots, P_m \).

Let \(C_\Omega(D, G) \) be the algebraic geometry code which is the image of the map \(\varphi : \Omega(G - D) \to \mathbb{F}^n \) defined by \(\varphi(\eta) = (\text{res}_{Q_1}(\eta), \ldots, \text{res}_{Q_n}(\eta)) \).

We know that \(C_\Omega(D, G) \) is an \([n, k, d]\)-code, with \(d \geq \deg(G) - (2g - 2) \).

Building on previous work by Homma, Kim and Matthews, F. Torres and myself proved the following results.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H \), and let \(G = \sum_{i=1}^m (n_i + p_i - 1)P_i \). Then \(C_\Omega(D, G) \) is an \([n, k, d]\)-code, with \(d \geq \deg(G) - (2g - 2) + m \).

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H \), with \(n_i \leq p_i \) for all \(i = 1, \ldots, m \), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i \leq q_i \leq p_i \), for all \(i = 1, \ldots, m \). Let \(G = \sum_{i=1}^m (n_i + p_i - 1)P_i \), then \(C_\Omega(D, G) \) is an \([n, k, d]\)-code, with \(d \geq \deg(G) - (2g - 2) + m + \sum_{i=1}^n (p_i - n_i) \).
Weierstrass semigroup and AG codes

Assume that \mathbb{F} is a finite field, let $D := Q_1 + \cdots + Q_n$, where Q_1, \ldots, Q_n are distinct rational points of X, all distinct from P_1, \ldots, P_m, and let G be a divisor with support on P_1, \ldots, P_m. Let $C_{\Omega}(D, G)$ be the algebraic geometry code which is the image of the map $\varphi : \Omega(G - D) \to \mathbb{F}^n$ defined by $\varphi(\eta) = (\text{res}_{Q_1}(\eta), \ldots, \text{res}_{Q_n}(\eta))$.

We know that $C_{\Omega}(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2)$.

Building on previous work by Homma, Kim and Matthews, F. Torres and myself proved the following results.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, and let $G = \sum_{i=1}^m (n_i + p_i - 1)P_i$. Then $C_{\Omega}(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m$.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, with $n_i \leq p_i$ for all $i = 1, \ldots, m$, and that (q_1, \ldots, q_m) is also a pure gap whenever $n_i \leq q_i \leq p_i$, for all $i = 1, \ldots, m$. Let $G = \sum_{i=1}^m (n_i + p_i - 1)P_i$, then $C_{\Omega}(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m + \sum_{i=1}^n (p_i - n_i)$.

Weierstrass semigroup and AG codes

Assume that \(\mathbb{F} \) is a finite field, let \(D := Q_1 + \cdots + Q_n \), where \(Q_1, \ldots, Q_n \) are distinct rational points of \(X \), all distinct from \(P_1, \ldots, P_m \), and let \(G \) be a divisor with support on \(P_1, \ldots, P_m \).

Let \(C_\Omega(D, G) \) be the algebraic geometry code which is the image of the map \(\varphi : \Omega(G - D) \to \mathbb{F}^n \) defined by \(\varphi(\eta) = (\text{res}_{Q_1}(\eta), \ldots, \text{res}_{Q_n}(\eta)) \).

We know that \(C_\Omega(D, G) \) is an \([n, k, d]\)-code, with \(d \geq \deg(G) - (2g - 2) \).

Building on previous work by Homma, Kim and Matthews, F. Torres and myself proved the following results.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H \), and let \(G = \sum_{i=1}^{m} (n_i + p_i - 1)P_i \). Then \(C_\Omega(D, G) \) is an \([n, k, d]\)-code, with \(d \geq \deg(G) - (2g - 2) + m \).

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H \), with \(n_i \leq p_i \) for all \(i = 1, \ldots, m \), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i \leq q_i \leq p_i \), for all \(i = 1, \ldots, m \). Let \(G = \sum_{i=1}^{m} (n_i + p_i - 1)P_i \), then \(C_\Omega(D, G) \) is an \([n, k, d]\)-code, with \(d \geq \deg(G) - (2g - 2) + m + \sum_{i=1}^{n} (p_i - n_i) \).
Assume that \mathbb{F} is a finite field, let $D := Q_1 + \cdots + Q_n$, where Q_1, \ldots, Q_n are distinct rational points of X, all distinct from P_1, \ldots, P_m, and let G be a divisor with support on P_1, \ldots, P_m.

Let $C_{\Omega}(D, G)$ be the algebraic geometry code which is the image of the map $\varphi : \Omega(G - D) \to \mathbb{F}^n$ defined by $\varphi(\eta) = (\text{res}_{Q_1}(\eta), \ldots, \text{res}_{Q_n}(\eta))$.

We know that $C_{\Omega}(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2)$.

Building on previous work by Homma, Kim and Matthews, F. Torres and myself proved the following results.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, and let $G = \sum_{i=1}^{m} (n_i + p_i - 1)P_i$. Then $C_{\Omega}(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m$.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, with $n_i \leq p_i$ for all $i = 1, \ldots, m$, and that (q_1, \ldots, q_m) is also a pure gap whenever $n_i \leq q_i \leq p_i$, for all $i = 1, \ldots, m$. Let $G = \sum_{i=1}^{m} (n_i + p_i - 1)P_i$, then $C_{\Omega}(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m + \sum_{i=1}^{n}(p_i - n_i)$.
Assume that \(F \) is a finite field, let \(D := Q_1 + \cdots + Q_n \), where \(Q_1, \ldots, Q_n \) are distinct rational points of \(X \), all distinct from \(P_1, \ldots, P_m \), and let \(G \) be a divisor with support on \(P_1, \ldots, P_m \).

Let \(C_\Omega(D, G) \) be the algebraic geometry code which is the image of the map \(\varphi : \Omega(G - D) \rightarrow \mathbb{F}^n \) defined by \(\varphi(\eta) = (\text{res}_{Q_1}(\eta), \ldots, \text{res}_{Q_n}(\eta)) \).

We know that \(C_\Omega(D, G) \) is an \([n, k, d]\)-code, with \(d \geq \deg(G) - (2g - 2) \).

Building on previous work by Homma, Kim and Matthews, F. Torres and myself proved the following results.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H \), and let \(G = \sum_{i=1}^m (n_i + p_i - 1)P_i \). Then \(C_\Omega(D, G) \) is an \([n, k, d]\)-code, with \(d \geq \deg(G) - (2g - 2) + m \).

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H \), with \(n_i \leq p_i \) for all \(i = 1, \ldots, m \), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i \leq q_i \leq p_i \), for all \(i = 1, \ldots, m \). Let \(G = \sum_{i=1}^m (n_i + p_i - 1)P_i \), then \(C_\Omega(D, G) \) is an \([n, k, d]\)-code, with \(d \geq \deg(G) - (2g - 2) + m + \sum_{i=1}^n (p_i - n_i) \).
Weierstrass semigroup and AG codes

Assume that \mathbb{F} is a finite field, let $D := Q_1 + \cdots + Q_n$, where Q_1, \ldots, Q_n are distinct rational points of X, all distinct from P_1, \ldots, P_m, and let G be a divisor with support on P_1, \ldots, P_m. Let $C_\Omega(D, G)$ be the algebraic geometry code which is the image of the map $\varphi : \Omega(G - D) \to \mathbb{F}^n$ defined by $\varphi(\eta) = (\text{res}_{Q_1}(\eta), \ldots, \text{res}_{Q_n}(\eta))$.

We know that $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2)$.

Building on previous work by Homma, Kim and Matthews, F. Torres and myself proved the following results.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, and let $G = \sum_{i=1}^m (n_i + p_i - 1)P_i$. Then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m$.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, with $n_i \leq p_i$ for all $i = 1, \ldots, m$, and that (q_1, \ldots, q_m) is also a pure gap whenever $n_i \leq q_i \leq p_i$, for all $i = 1, \ldots, m$. Let $G = \sum_{i=1}^m (n_i + p_i - 1)P_i$, then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m + \sum_{i=1}^n (p_i - n_i)$.

Cícero Carvalho (UFU)
Weierstrass semigroup and AG codes

Assume that \(\mathbb{F} \) is a finite field, let \(D := Q_1 + \cdots + Q_n \), where \(Q_1, \ldots, Q_n \) are distinct rational points of \(X \), all distinct from \(P_1, \ldots, P_m \), and let \(G \) be a divisor with support on \(P_1, \ldots, P_m \).

Let \(C_\Omega(D, G) \) be the algebraic geometry code which is the image of the map \(\varphi : \Omega(G - D) \to \mathbb{F}^n \) defined by \(\varphi(\eta) = (\text{res}_{Q_1}(\eta), \ldots, \text{res}_{Q_n}(\eta)) \).

We know that \(C_\Omega(D, G) \) is an \([n, k, d]\)-code, with \(d \geq \deg(G) - (2g - 2) \).

Building on previous work by Homma, Kim and Matthews, F. Torres and myself proved the following results.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H \), and let \(G = \sum_{i=1}^{m}(n_i + p_i - 1)P_i \). Then \(C_\Omega(D, G) \) is an \([n, k, d]\)-code, with \(d \geq \deg(G) - (2g - 2) + m \).

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H \), with \(n_i \leq p_i \) for all \(i = 1, \ldots, m \), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i \leq q_i \leq p_i \), for all \(i = 1, \ldots, m \). Let \(G = \sum_{i=1}^{m}(n_i + p_i - 1)P_i \), then \(C_\Omega(D, G) \) is an \([n, k, d]\)-code, with \(d \geq \deg(G) - (2g - 2) + m + \sum_{i=1}^{n}(p_i - n_i) \).
Weierstrass semigroup and AG codes

Weierstrass semigroup of two rational points in $Y^8 + Y = X^9$ over \mathbb{F}_{64}.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, and let $G = \sum_{i=1}^{m} (n_i + p_i - 1)P_i$. Then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m$.

Theorem. Assume that (n_1, \ldots, n_m) and (p_1, \ldots, p_m) are pure gaps of H, with $n_i \leq p_i$ for all $i = 1, \ldots, m$, and that (q_1, \ldots, q_m) is also a pure gap whenever $n_i \leq q_i \leq p_i$, for all $i = 1, \ldots, m$. Let $G = \sum_{i=1}^{m} (n_i + p_i - 1)P_i$, then $C_\Omega(D, G)$ is an $[n, k, d]$-code, with $d \geq \deg(G) - (2g - 2) + m + \sum_{i=1}^{n} (p_i - n_i)$.
A similar improvement can be made to bounds for the generalized Hamming distance of AG codes.

Let r be a positive integer, and $C \subset \mathbb{F}^m$ a linear code. Let U be a subcode of C, the support of U is defined as

$$\text{supp}(U) := \{i \mid c_i \neq 0 \text{ for some } (c_1, \ldots, c_m) \in U\}.$$

The r-th generalized Hamming distance of C is defined as

$$d_r(C) = \min\{\#(\text{supp}(U)) \mid U \text{ is a subcode of } C, \ dim(U) = r\}.$$

Let s be a positive integer and set

$$\gamma_s := \{\min(\deg(A)) \mid A \text{ a divisor with } \dim L(A) = s\}.$$

The sequence $\gamma_1, \gamma_2, \ldots$ is the gonality sequence of X; $\gamma_1 = 0$ and γ_2 is the gonality of X. This concept was introduced by Yang, Kummar and Stichtenoth in a paper where they proved the following result.

Theorem. The r-th generalized Hamming distance of an AG code of length n defined over X satisfies

i) $d_r(C_L(D, G)) \geq n - \deg(G) + \gamma_r$;

ii) $d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r$.

Cícero Carvalho (UFU) Inflection points on curves and coding theory 7 / 12
Weierstrass semigroup and AG codes

A similar improvement can be made to bounds for the generalized Hamming distance of AG codes.

Let r be a positive integer, and $C \subseteq \mathbb{F}^m$ a linear code. Let U be a subcode of C, the support of U is defined as

$$\text{supp}(U) := \{i \mid c_i \neq 0 \text{ for some } (c_1, \ldots, c_m) \in U\}.$$

The r-th generalized Hamming distance of C is defined as

$$d_r(C) = \min\{\#(\text{supp}(U)) \mid U \text{ is a subcode of } C, \dim(U) = r\}.$$

Let s be a positive integer and set

$$\gamma_s := \{\min(\deg(A)) \mid A \text{ a divisor with } \dim L(A) = s\}.$$

The sequence $\gamma_1, \gamma_2, \ldots$ is the gonality sequence of X; $\gamma_1 = 0$ and γ_2 is the gonality of X. This concept was introduced by Yang, Kummar and Stichtenoth in a paper where they proved the following result.

Theorem. The r-th generalized Hamming distance of an AG code of length n defined over X satisfies

i) $d_r(C_L(D, G)) \geq n - \deg(G) + \gamma_r$;

ii) $d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r$.
A similar improvement can be made to bounds for the generalized Hamming distance of AG codes. Let \(r \) be a positive integer, and \(C \subset \mathbb{F}^m \) a linear code. Let \(U \) be a subcode of \(C \), the support of \(U \) is defined as \(\text{supp}(U) := \{i \mid c_i \neq 0 \text{ for some } (c_1, \ldots, c_m) \in U\} \). The \(r \)-th generalized Hamming distance of \(C \) is defined as

\[
d_r(C) = \min\{\#(\text{supp}(U)) \mid U \text{ is a subcode of } C, \dim(U) = r\}.
\]

Let \(s \) be a positive integer and set \(\gamma_s := \{\min(\deg(A)) \mid A \text{ a divisor with } \dim L(A) = s\} \). The sequence \(\gamma_1, \gamma_2, \ldots \) is the gonality sequence of \(X \); \(\gamma_1 = 0 \) and \(\gamma_2 \) is the gonality of \(X \). This concept was introduced by Yang, Kummar and Stichtenoth in a paper where they proved the following result.

Theorem. The \(r \)-th generalized Hamming distance of an AG code of length \(n \) defined over \(X \) satisfies

i) \(d_r(C_L(D, G)) \geq n - \deg(G) + \gamma_r \);

ii) \(d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r \).
Weierstrass semigroup and AG codes

A similar improvement can be made to bounds for the generalized Hamming distance of AG codes.

Let r be a positive integer, and $C \subset \mathbb{F}_m$ a linear code. Let U be a subcode of C, the support of U is defined as

$$\text{supp}(U) := \{i \mid c_i \neq 0 \text{ for some } (c_1, \ldots, c_m) \in U\}.$$

The r-th generalized Hamming distance of C is defined as

$$d_r(C) = \min\{\#(\text{supp}(U)) \mid U \text{ is a subcode of } C, \dim(U) = r\}.$$

Let s be a positive integer and set

$$\gamma_s := \{\min(\deg(A)) \mid A \text{ a divisor with } \dim L(A) = s\}.$$

The sequence $\gamma_1, \gamma_2, \ldots$ is the gonality sequence of X; $\gamma_1 = 0$ and γ_2 is the gonality of X. This concept was introduced by Yang, Kummar and Stichtenoth in a paper where they proved the following result.

Theorem. The r-th generalized Hamming distance of an AG code of length n defined over X satisfies

i) $d_r(C_L(D, G)) \geq n - \deg(G) + \gamma_r$;

ii) $d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r$.

Cícero Carvalho (UFU)
A similar improvement can be made to bounds for the generalized Hamming distance of AG codes. Let r be a positive integer, and $C \subset \mathbb{F}^m$ a linear code. Let U be a subcode of C, the support of U is defined as $\text{supp}(U) := \{ i \mid c_i \neq 0 \text{ for some } (c_1, \ldots, c_m) \in U \}$. The r-th generalized Hamming distance of C is defined as

$$d_r(C) = \min \{ \#(\text{supp}(U)) \mid U \text{ is a subcode of } C, \dim(U) = r \}.$$

Let s be a positive integer and set

$$\gamma_s := \{ \min(\deg(A)) \mid A \text{ a divisor with } \dim L(A) = s \}.$$ The sequence $\gamma_1, \gamma_2, \ldots$ is the gonality sequence of X; $\gamma_1 = 0$ and γ_2 is the gonality of X. This concept was introduced by Yang, Kummar and Stichtenoth in a paper where they proved the following result.

Theorem. The r-th generalized Hamming distance of an AG code of length n defined over X satisfies

i) $d_r(C_L(D, G)) \geq n - \deg(G) + \gamma_r$;

ii) $d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r$.
A similar improvement can be made to bounds for the generalized Hamming distance of AG codes. Let r be a positive integer, and $C \subseteq \mathbb{F}^m$ a linear code. Let U be a subcode of C, the support of U is defined as
\[
supp(U) := \{i \mid c_i \neq 0 \text{ for some } (c_1, \ldots, c_m) \in U\}.
\]
The r-th generalized Hamming distance of C is defined as
\[
d_r(C) = \min\{\#(supp(U)) \mid U \text{ is a subcode of } C, \dim(U) = r\}.
\]
Let s be a positive integer and set
\[
\gamma_s := \{\min(\deg(A)) \mid A \text{ a divisor with } \dim L(A) = s\}.
\]
The sequence $\gamma_1, \gamma_2, \ldots$ is the gonality sequence of X; $\gamma_1 = 0$ and γ_2 is the gonality of X. This concept was introduced by Yang, Kummar and Stichtenoth in a paper where they proved the following result.

Theorem. The r-th generalized Hamming distance of an AG code of length n defined over X satisfies
\begin{enumerate}[i)]
\item $d_r(C_L(D, G)) \geq n - \deg(G) + \gamma_r$;
\item $d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r$.
\end{enumerate}
Weierstrass semigroup and AG codes

A similar improvement can be made to bounds for the generalized Hamming distance of AG codes.

Let r be a positive integer, and $C \subset \mathbb{F}^m$ a linear code. Let U be a subcode of C, the support of U is defined as

$$\text{supp}(U) := \{i \mid c_i \neq 0 \text{ for some } (c_1, \ldots, c_m) \in U\}.$$

The r-th generalized Hamming distance of C is defined as

$$d_r(C) = \min\{\#(\text{supp}(U)) \mid U \text{ is a subcode of } C, \dim(U) = r\}.$$

Let s be a positive integer and set

$$\gamma_s := \{\min(\deg(A)) \mid A \text{ a divisor with } \dim L(A) = s\}.$$

The sequence $\gamma_1, \gamma_2, \ldots$ is the gonality sequence of X; $\gamma_1 = 0$ and γ_2 is the gonality of X. This concept was introduced by Yang, Kummar and Stichtenoth in a paper where they proved the following result.

Theorem. The r-th generalized Hamming distance of an AG code of length n defined over X satisfies

i) $d_r(C_L(D, G)) \geq n - \deg(G) + \gamma_r$;

ii) $d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r$.

Cícero Carvalho (UFU) Inflection points on curves and coding theory
A similar improvement can be made to bounds for the generalized Hamming distance of AG codes.

Let r be a positive integer, and $C \subseteq \mathbb{F}^m$ a linear code. Let U be a subcode of C, the support of U is defined as $\text{supp}(U) := \{ i \mid c_i \neq 0 \text{ for some } (c_1, \ldots, c_m) \in U \}$. The r-th generalized Hamming distance of C is defined as

$$d_r(C) = \min\{\#(\text{supp}(U)) \mid U \text{ is a subcode of } C, \dim(U) = r\}.$$

Let s be a positive integer and set $\gamma_s := \{\min(\deg(A)) \mid A \text{ a divisor with } \dim(L(A)) = s\}$. The sequence $\gamma_1, \gamma_2, \ldots$ is the gonality sequence of X; $\gamma_1 = 0$ and γ_2 is the gonality of X. This concept was introduced by Yang, Kummar and Stichtenoth in a paper where they proved the following result.

Theorem. The r-th generalized Hamming distance of an AG code of length n defined over X satisfies

i) $d_r(C_L(D, G)) \geq n - \deg(G) + \gamma_r$;

ii) $d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r$.

Cícero Carvalho (UFU) Inflection points on curves and coding theory 7 / 12
Weierstrass semigroup and AG codes

A similar improvement can be made to bounds for the generalized Hamming distance of AG codes. Let r be a positive integer, and $C \subset \mathbb{F}^m$ a linear code. Let U be a subcode of C, the support of U is defined as
\[
\text{supp}(U) := \{i \mid c_i \neq 0 \text{ for some } (c_1, \ldots, c_m) \in U\}.
\]
The \textit{r-th generalized Hamming distance} of C is defined as
\[
d_r(C) = \min\{\#(\text{supp}(U)) \mid U \text{ is a subcode of } C, \dim(U) = r\}.
\]
Let s be a positive integer and set
\[
\gamma_s := \{\min(\deg(A)) \mid A \text{ a divisor with } \dim L(A) = s\}.
\]
The sequence $\gamma_1, \gamma_2, \ldots$ is the \textit{gonality sequence} of X; $\gamma_1 = 0$ and γ_2 is the gonality of X. This concept was introduced by Yang, Kummar and Stichtenoth in a paper where they proved the following result.

Theorem. The \textit{r-th generalized Hamming distance} of an AG code of length n defined over X satisfies
i) $d_r(C_L(D, G)) \geq n - \deg(G) + \gamma_r$;
ii) $d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r$.
A similar improvement can be made to bounds for the generalized Hamming distance of AG codes.

Let r be a positive integer, and $C \subset \mathbb{F}^m$ a linear code. Let U be a subcode of C, the support of U is defined as

$$\text{supp}(U) := \{i \mid c_i \neq 0 \text{ for some } (c_1, \ldots, c_m) \in U\}.$$

The r-th generalized Hamming distance of C is defined as

$$d_r(C) = \min \{\#(\text{supp}(U)) \mid U \text{ is a subcode of } C, \dim(U) = r\}.$$

Let s be a positive integer and set

$$\gamma_s := \{\min(\deg(A)) \mid A \text{ a divisor with } \dim L(A) = s\}. \quad \text{The sequence }
\gamma_1, \gamma_2, \ldots \text{ is the gonality sequence of } X; \quad \gamma_1 = 0 \text{ and } \gamma_2 \text{ is the gonality of } X.$$

This concept was introduced by Yang, Kummar and Stichtenoth in a paper where they proved the following result.

Theorem. The r-th generalized Hamming distance of an AG code of length n defined over X satisfies

1) $d_r(C_L(D, G)) \geq n - \deg(G) + \gamma_r$;
2) $d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r$.

Cícero Carvalho (UFU)
Inflection points on curves and coding theory
A similar improvement can be made to bounds for the generalized Hamming distance of AG codes.

Let r be a positive integer, and $C \subseteq \mathbb{F}^m$ a linear code. Let U be a subcode of C, the support of U is defined as

$$\text{supp}(U) := \{i \mid c_i \neq 0 \text{ for some } (c_1, \ldots, c_m) \in U\}.$$

The r-th generalized Hamming distance of C is defined as

$$d_r(C) = \min \{\#(\text{supp}(U)) \mid U \text{ is a subcode of } C, \dim(U) = r\}.$$

Let s be a positive integer and set

$$\gamma_s := \{\min(\deg(A)) \mid A \text{ a divisor with } \dim L(A) = s\}. \quad \text{The sequence } \gamma_1, \gamma_2, \ldots \text{ is the gonality sequence of } X; \quad \gamma_1 = 0 \text{ and } \gamma_2 \text{ is the gonality of } X.$$

This concept was introduced by Yang, Kummar and Stichtenoth in a paper where they proved the following result.

Theorem. The r-th generalized Hamming distance of an AG code of length n defined over X satisfies

i) $d_r(C_L(D, G)) \geq n - \deg(G) + \gamma_r$;

ii) $d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r$.

Cícero Carvalho (UFU) Inflection points on curves and coding theory 7 / 12
A similar improvement can be made to bounds for the generalized Hamming distance of AG codes. Let r be a positive integer, and $C \subset \mathbb{F}^m$ a linear code. Let U be a subcode of C, the support of U is defined as $\text{supp}(U) := \{ i \mid c_i \neq 0 \text{ for some } (c_1, \ldots, c_m) \in U \}$. The r-th generalized Hamming distance of C is defined as $d_r(C) = \min \{ \#(\text{supp}(U)) \mid U \text{ is a subcode of } C, \dim(U) = r \}$. Let s be a positive integer and set $\gamma_s := \{ \min(\deg(A)) \mid A \text{ a divisor with } \dim L(A) = s \}$. The sequence $\gamma_1, \gamma_2, \ldots$ is the gonality sequence of X; $\gamma_1 = 0$ and γ_2 is the gonality of X. This concept was introduced by Yang, Kummar and Stichtenoth in a paper where they proved the following result.

Theorem. The r-th generalized Hamming distance of an AG code of length n defined over X satisfies

i) $d_r(C_L(D, G)) \geq n - \deg(G) + \gamma_r$;

ii) $d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r$.

Weierstrass semigroup and AG codes

A similar improvement can be made to bounds for the generalized Hamming distance of AG codes.

Let r be a positive integer, and $C \subseteq \mathbb{F}^m$ a linear code. Let U be a subcode of C, the support of U is defined as

$\text{supp}(U) := \{i \mid c_i \neq 0 \text{ for some } (c_1, \ldots, c_m) \in U\}$.

The r-th generalized Hamming distance of C is defined as

$$d_r(C) = \min \{\#(\text{supp}(U)) \mid U \text{ is a subcode of } C, \dim(U) = r\}.$$

Let s be a positive integer and set

$$\gamma_s := \{\min(\deg(A)) \mid A \text{ a divisor with } \dim L(A) = s\}.$$

The sequence $\gamma_1, \gamma_2, \ldots$ is the gonality sequence of X; $\gamma_1 = 0$ and γ_2 is the gonality of X.

This concept was introduced by Yang, Kummar and Stichtenoth in a paper where they proved the following result.

Theorem. The r-th generalized Hamming distance of an AG code of length n defined over X satisfies

i) $d_r(C_L(D, G)) \geq n - \deg(G) + \gamma_r$;

ii) $d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r$.
A similar improvement can be made to bounds for the generalized Hamming distance of AG codes. Let r be a positive integer, and $C \subset \mathbb{F}^m$ a linear code. Let U be a subcode of C, the support of U is defined as
$$\text{supp}(U) := \{i \mid c_i \neq 0 \text{ for some } (c_1, \ldots, c_m) \in U\}.$$ The r-th generalized Hamming distance of C is defined as
$$d_r(C) = \min \{\#(\text{supp}(U)) \mid U \text{ is a subcode of } C, \dim(U) = r\}.$$ Let s be a positive integer and set
$$\gamma_s := \{\min(\deg(A)) \mid A \text{ a divisor with } \dim L(A) = s\}.$$ The sequence $\gamma_1, \gamma_2, \ldots$ is the gonality sequence of X; $\gamma_1 = 0$ and γ_2 is the gonality of X. This concept was introduced by Yang, Kummar and Stichtenoth in a paper where they proved the following result.

Theorem. The r-th generalized Hamming distance of an AG code of length n defined over X satisfies

i) $d_r(C_L(D, G)) \geq n - \deg(G) + \gamma_r$;

ii) $d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r$.

Cícero Carvalho (UFU) Inflection points on curves and coding theory 7 / 12
A similar improvement can be made to bounds for the generalized Hamming distance of AG codes. Let \(r \) be a positive integer, and \(C \subset \mathbb{F}^m \) a linear code. Let \(U \) be a subcode of \(C \), the support of \(U \) is defined as
\[
\text{supp}(U) := \{ i \mid c_i \neq 0 \text{ for some } (c_1, \ldots, c_m) \in U \}.
\]
The \(r \)-th generalized Hamming distance of \(C \) is defined as
\[
d_r(C) = \min \{ \#(\text{supp}(U)) \mid U \text{ is a subcode of } C, \dim(U) = r \}.
\]
Let \(s \) be a positive integer and set
\[
\gamma_s := \{ \min(\deg(A)) \mid A \text{ a divisor with } \dim L(A) = s \}.
\]
The sequence \(\gamma_1, \gamma_2, \ldots \) is the gonality sequence of \(X \); \(\gamma_1 = 0 \) and \(\gamma_2 \) is the gonality of \(X \). This concept was introduced by Yang, Kummar and Stichtenoth in a paper where they proved the following result.

Theorem. The \(r \)-th generalized Hamming distance of an AG code of length \(n \) defined over \(X \) satisfies
\[
i) \ d_r(C_L(D, G)) \geq n - \deg(G) + \gamma_r;
\]
\[
ii) \ d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r.
\]

Cícero Carvalho (UFU) Inflection points on curves and coding theory
Weierstrass semigroup and AG codes

Using the concept of pure gaps we were able to prove the following result.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H\), with \(n_i \leq p_i\) for all \(i = 1, \ldots, m\), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i \leq q_i \leq p_i\), for all \(i = 1, \ldots, m\). Let \(G := \sum_{i=1}^m p_i P_i\). Then:

i) \(d_r(C_L(D, G)) \geq n - \deg(G) + \sum_{i=1}^m (p_i - n_i) + m + \gamma_r\);

ii) \(d_r(C_\Omega(D, G)) \geq \deg(G) - (2g-2) + \gamma_r + \sum_{i=1}^m (p_i - n_i) + m - (\sum_{i=1}^m (p_i - n_i) + m)\).

The last item can lead to an improvement because \(\gamma_r < \gamma_{r+1}\) for all positive integers \(r\).

Thus the existence of pure gaps in \(H\) may lead to an improvement of the bounds for the generalized Hamming distances of AG codes. Now we will show that the existence of total inflection points in plane curves determine the existence of pure gaps in certain Weierstrass semigroups.
Using the concept of pure gaps we were able to prove the following result.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H\), with \(n_i \leq p_i\) for all \(i = 1, \ldots, m\), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i \leq q_i \leq p_i\), for all \(i = 1, \ldots, m\). Let \(G := \sum_{i=1}^{m} p_i P_i\). Then:

i) \(d_r(C_L(D, G)) \geq n - \deg(G) + \sum_{i=1}^{m} (p_i - n_i) + m + \gamma_r\);

ii) \(d_r(C_\Omega(D, G)) \geq \deg(G) - (2g-2) + \gamma_r + \sum_{i=1}^{m} (p_i - n_i) + m - (\sum_{i=1}^{m} (p_i - n_i) + m)\).

The last item can lead to an improvement because \(\gamma_r < \gamma_{r+1}\) for all positive integers \(r\).

Thus the existence of pure gaps in \(H\) may lead to an improvement of the bounds for the generalized Hamming distances of AG codes. Now we will show that the existence of total inflection points in plane curves determine the existence of pure gaps in certain Weierstrass semigroups.
Weierstrass semigroup and AG codes

Using the concept of pure gaps we were able to prove the following result.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H\), with \(n_i \leq p_i\) for all \(i = 1, \ldots, m\), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i \leq q_i \leq p_i\), for all \(i = 1, \ldots, m\). Let \(G := \sum_{i=1}^m p_i P_i\). Then:

i) \(d_r(C_L(D, G)) \geq n - \deg(G) + \sum_{i=1}^m (p_i - n_i) + m + \gamma_r\);

ii) \(d_r(C_\Omega(D, G)) \geq \deg(G) - (2g-2) + \gamma_r + \sum_{i=1}^m (p_i - n_i) + m - (\sum_{i=1}^m (p_i - n_i) + m)\).

The last item can lead to an improvement because \(\gamma_r < \gamma_{r+1}\) for all positive integers \(r\).

Thus the existence of pure gaps in \(H\) may lead to an improvement of the bounds for the generalized Hamming distances of AG codes. Now we will show that the existence of total inflection points in plane curves determine the existence of pure gaps in certain Weierstrass semigroups.
Using the concept of pure gaps we were able to prove the following result.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H\), with \(n_i \leq p_i\) for all \(i = 1, \ldots, m\), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i \leq q_i \leq p_i\), for all \(i = 1, \ldots, m\). Let \(G := \sum_{i=1}^{m} p_i P_i\). Then:

i) \(d_r(C_L(D, G)) \geq n - \deg(G) + \sum_{i=1}^{m} (p_i - n_i) + m + \gamma_r\);

ii) \(d_r(C_\Omega(D, G)) \geq \deg(G) - (2g-2) + \gamma_r + \sum_{i=1}^{m} (p_i - n_i) + m - (\sum_{i=1}^{m} (p_i - n_i) + m)\).

The last item can lead to an improvement because \(\gamma_r < \gamma_{r+1}\) for all positive integers \(r\).

Thus the existence of pure gaps in \(H\) may lead to an improvement of the bounds for the generalized Hamming distances of AG codes. Now we will show that the existence of total inflection points in plane curves determine the existence of pure gaps in certain Weierstrass semigroups.
Weierstrass semigroup and AG codes

Using the concept of pure gaps we were able to prove the following result.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H\), with \(n_i \leq p_i\) for all \(i = 1, \ldots, m\), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i \leq q_i \leq p_i\), for all \(i = 1, \ldots, m\). Let \(G := \sum_{i=1}^{m} p_i P_i\). Then:

i) \(d_r(C_L(D, G)) \geq n - \deg(G) + \sum_{i=1}^{m} (p_i - n_i) + m + \gamma_r\);

ii) \(d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r + \sum_{i=1}^{m} (p_i - n_i) + m - (\sum_{i=1}^{m} (p_i - n_i) + m)\).

The last item can lead to an improvement because \(\gamma_r < \gamma_{r+1}\) for all positive integers \(r\).

Thus the existence of pure gaps in \(H\) may lead to an improvement of the bounds for the generalized Hamming distances of AG codes. Now we will show that the existence of total inflection points in plane curves determine the existence of pure gaps in certain Weierstrass semigroups.
Weierstrass semigroup and AG codes

Using the concept of pure gaps we were able to prove the following result.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H\), with \(n_i \leq p_i\) for all \(i = 1, \ldots, m\), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i \leq q_i \leq p_i\), for all \(i = 1, \ldots, m\). Let \(G := \sum_{i=1}^{m} p_i P_i\). Then:

i) \(d_r(C_L(D, G)) \geq n - \deg(G) + \sum_{i=1}^{m} (p_i - n_i) + m + \gamma_r\);

ii) \(d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r + \sum_{i=1}^{m} (p_i - n_i) + m - (\sum_{i=1}^{m} (p_i - n_i) + m)\).

The last item can lead to an improvement because \(\gamma_r < \gamma_{r+1}\) for all positive integers \(r\).

Thus the existence of pure gaps in \(H\) may lead to an improvement of the bounds for the generalized Hamming distances of AG codes. Now we will show that the existence of total inflection points in plane curves determine the existence of pure gaps in certain Weierstrass semigroups.
Using the concept of pure gaps we were able to prove the following result.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H\), with \(n_i \leq p_i\) for all \(i = 1, \ldots, m\), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i \leq q_i \leq p_i\), for all \(i = 1, \ldots, m\). Let \(G := \sum_{i=1}^{m} p_i P_i\). Then:

i) \(d_r(C_L(D, G)) \geq n - \text{deg}(G) + \sum_{i=1}^{m}(p_i - n_i) + m + \gamma_r\);

ii) \(d_r(C_\Omega(D, G)) \geq \text{deg}(G) - (2g-2) + \gamma_r + \sum_{i=1}^{m}(p_i - n_i) + m - (\sum_{i=1}^{m}(p_i - n_i) + m)\).

The last item can lead to an improvement because \(\gamma_r < \gamma_{r+1}\) for all positive integers \(r\).

Thus the existence of pure gaps in \(H\) may lead to an improvement of the bounds for the generalized Hamming distances of AG codes. Now we will show that the existence of total inflection points in plane curves determine the existence of pure gaps in certain Weierstrass semigroups.
Using the concept of pure gaps we were able to prove the following result.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H\), with \(n_i \leq p_i\) for all \(i = 1, \ldots, m\), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i \leq q_i \leq p_i\), for all \(i = 1, \ldots, m\). Let \(G := \sum_{i=1}^{m} p_i P_i\). Then:

i) \(d_r(C_L(D, G)) \geq n - \deg(G) + \sum_{i=1}^{m} (p_i - n_i) + m + \gamma_r\);

ii) \(d_r(C_\Omega(D, G)) \geq \deg(G) - (2g-2) + \gamma_r + \sum_{i=1}^{m} (p_i - n_i) + m - (\sum_{i=1}^{m} (p_i - n_i) + m)\).

The last item can lead to an improvement because \(\gamma_r < \gamma_{r+1}\) for all positive integers \(r\).

Thus the existence of pure gaps in \(H\) may lead to an improvement of the bounds for the generalized Hamming distances of AG codes. Now we will show that the existence of total inflection points in plane curves determine the existence of pure gaps in certain Weierstrass semigroups.
Using the concept of pure gaps we were able to prove the following result.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H\), with \(n_i \leq p_i\) for all \(i = 1, \ldots, m\), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i \leq q_i \leq p_i\), for all \(i = 1, \ldots, m\). Let \(G := \sum_{i=1}^m p_i P_i\). Then:

i) \(d_r(C_L(D, G)) \geq n - \deg(G) + \sum_{i=1}^m (p_i - n_i) + m + \gamma_r\);

ii) \(d_r(C_\Omega(D, G)) \geq \deg(G) - (2g-2) + \gamma_r + \sum_{i=1}^m (p_i - n_i) + m - (\sum_{i=1}^m (p_i - n_i) + m)\).

The last item can lead to an improvement because \(\gamma_r < \gamma_{r+1}\) for all positive integers \(r\).

Thus the existence of pure gaps in \(H\) may lead to an improvement of the bounds for the generalized Hamming distances of AG codes. Now we will show that the existence of total inflection points in plane curves determine the existence of pure gaps in certain Weierstrass semigroups.
Using the concept of pure gaps we were able to prove the following result.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H\), with \(n_i \leq p_i\) for all \(i = 1, \ldots, m\), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i \leq q_i \leq p_i\), for all \(i = 1, \ldots, m\). Let \(G := \sum_{i=1}^{m} p_i P_i\). Then:

i) \(d_r(C_L(D, G)) \geq n - \deg(G) + \sum_{i=1}^{m} (p_i - n_i) + m + \gamma_r;\)

ii) \(d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r + \sum_{i=1}^{m} (p_i - n_i) + m - (\sum_{i=1}^{m} (p_i - n_i) + m).\)

The last item can lead to an improvement because \(\gamma_r < \gamma_{r+1}\) for all positive integers \(r\).

Thus the existence of pure gaps in \(H\) may lead to an improvement of the bounds for the generalized Hamming distances of AG codes. Now we will show that the existence of total inflection points in plane curves determine the existence of pure gaps in certain Weierstrass semigroups.
Weierstrass semigroup and AG codes

Using the concept of pure gaps we were able to prove the following result.

Theorem. Assume that \((n_1, \ldots, n_m)\) and \((p_1, \ldots, p_m)\) are pure gaps of \(H\), with \(n_i \leq p_i\) for all \(i = 1, \ldots, m\), and that \((q_1, \ldots, q_m)\) is also a pure gap whenever \(n_i \leq q_i \leq p_i\), for all \(i = 1, \ldots, m\). Let \(G := \sum_{i=1}^{m} p_i P_i\). Then:

i) \(d_r(C_L(D, G)) \geq n - \deg(G) + \sum_{i=1}^{m} (p_i - n_i) + m + \gamma_r\);

ii) \(d_r(C_\Omega(D, G)) \geq \deg(G) - (2g - 2) + \gamma_r + \sum_{i=1}^{m} (p_i - n_i) + m - (\sum_{i=1}^{m} (p_i - n_i) + m)\).

The last item can lead to an improvement because \(\gamma_r < \gamma_{r+1}\) for all positive integers \(r\).

Thus the existence of pure gaps in \(H\) may lead to an improvement of the bounds for the generalized Hamming distances of AG codes. Now we will show that the existence of total inflection points in plane curves determine the existence of pure gaps in certain Weierstrass semigroups.
Assume that X is a smooth plane, projective curve, of degree $r > 4$. We say that $P \in X$ is a total inflection point if the tangent line at P intersects X only at P. In a work with T. Kato, we proved the following.

Theorem. Let P_1, P_2 and P_3 be rational, total inflection points of X which do not lie in a line. Then $((r - 4)r, 1, 1), (1, (r - 4)r, 1)$ and $(1, 1, (r - 4)r)$ are pure gaps of $H(P_1, P_2, P_3)$.

Theorem. Let P_1, \ldots, P_m be total inflection points on X. Then $(s_1 r + \alpha_1, \ldots, s_m r + \alpha_m)$ is a pure gap of $H(P_1, \ldots, P_m)$, whenever s_i, α_i are integers such that $s_i \geq 0, 1 \leq \alpha_i \leq r - 1 - i - \sum_{j=1}^{m} s_j$, for all $i = 1, \ldots, m$, and $\sum_{j=1}^{m} s_j \leq r - 2 - m$.

Theorem. Let $P, P_1, \ldots, P_m \in X$ be rational points, with P a total inflection point. Let $0 \leq i < r - 3$ and $\alpha_1, \ldots, \alpha_m$ be positive integers such that $\sum_{j=1}^{m} \alpha_j \leq r - i - 3$. Then $(ir + 1, \alpha_1, \ldots, \alpha_m)$ is a pure gap of $H(P, P_1, \ldots, P_m)$.

Cícero Carvalho (UFU)
Assume that X is a smooth plane, projective curve, of degree $r > 4$.

We say that $P \in X$ is a total inflection point if the tangent line at P intersects X only at P. In a work with T. Kato, we proved the following.

Theorem. Let P_1, P_2 and P_3 be rational, total inflection points of X which do not lie in a line. Then $((r - 4)r, 1, 1)$, $(1, (r - 4)r, 1)$ and $(1, 1, (r - 4)r)$ are pure gaps of $H(P_1, P_2, P_3)$.

Theorem. Let P_1, \ldots, P_m be total inflection points on X. Then $(s_1 r + \alpha_1, \ldots, s_m r + \alpha_m)$ is a pure gap of $H(P_1, \ldots, P_m)$, whenever s_i, α_i are integers such that $s_i \geq 0$, $1 \leq \alpha_i \leq r - 1 - i - \sum_{j=1}^{m} s_j$, for all $i = 1, \ldots, m$, and $\sum_{j=1}^{m} s_j \leq r - 2 - m$.

Theorem. Let $P, P_1, \ldots, P_m \in X$ be rational points, with P a total inflection point. Let $0 \leq i < r - 3$ and $\alpha_1, \ldots, \alpha_m$ be positive integers such that $\sum_{j=1}^{m} \alpha_j \leq r - i - 3$. Then $(ir + 1, \alpha_1, \ldots, \alpha_m)$ is a pure gap of $H(P, P_1, \ldots, P_m)$.
Assume that \(X \) is a smooth plane, projective curve, of degree \(r > 4 \).

We say that \(P \in X \) is a **total inflection point** if the tangent line at \(P \) intersects \(X \) only at \(P \). In a work with T. Kato, we proved the following.

Theorem. Let \(P_1, P_2 \) and \(P_3 \) be rational, total inflection points of \(X \) which do not lie in a line. Then \(((r - 4)r, 1, 1), (1, (r - 4)r, 1) \) and \((1, 1, (r - 4)r) \) are pure gaps of \(H(P_1, P_2, P_3) \).

Theorem. Let \(P_1, \ldots, P_m \) be total inflection points on \(X \). Then \((s_1 r + \alpha_1, \ldots, s_m r + \alpha_m) \) is a pure gap of \(H(P_1, \ldots, P_m) \), whenever \(s_i, \alpha_i \) are integers such that \(s_i \geq 0, 1 \leq \alpha_i \leq r - 1 - i - \sum_{j=1}^{m} s_j \), for all \(i = 1, \ldots, m \), and \(\sum_{j=1}^{m} s_j \leq r - 2 - m \).

Theorem. Let \(P, P_1, \ldots, P_m \in X \) be rational points, with \(P \) a total inflection point. Let \(0 \leq i < r - 3 \) and \(\alpha_1, \ldots, \alpha_m \) be positive integers such that \(\sum_{j=1}^{m} \alpha_j \leq r - i - 3 \). Then \((ir + 1, \alpha_1, \ldots, \alpha_m) \) is a pure gap of \(H(P, P_1, \ldots, P_m) \).
Total inflection points and pure gaps

Assume that X is a smooth plane, projective curve, of degree $r > 4$. We say that $P \in X$ is a total inflection point if the tangent line at P intersects X only at P. In a work with T. Kato, we proved the following.

Theorem. Let P_1, P_2 and P_3 be rational, total inflection points of X which do not lie in a line. Then $((r - 4)r, 1, 1)$, $(1, (r - 4)r, 1)$ and $(1, 1, (r - 4)r)$ are pure gaps of $H(P_1, P_2, P_3)$.

Theorem. Let P_1, \ldots, P_m be total inflection points on X. Then $(s_1 r + \alpha_1, \ldots, s_m r + \alpha_m)$ is a pure gap of $H(P_1, \ldots, P_m)$, whenever s_i, α_i are integers such that $s_i \geq 0$, $1 \leq \alpha_i \leq r - 1 - i - \sum_{j=1}^{m} s_j$, for all $i = 1, \ldots, m$, and $\sum_{j=1}^{m} s_j \leq r - 2 - m$.

Theorem. Let $P, P_1, \ldots, P_m \in X$ be rational points, with P a total inflection point. Let $0 \leq i < r - 3$ and $\alpha_1, \ldots, \alpha_m$ be positive integers such that $\sum_{j=1}^{m} \alpha_j \leq r - i - 3$. Then $(ir + 1, \alpha_1, \ldots, \alpha_m)$ is a pure gap of $H(P, P_1, \ldots, P_m)$.
Total inflection points and pure gaps

Assume that X is a smooth plane, projective curve, of degree $r > 4$. We say that $P \in X$ is a total inflection point if the tangent line at P intersects X only at P. In a work with T. Kato, we proved the following.

Theorem. Let P_1, P_2 and P_3 be rational, total inflection points of X which do not lie in a line. Then $((r - 4)r, 1, 1), (1, (r - 4)r, 1)$ and $(1, 1, (r - 4)r)$ are pure gaps of $H(P_1, P_2, P_3)$.

Theorem. Let P_1, \ldots, P_m be total inflection points on X. Then $(s_1 r + \alpha_1, \ldots, s_m r + \alpha_m)$ is a pure gap of $H(P_1, \ldots, P_m)$, whenever s_i, α_i are integers such that $s_i \geq 0, 1 \leq \alpha_i \leq r - 1 - i - \sum_{j=1}^{m} s_j$, for all $i = 1, \ldots, m$, and $\sum_{j=1}^{m} s_j \leq r - 2 - m$.

Theorem. Let $P, P_1, \ldots, P_m \in X$ be rational points, with P a total inflection point. Let $0 \leq i < r - 3$ and $\alpha_1, \ldots, \alpha_m$ be positive integers such that $\sum_{j=1}^{m} \alpha_j \leq r - i - 3$. Then $(ir + 1, \alpha_1, \ldots, \alpha_m)$ is a pure gap of $H(P, P_1, \ldots, P_m)$.
Assume that X is a smooth plane, projective curve, of degree $r > 4$. We say that $P \in X$ is a total inflection point if the tangent line at P intersects X only at P. In a work with T. Kato, we proved the following.

Theorem. Let P_1, P_2 and P_3 be rational, total inflection points of X which do not lie in a line. Then $((r - 4)r, 1, 1), (1, (r - 4)r, 1)$ and $(1, 1, (r - 4)r)$ are pure gaps of $H(P_1, P_2, P_3)$.

Theorem. Let P_1, \ldots, P_m be total inflection points on X. Then $(s_1 r + \alpha_1, \ldots, s_m r + \alpha_m)$ is a pure gap of $H(P_1, \ldots, P_m)$, whenever s_i, α_i are integers such that $s_i \geq 0$, $1 \leq \alpha_i \leq r - 1 - i - \sum_{j=1}^m s_j$, for all $i = 1, \ldots, m$, and $\sum_{j=1}^m s_j \leq r - 2 - m$.

Theorem. Let $P, P_1, \ldots, P_m \in X$ be rational points, with P a total inflection point. Let $0 \leq i < r - 3$ and $\alpha_1, \ldots, \alpha_m$ be positive integers such that $\sum_{j=1}^m \alpha_j \leq r - i - 3$. Then $(ir + 1, \alpha_1, \ldots, \alpha_m)$ is a pure gap of $H(P, P_1, \ldots, P_m)$.
Total inflection points and pure gaps

Assume that X is a smooth plane, projective curve, of degree $r > 4$.
We say that $P \in X$ is a total inflection point if the tangent line at P intersects X only at P. In a work with T. Kato, we proved the following.

Theorem. Let P_1, P_2 and P_3 be rational, total inflection points of X which do not lie in a line. Then $((r - 4)r, 1, 1), (1, (r - 4)r, 1)$ and $(1, 1, (r - 4)r)$ are pure gaps of $H(P_1, P_2, P_3)$.

Theorem. Let P_1, \ldots, P_m be total inflection points on X. Then $(s_1 r + \alpha_1, \ldots, s_m r + \alpha_m)$ is a pure gap of $H(P_1, \ldots, P_m)$, whenever s_i, α_i are integers such that $s_i \geq 0$, $1 \leq \alpha_i \leq r - 1 - i - \sum_{j=1}^{m} s_j$, for all $i = 1, \ldots, m$, and $\sum_{j=1}^{m} s_j \leq r - 2 - m$.

Theorem. Let $P, P_1, \ldots, P_m \in X$ be rational points, with P a total inflection point. Let $0 \leq i < r - 3$ and $\alpha_1, \ldots, \alpha_m$ be positive integers such that $\sum_{j=1}^{m} \alpha_j \leq r - i - 3$. Then $(ir + 1, \alpha_1, \ldots, \alpha_m)$ is a pure gap of $H(P, P_1, \ldots, P_m)$.
Theorem. Let P_1, \ldots, P_m be total inflection points on X. Then

$$(s_1 r + \alpha_1, \ldots, s_m r + \alpha_m)$$

is a pure gap of $H(P_1, \ldots, P_m)$, whenever s_i, α_i are integers such that $s_i \geq 0$, $1 \leq \alpha_i \leq r - 1 - i - \sum_{i=1}^m s_i$, for all $i = 1, \ldots, m$, and $\sum_{i=1}^m s_i \leq r - 2 - m$.

Application. Take $X \subset \mathbb{P}^2(K)$ the Hermitian curve of degree $q + 1$ defined over $\mathbb{F} = GF(q^2)$. Let s and m be positive integers such that $s + m \leq q - 1$; let P_1, \ldots, P_m be distinct rational points of X.

Take $s_1 = s$, $s_2 = \cdots = s_m = 0$, from the above theorem we get that

$$(sr + \alpha_1, \alpha_2, \ldots, \alpha_m)$$

is a pure gap at $H(P_1, \ldots, P_m)$ whenever $1 \leq \alpha_i \leq q - i - s$ ($i = 1, \ldots, m$) (i.e. only have pure gaps “between” $(sr + 1, 1, \ldots, 1)$ and $(sr + q - 1 - s, q - 2 - s, \ldots, q - m - s)$).

Let $G = (2sr + q - 1 - s)P_1 + \sum_{i=2}^m (q - i - s)P_i$ and let D be the sum of the other $q^3 + 1 - m$ rational points of X. From the work together with F. Torres we know that $C_{\Omega}(D, G)$ is an $[q^3 + 1 - m, k, d]$ code with

$$d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2).$$
Theorem. Let P_1, \ldots, P_m be total inflection points on X. Then $(s_1 r + \alpha_1, \ldots, s_m r + \alpha_m)$ is a pure gap of $H(P_1, \ldots, P_m)$, whenever s_i, α_i are integers such that $s_i \geq 0$, $1 \leq \alpha_i \leq r - 1 - i - \sum_{i=1}^{m} s_i$, for all $i = 1, \ldots, m$, and $\sum_{i=1}^{m} s_i \leq r - 2 - m$.

Application. Take $X \subset \mathbb{P}^2(K)$ the Hermitian curve of degree $q + 1$ defined over $\mathbb{F} = GF(q^2)$. Let s and m be positive integers such that $s + m \leq q - 1$; let P_1, \ldots, P_m be distinct rational points of X.

Take $s_1 = s$, $s_2 = \cdots = s_m = 0$, from the above theorem we get that $(sr + \alpha_1, \alpha_2, \ldots, \alpha_m)$ is a pure gap at $H(P_1, \ldots, P_m)$ whenever $1 \leq \alpha_i \leq q - i - s$ $(i = 1, \ldots, m)$ (i.e. only have pure gaps “between” $(sr + 1, 1, \ldots, 1)$ and $(sr + q - 1 - s, q - 2 - s, \ldots, q - m - s)$).

Let $G = (2sr + q - 1 - s)P_1 + \sum_{i=2}^{m} (q - i - s)P_i$ and let D be the sum of the other $q^3 + 1 - m$ rational points of X. From the work together with F. Torres we know that $C_\Omega(D, G)$ is an $[q^3 + 1 - m, k, d]$ code with $d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2)$.

Cícero Carvalho (UFU)
Theorem. Let P_1, \ldots, P_m be total inflection points on X. Then
\[(s_1 r + \alpha_1, \ldots, s_m r + \alpha_m)\] is a pure gap of $H(P_1, \ldots, P_m)$, whenever s_i, α_i are integers such that $s_i \geq 0$, $1 \leq \alpha_i \leq r - 1 - i - \sum_{i=1}^m s_i$, for all $i = 1, \ldots, m$, and $\sum_{i=1}^m s_i \leq r - 2 - m$.

Application. Take $X \subset \mathbb{P}^2(K)$ the Hermitian curve of degree $q + 1$ defined over $\mathbb{F} = GF(q^2)$. Let s and m be positive integers such that $s + m \leq q - 1$; let P_1, \ldots, P_m be distinct rational points of X.

Take $s_1 = s$, $s_2 = \cdots = s_m = 0$, from the above theorem we get that
\[(sr + \alpha_1, \alpha_2, \ldots, \alpha_m)\] is a pure gap at $H(P_1, \ldots, P_m)$ whenever $1 \leq \alpha_i \leq q - i - s$ ($i = 1, \ldots, m$) (i.e. only have pure gaps “between” $(sr + 1, 1, \ldots, 1)$ and $(sr + q - 1 - s, q - 2 - s, \ldots, q - m - s)$).

Let $G = (2sr + q - 1 - s)P_1 + \sum_{i=2}^m (q - i - s)P_i$ and let D be the sum of the other $q^3 + 1 - m$ rational points of X. From the work together with F. Torres we know that $C_{\Omega}(D, G)$ is an $[q^3 + 1 - m, k, d]$ code with
\[d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2).\]
Theorem. Let P_1, \ldots, P_m be total inflection points on X. Then $(s_1 r + \alpha_1, \ldots, s_m r + \alpha_m)$ is a pure gap of $H(P_1, \ldots, P_m)$, whenever s_i, α_i are integers such that $s_i \geq 0$, $1 \leq \alpha_i \leq r - 1 - i - \sum_{i=1}^{m} s_i$, for all $i = 1, \ldots, m$, and $\sum_{i=1}^{m} s_i \leq r - 2 - m$.

Application. Take $X \subset \mathbb{P}^2(K)$ the Hermitian curve of degree $q + 1$ defined over $\mathbb{F} = GF(q^2)$. Let s and m be positive integers such that $s + m \leq q - 1$; let P_1, \ldots, P_m be distinct rational points of X.

Take $s_1 = s$, $s_2 = \cdots = s_m = 0$, from the above theorem we get that $(s r + \alpha_1, \alpha_2, \ldots, \alpha_m)$ is a pure gap at $H(P_1, \ldots, P_m)$ whenever $1 \leq \alpha_i \leq q - i - s$ ($i = 1, \ldots, m$) (i.e. only have pure gaps “between” $(s r + 1, 1, \ldots, 1)$ and $(s r + q - 1 - s, q - 2 - s, \ldots, q - m - s)$).

Let $G = (2sr + q - 1 - s)P_1 + \sum_{i=2}^{m} (q - i - s)P_i$ and let D be the sum of the other $q^3 + 1 - m$ rational points of X. From the work together with F. Torres we know that $C_\Omega(D, G)$ is an $[q^3 + 1 - m, k, d]$ code with $d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2)$.
Theorem. Let P_1, \ldots, P_m be total inflection points on X. Then $(s_1r + \alpha_1, \ldots, s_mr + \alpha_m)$ is a pure gap of $H(P_1, \ldots, P_m)$, whenever s_i, α_i are integers such that $s_i \geq 0$, $1 \leq \alpha_i \leq r - 1 - i - \sum_{i=1}^m s_i$, for all $i = 1, \ldots, m$, and $\sum_{i=1}^m s_i \leq r - 2 - m$.

Application. Take $X \subset \mathbb{P}^2(K)$ the Hermitian curve of degree $q + 1$ defined over $\mathbb{F} = GF(q^2)$. Let s and m be positive integers such that $s + m \leq q - 1$; let P_1, \ldots, P_m be distinct rational points of X.

Take $s_1 = s$, $s_2 = \cdots = s_m = 0$, from the above theorem we get that $(sr + \alpha_1, \alpha_2, \ldots, \alpha_m)$ is a pure gap at $H(P_1, \ldots, P_m)$ whenever $1 \leq \alpha_i \leq q - i - s$ ($i = 1, \ldots, m$) (i.e. only have pure gaps “between” $(sr + 1, 1, \ldots, 1)$ and $(sr + q - 1 - s, q - 2 - s, \ldots, q - m - s)$).

Let $G = (2sr + q - 1 - s)P_1 + \sum_{i=2}^m (q - i - s)P_i$ and let D be the sum of the other $q^3 + 1 - m$ rational points of X. From the work together with F. Torres we know that $C_{\Omega}(D, G)$ is an $[q^3 + 1 - m, k, d]$ code with $d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2)$.
Total inflection points and pure gaps

Theorem. Let \(P_1, \ldots, P_m \) be total inflection points on \(X \). Then \((s_1 r + \alpha_1, \ldots, s_m r + \alpha_m)\) is a pure gap of \(H(P_1, \ldots, P_m) \), whenever \(s_i, \alpha_i \) are integers such that \(s_i \geq 0, 1 \leq \alpha_i \leq r - 1 - i - \sum_{i=1}^m s_i \), for all \(i = 1, \ldots, m \), and \(\sum_{i=1}^m s_i \leq r - 2 - m \).

Application. Take \(X \subset \mathbb{P}^2(K) \) the Hermitian curve of degree \(q + 1 \) defined over \(\mathbb{F} = GF(q^2) \). Let \(s \) and \(m \) be positive integers such that \(s + m \leq q - 1 \); let \(P_1, \ldots, P_m \) be distinct rational points of \(X \).

Take \(s_1 = s, s_2 = \cdots = s_m = 0 \), from the above theorem we get that \((sr + \alpha_1, \alpha_2, \ldots, \alpha_m)\) is a pure gap at \(H(P_1, \ldots, P_m) \) whenever \(1 \leq \alpha_i \leq q - i - s \) \((i = 1, \ldots, m)\) (i.e. only have pure gaps “between” \((sr + 1, 1, \ldots, 1)\) and \((sr + q - 1 - s, q - 2 - s, \ldots, q - m - s)\)). Let \(G = (2sr + q - 1 - s)P_1 + \sum_{i=2}^m (q - i - s)P_i \) and let \(D \) be the sum of the other \(q^3 + 1 - m \) rational points of \(X \). From the work together with F. Torres we know that \(C_\Omega(D, G) \) is an \([q^3 + 1 - m, k, d]\) code with \(d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2) \).
Theorem. Let P_1, \ldots, P_m be total inflection points on X. Then $(s_1 r + \alpha_1, \ldots, s_m r + \alpha_m)$ is a pure gap of $H(P_1, \ldots, P_m)$, whenever s_i, α_i are integers such that $s_i \geq 0$, $1 \leq \alpha_i \leq r - 1 - i - \sum_{i=1}^{m} s_i$, for all $i = 1, \ldots, m$, and $\sum_{i=1}^{m} s_i \leq r - 2 - m$.

Application. Take $X \subset \mathbb{P}^2(K)$ the Hermitian curve of degree $q + 1$ defined over $\mathbb{F} = GF(q^2)$. Let s and m be positive integers such that $s + m \leq q - 1$; let P_1, \ldots, P_m be distinct rational points of X. Take $s_1 = s, s_2 = \cdots = s_m = 0$, from the above theorem we get that $(sr + \alpha_1, \alpha_2, \ldots, \alpha_m)$ is a pure gap at $H(P_1, \ldots, P_m)$ whenever $1 \leq \alpha_i \leq q - i - s$ $(i = 1, \ldots, m)$ (i.e. only have pure gaps “between” $(sr + 1, 1, \ldots, 1)$ and $(sr + q - 1 - s, q - 2 - s, \ldots, q - m - s)$).

Let $G = (2sr + q - 1 - s)P_1 + \sum_{i=2}^{m} (q - i - s)P_i$ and let D be the sum of the other $q^3 + 1 - m$ rational points of X. From the work together with F. Torres we know that $C_\Omega(D, G)$ is an $[q^3 + 1 - m, k, d]$ code with $d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2)$.
Theorem. Let P_1, \ldots, P_m be total inflection points on X. Then
$$(s_1 r + \alpha_1, \ldots, s_m r + \alpha_m)$$ is a pure gap of $H(P_1, \ldots, P_m)$, whenever s_i, α_i are integers such that $s_i \geq 0$, $1 \leq \alpha_i \leq r - 1 - i - \sum_{i=1}^{m} s_i$, for all $i = 1, \ldots, m$, and $\sum_{i=1}^{m} s_i \leq r - 2 - m$.

Application. Take $X \subset \mathbb{P}^2(K)$ the Hermitian curve of degree $q + 1$ defined over $\mathbb{F} = GF(q^2)$. Let s and m be positive integers such that $s + m \leq q - 1$; let P_1, \ldots, P_m be distinct rational points of X. Take $s_1 = s, s_2 = \cdots = s_m = 0$, from the above theorem we get that $$(sr + \alpha_1, \alpha_2, \ldots, \alpha_m)$$ is a pure gap at $H(P_1, \ldots, P_m)$ whenever $1 \leq \alpha_i \leq q - i - s$ ($i = 1, \ldots, m$) (i.e. only have pure gaps “between” $(sr + 1, 1, \ldots, 1)$ and $(sr + q - 1 - s, q - 2 - s, \ldots, q - m - s)$).

Let $G = (2sr + q - 1 - s)P_1 + \sum_{i=2}^{m} (q - i - s)P_i$ and let D be the sum of the other $q^3 + 1 - m$ rational points of X. From the work together with F. Torres we know that $C_\Omega(D, G)$ is an $[q^3 + 1 - m, k, d]$ code with
$$d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2).$$
Theorem. Let P_1, \ldots, P_m be total inflection points on X. Then $(s_1 r + \alpha_1, \ldots, s_m r + \alpha_m)$ is a pure gap of $H(P_1, \ldots, P_m)$, whenever s_i, α_i are integers such that $s_i \geq 0$, $1 \leq \alpha_i \leq r - 1 - i - \sum_{i=1}^m s_i$, for all $i = 1, \ldots, m$, and $\sum_{i=1}^m s_i \leq r - 2 - m$.

Application. Take $X \subset \mathbb{P}^2(K)$ the Hermitian curve of degree $q + 1$ defined over $\mathbb{F} = GF(q^2)$. Let s and m be positive integers such that $s + m \leq q - 1$; let P_1, \ldots, P_m be distinct rational points of X.

Take $s_1 = s$, $s_2 = \cdots = s_m = 0$, from the above theorem we get that $(sr + \alpha_1, \alpha_2, \ldots, \alpha_m)$ is a pure gap at $H(P_1, \ldots, P_m)$ whenever $1 \leq \alpha_i \leq q - i - s$ ($i = 1, \ldots, m$) (i.e. only have pure gaps “between” $(sr + 1, 1, \ldots, 1)$ and $(sr + q - 1 - s, q - 2 - s, \ldots, q - m - s)$).

Let $G = (2sr + q - 1 - s)P_1 + \sum_{i=2}^m (q - i - s)P_i$ and let D be the sum of the other $q^3 + 1 - m$ rational points of X. From the work together with F. Torres we know that $C_{\Omega}(D, G)$ is an $[q^3 + 1 - m, k, d]$ code with $d \geq \deg(G) - (2g - 2) + m + \sum_{i=1}^n (p_i - n_i)$

$$d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2).$$
Total inflection points and pure gaps

Theorem. Let \(P_1, \ldots, P_m \) be total inflection points on \(X \). Then \((s_1 r + \alpha_1, \ldots, s_m r + \alpha_m) \) is a pure gap of \(H(P_1, \ldots, P_m) \), whenever \(s_i, \alpha_i \) are integers such that \(s_i \geq 0, 1 \leq \alpha_i \leq r - 1 - i - \sum_{i=1}^{m} s_i \), for all \(i = 1, \ldots, m \), and \(\sum_{i=1}^{m} s_i \leq r - 2 - m \).

Application. Take \(X \subset \mathbb{P}^2(K) \) the Hermitian curve of degree \(q + 1 \) defined over \(\mathbb{F} = GF(q^2) \). Let \(s \) and \(m \) be positive integers such that \(s + m \leq q - 1 \); let \(P_1, \ldots, P_m \) be distinct rational points of \(X \).

Take \(s_1 = s, s_2 = \cdots = s_m = 0 \), from the above theorem we get that \((sr + \alpha_1, \alpha_2, \ldots, \alpha_m) \) is a pure gap at \(H(P_1, \ldots, P_m) \) whenever \(1 \leq \alpha_i \leq q - i - s \) (\(i = 1, \ldots, m \)) (i.e. only have pure gaps “between” \((sr + 1, 1, \ldots, 1) \) and \((sr + q - 1 - s, q - 2 - s, \ldots, q - m - s) \)).

Let \(G = (2sr + q - 1 - s)P_1 + \sum_{i=2}^{m}(q - i - s)P_i \) and let \(D \) be the sum of the other \(q^3 + 1 - m \) rational points of \(X \). From the work together with F. Torres we know that \(C_{\Omega}(D, G) \) is an \([q^3 + 1 - m, k, d]\) code with \(d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2) \).
So \(d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2) \)

and if we take \(s \geq (q - 1)/2 \) then \(\deg(G) > 2g - 2 \) and

\[k = g + q^3 - 2s(q + 1) - m(q - s) + m(m - 1)/2. \]

We compared \(C_\Omega(D, G) \) with codes on the Hermitian curve supported on

one point and having the same dimension \(k \), finding many situations where

\(C_\Omega(D, G) \) has better parameters.

For example, assume that \(q \) is odd and \(q \geq 5 \), take \(m = s = (q - 1)/2 \).

Then \(C_\Omega(D, G) \) is an \([q^3 + 1 - (q - 1)/2, k, d]-\)code with

\[k = q^3 - (5q + 13)(q - 1)/8 \text{ e } d \geq q^2/4 + q + 3/4. \]

Taking \(F = (q^3 - (q^2/8 + 3q/2 - 5/8))P \), where \(P \) is a rational point of

\(X \) and \(E \) is the sum of the other rational points, we get that \(C_\Omega(F, E) \) is

an \([q^3, k, d']\) code, where \(d' = q^2/8 + 3q/2 - 5/8 \) (from works by

Stichtenoth, Yang and Kummar) so that \(d - d' \geq (q(q - 4) + 11)/8. \)
So \(d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2) \)

and if we take \(s \geq (q - 1)/2 \) then \(\text{deg}(G) > 2g - 2 \) and

\[
k = g + q^3 - 2s(q + 1) - m(q - s) + m(m - 1)/2.
\]

We compared \(C_{\Omega}(D, G) \) with codes on the Hermitian curve supported on

one point and having the same dimension \(k \), finding many situations where

\(C_{\Omega}(D, G) \) has better parameters.

For example, assume that \(q \) is odd and \(q \geq 5 \), take \(m = s = (q - 1)/2 \).

Then \(C_{\Omega}(D, G) \) is an \([q^3 + 1 - (q - 1)/2, k, d]\)-code with

\[
k = q^3 - (5q + 13)(q - 1)/8 \text{ and } d \geq q^2/4 + q + 3/4.
\]

Taking \(F = (q^3 - (q^2/8 + 3q/2 - 5/8))P \), where \(P \) is a rational point of

\(X \) and \(E \) is the sum of the other rational points, we get that \(C_{\Omega}(F, E) \) is

an \([q^3, k, d']\) code, where \(d' = q^2/8 + 3q/2 - 5/8 \) (from works by

Stichtenoth, Yang and Kummar) so that \(d - d' \geq (q(q - 4) + 11)/8 \).
So \(d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2) \)
and if we take \(s \geq (q - 1)/2 \) then \(\deg(G) > 2g - 2 \) and
\(k = g + q^3 - 2s(q + 1) - m(q - s) + m(m - 1)/2. \)

We compared \(C_\Omega(D, G) \) with codes on the Hermitian curve supported on
one point and having the same dimension \(k \), finding many situations where
\(C_\Omega(D, G) \) has better parameters.

For example, assume that \(q \) is odd and \(q \geq 5 \), take \(m = s = (q - 1)/2. \)
Then \(C_\Omega(D, G) \) is an \([q^3 + 1 - (q - 1)/2, k, d]\)-code with
\(k = q^3 - (5q + 13)(q - 1)/8 \) e \(d \geq q^2/4 + q + 3/4. \)

Taking \(F = (q^3 - (q^2/8 + 3q/2 - 5/8))P \), where \(P \) is a rational point of
\(X \) and \(E \) is the sum of the other rational points, we get that \(C_\Omega(F, E) \) is
an \([q^3, k, d']\) code, where \(d' = q^2/8 + 3q/2 - 5/8 \) (from works by
Stichtenoth, Yang and Kummar) so that \(d - d' \geq (q(q - 4) + 11)/8. \)
So \(d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2) \)
and if we take \(s \geq (q - 1)/2 \) then \(\deg(G) > 2g - 2 \) and
\[
k = g + q^3 - 2s(q + 1) - m(q - s) + m(m - 1)/2.
\]

We compared \(C_\Omega(D, G) \) with codes on the Hermitian curve supported on
one point and having the same dimension \(k \), finding many situations where
\(C_\Omega(D, G) \) has better parameters.

For example, assume that \(q \) is odd and \(q \geq 5 \), take \(m = s = (q - 1)/2 \).
Then \(C_\Omega(D, G) \) is an \([q^3 + 1 - (q - 1)/2, k, d]\)-code with

\[
k = q^3 - (5q + 13)(q - 1)/8 \quad \text{and} \quad d \geq q^2/4 + q + 3/4.
\]

Taking \(F = (q^3 - (q^2/8 + 3q/2 - 5/8))P \), where \(P \) is a rational point of
\(X \) and \(E \) is the sum of the other rational points, we get that \(C_\Omega(F, E) \) is
an \([q^3, k, d']\) code, where \(d' = q^2/8 + 3q/2 - 5/8 \) (from works by
Stichtenoth, Yang and Kummar) so that \(d - d' \geq (q(q - 4) + 11)/8. \)
So \(d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2) \)
and if we take \(s \geq (q - 1)/2 \) then \(\deg(G) > 2g - 2 \) and
\(k = g + q^3 - 2s(q + 1) - m(q - s) + m(m - 1)/2. \)

We compared \(C_\Omega(D, G) \) with codes on the Hermitian curve supported on
one point and having the same dimension \(k \), finding many situations where
\(C_\Omega(D, G) \) has better parameters.

For example, assume that \(q \) is odd and \(q \geq 5 \), take \(m = s = (q - 1)/2. \)
Then \(C_\Omega(D, G) \) is an \([q^3 + 1 - (q - 1)/2, k, d]\)-code with
\(k = q^3 - (5q + 13)(q - 1)/8 \) e \(d \geq q^2/4 + q + 3/4. \)

Taking \(F = (q^3 - (q^2/8 + 3q/2 - 5/8))P \), where \(P \) is a rational point of
\(X \) and \(E \) is the sum of the other rational points, we get that \(C_\Omega(F, E) \) is
an \([q^3, k, d']\) code, where \(d' = q^2/8 + 3q/2 - 5/8 \) (from works by
Stichtenoth, Yang and Kummar) so that \(d - d' \geq (q(q - 4) + 11)/8. \)
So \(d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2) \)

and if we take \(s \geq (q - 1)/2 \) then \(\text{deg}(G) > 2g - 2 \) and

\[k = g + q^3 - 2s(q + 1) - m(q - s) + m(m - 1)/2. \]

We compared \(C_\Omega(D, G) \) with codes on the Hermitian curve supported on one point and having the same dimension \(k \), finding many situations where \(C_\Omega(D, G) \) has better parameters.

For example, assume that \(q \) is odd and \(q \geq 5 \), take \(m = s = (q - 1)/2 \).

Then \(C_\Omega(D, G) \) is an \([q^3 + 1 - (q - 1)/2, k, d]\)-code with

\[k = q^3 - (5q + 13)(q - 1)/8 \quad \text{and} \quad d \geq q^2/4 + q + 3/4. \]

Taking \(F = (q^3 - (q^2/8 + 3q/2 - 5/8))P \), where \(P \) is a rational point of \(X \) and \(E \) is the sum of the other rational points, we get that \(C_\Omega(F, E) \) is an \([q^3, k, d']\) code, where \(d' = q^2/8 + 3q/2 - 5/8 \) (from works by Stichtenoth, Yang and Kummar) so that \(d - d' \geq (q(q - 4) + 11)/8 \).
So $d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2)$ and if we take $s \geq (q - 1)/2$ then $\deg(G) > 2g - 2$ and $k = g + q^3 - 2s(q + 1) - m(q - s) + m(m - 1)/2$.

We compared $C_\Omega(D, G)$ with codes on the Hermitian curve supported on one point and having the same dimension k, finding many situations where $C_\Omega(D, G)$ has better parameters.

For example, assume that q is odd and $q \geq 5$, take $m = s = (q - 1)/2$. Then $C_\Omega(D, G)$ is an $[q^3 + 1 - (q - 1)/2, k, d]$-code with $k = q^3 - (5q + 13)(q - 1)/8$ and $d \geq q^2/4 + q + 3/4$.

Taking $F = (q^3 - (q^2/8 + 3q/2 - 5/8))P$, where P is a rational point of X and E is the sum of the other rational points, we get that $C_\Omega(F, E)$ is an $[q^3, k, d']$ code, where $d' = q^2/8 + 3q/2 - 5/8$ (from works by Stichtenoth, Yang and Kummar) so that $d - d' \geq (q(q - 4) + 11)/8$.
So \(d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2) \) and if we take \(s \geq (q - 1)/2 \) then \(\deg(G) > 2g - 2 \) and \(k = g + q^3 - 2s(q + 1) - m(q - s) + m(m - 1)/2 \).

We compared \(C_\Omega(D, G) \) with codes on the Hermitian curve supported on one point and having the same dimension \(k \), finding many situations where \(C_\Omega(D, G) \) has better parameters.

For example, asssume that \(q \) is odd and \(q \geq 5 \), take \(m = s = (q - 1)/2 \). Then \(C_\Omega(D, G) \) is an \([q^3 + 1 - (q - 1)/2, k, d]\)-code with \(k = q^3 - (5q + 13)(q - 1)/8 \) e \(d \geq q^2/4 + q + 3/4 \).

Taking \(F = (q^3 - (q^2/8 + 3q/2 - 5/8))P \), where \(P \) is a rational point of \(X \) and \(E \) is the sum of the other rational points, we get that \(C_\Omega(F, E) \) is an \([q^3, k, d']\) code, where \(d' = q^2/8 + 3q/2 - 5/8 \) (from works by Stichtenoth, Yang and Kummar) so that \(d - d' \geq (q(q - 4) + 11)/8 \).
So \(d \geq 2s(q + 1) + m(2q - 2s - 1) - m^2 - (q + 1)(q - 2) \)

and if we take \(s \geq (q - 1)/2 \) then \(\text{deg}(G) > 2g - 2 \) and

\[k = g + q^3 - 2s(q + 1) - m(q - s) + m(m - 1)/2. \]

We compared \(C_\Omega(D, G) \) with codes on the Hermitian curve supported on one point and having the same dimension \(k \), finding many situations where \(C_\Omega(D, G) \) has better parameters.

For example, assume that \(q \) is odd and \(q \geq 5 \), take \(m = s = (q - 1)/2 \). Then \(C_\Omega(D, G) \) is an \([q^3 + 1 - (q - 1)/2, k, d]\)-code with

\[k = q^3 - (5q + 13)(q - 1)/8 \text{ e } d \geq q^2/4 + q + 3/4. \]

Taking \(F = (q^3 - (q^2/8 + 3q/2 - 5/8))P \), where \(P \) is a rational point of \(X \) and \(E \) is the sum of the other rational points, we get that \(C_\Omega(F, E) \) is an \([q^3, k, d']\) code, where \(d' = q^2/8 + 3q/2 - 5/8 \) (from works by Stichtenoth, Yang and Kummar) so that \(d - d' \geq (q(q - 4) + 11)/8. \)
T H A N K Y O U!