Some combinatorial aspects of perfect codes.

Claudio Qureshi
State University of Campinas, Brazil
based on joint work with S. Costa

Special Days on Combinatorial Constructions using Finite Fields
as part of

RICAM
Special Semester on Applications of Algebra and Number Theory
Linz, October 14 - December 13, 2013
A q-ary code of length n: $C \subseteq \mathbb{Z}_q^n$.

In 1958 C.Y. Lee proposed the use of a metric in \mathbb{Z}_q^n (Lee metric), appropriate to correct errors in certain types of channels. For $n = 1$:

$$d(x, y) = \min\{|x - y|, q - |x - y|\}$$

For example, for $q = 9$ ⇒ $\mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$.

(Qureshi - Campinas University, Brazil)
A q-ary code of length n: $C \subseteq \mathbb{Z}_q^n$.

In 1958 C.Y. Lee proposed the use of a metric in \mathbb{Z}_q^n (Lee metric), appropriate to correct errors in certain types of channels.
A q-ary code of length n: $C \subseteq \mathbb{Z}_q^n$.

In 1958 C.Y. Lee propose the use of a metric in \mathbb{Z}_q^n (Lee metric), appropriate to correct errors in certain types of channels.

For $n = 1$: $d(x, y) = \min\{|x - y|, q - |x - y|\}$ for $x, y \in \mathbb{Z}_q$
Codes in the Lee metric

- A q-ary code of length n: $C \subseteq \mathbb{Z}_q^n$.
- In 1958 C.Y. Lee propose the use of a metric in \mathbb{Z}_q^n (Lee metric), appropriate to correct errors in certain types of channels.
- For $n = 1$: $d(x, y) = \min\{|x - y|, q - |x - y|\}$ for $x, y \in \mathbb{Z}_q$.

For example, for $q = 9 \Rightarrow \mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$:
Codes in the Lee metric

- A q-ary code of length \(n \): \(C \subseteq \mathbb{Z}_q^n \).
- In 1958 C.Y. Lee propose the use of a metric in \(\mathbb{Z}_q^n \) (Lee metric), appropriate to correct errors in certain types of channels.
- For \(n = 1 \): \(d(x, y) = \min\{|x - y|, q - |x - y|\} \) for \(x, y \in \mathbb{Z}_q \)

For example, for \(q = 9 \) \(\Rightarrow \mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\} \):

If \(x = 7 \) e \(y = 2 \)
A q-ary code of length n: $C \subseteq \mathbb{Z}_q^n$.

In 1958 C.Y. Lee propose the use of a metric in \mathbb{Z}_q^n (Lee metric), appropriate to correct errors in certain types of channels.

For $n = 1$: $d(x, y) = \min\{|x - y|, q - |x - y|\}$ for $x, y \in \mathbb{Z}_q$

For example, for $q = 9 \Rightarrow \mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$:

If $x = 7$ e $y = 2$, $|x-y|=5$
Codes in the Lee metric

- A q-ary code of length n: $C \subseteq \mathbb{Z}_q^n$.

- In 1958 C.Y.Lee propose the use of a metric in \mathbb{Z}_q^n (Lee metric), appropriate to correct errors in certain types of channels.

- For $n = 1$: $d(x, y) = \min\{|x - y|, q - |x - y|\}$ for $x, y \in \mathbb{Z}_q$

For example, for $q = 9 \Rightarrow \mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$:

If $x = 7$ and $y = 2$, $|x - y| = 5$, $q - |x - y| = 4$,
A q-ary code of length n: $C \subseteq \mathbb{Z}_q^n$.

In 1958 C.Y. Lee proposed the use of a metric in \mathbb{Z}_q^n (Lee metric), appropriate to correct errors in certain types of channels.

For $n = 1$: $d(x, y) = \min\{|x - y|, q - |x - y|\}$ for $x, y \in \mathbb{Z}_q$

For example, for $q = 9 \Rightarrow \mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$:

If $x = 7$ and $y = 2$, $|x-y|=5$, $q-|x-y|=4$, $d(7, 2) = 4$ (metric in the graph).
Consider a q-ary code of length n: $C \subseteq \mathbb{Z}_q^n$.

In 1958 C. Y. Lee proposes the use of a metric in \mathbb{Z}_q^n (Lee metric), appropriate to correct errors in certain types of channels.

For $n = 1$: $d(x, y) = \min\{|x - y|, q - |x - y|\}$ for $x, y \in \mathbb{Z}_q$

For any n, if $x = (x_1, \ldots, x_n) \in \mathbb{Z}_q^n$ and $y = (y_1, \ldots, y_n) \in \mathbb{Z}_q^n$:

$$d(x, y) = \sum_{i=1}^{n} d(x_i, y_i) \quad (q = 2, 3 \Rightarrow \text{Lee=Hamming}).$$
Consider a q-ary code of length \(n \): \(C \subseteq \mathbb{Z}_q^n \).

In 1958 C. Y. Lee proposes the use of a metric in \(\mathbb{Z}_q^n \) (Lee metric), appropriate to correct errors in certain types of channels.

For \(n = 1 \): \(d(x, y) = \min \{|x - y|, q - |x - y|\} \) for \(x, y \in \mathbb{Z}_q \)

For any \(n \), if \(x = (x_1, \ldots, x_n) \in \mathbb{Z}_q^n \) and \(y = (y_1, \ldots, y_n) \in \mathbb{Z}_q^n \):

\[
d(x, y) = \sum_{i=1}^n d(x_i, y_i) \quad (q = 2, 3 \Rightarrow \text{Lee=Hamming}).
\]

Example: In \(\mathbb{Z}_9^2 \) we have \(d((2, 1), (7, 6)) = \)
Consider a q-ary code of length \(n \): \(C \subseteq \mathbb{Z}_q^n \).

In 1958 C. Y. Lee proposes the use of a metric in \(\mathbb{Z}_q^n \) (Lee metric), appropriate to correct errors in certain types of channels.

For \(n = 1 \): \(d(x, y) = \min\{|x - y|, q - |x - y|\} \) for \(x, y \in \mathbb{Z}_q \)

For any \(n \), if \(x = (x_1, \ldots, x_n) \in \mathbb{Z}_q^n \) and \(y = (y_1, \ldots, y_n) \in \mathbb{Z}_q^n \):
\[
d(x, y) = \sum_{i=1}^{n} d(x_i, y_i) \quad (q = 2, 3 \Rightarrow \text{Lee=Hamming}).
\]

Example: In \(\mathbb{Z}_9^2 \) we have \(d((2, 1), (7, 6)) = 4 + \)
Consider a q-ary code of length n: $C \subseteq \mathbb{Z}_q^n$.

In 1958 C. Y. Lee proposes the use of a metric in \mathbb{Z}_q^n (Lee metric), appropriate to correct errors in certain types of channels.

For $n = 1$: $d(x, y) = \min\{|x - y|, q - |x - y|\}$ for $x, y \in \mathbb{Z}_q$.

For any n, if $x = (x_1, \ldots, x_n) \in \mathbb{Z}_q^n$ and $y = (y_1, \ldots, y_n) \in \mathbb{Z}_q^n$:

$$d(x, y) = \sum_{i=1}^{n} d(x_i, y_i) \quad (q = 2, 3 \Rightarrow \text{Lee=Hamming}).$$

Example: In \mathbb{Z}_9^2 we have $d((2, 1), (7, 6)) = 4 + 4$.
Consider a q-ary code of length n: $C \subseteq \mathbb{Z}_q^n$.

In 1958 C. Y. Lee proposes the use of a metric in \mathbb{Z}_q^n (Lee metric), appropriate to correct errors in certain types of channels.

For $n = 1$: $d(x, y) = \min\{|x - y|, q - |x - y|\}$ for $x, y \in \mathbb{Z}_q$.

For any n, if $x = (x_1, \ldots, x_n) \in \mathbb{Z}_q^n$ and $y = (y_1, \ldots, y_n) \in \mathbb{Z}_q^n$:

$$d(x, y) = \sum_{i=1}^{n} d(x_i, y_i) \quad (q = 2, 3 \Rightarrow \text{Lee=Hamming})$$

Example: In \mathbb{Z}_9^2 we have $d((2, 1), (7, 6)) = 4 + 4 = 8$.
Lee metric as the distance in the graph (torus)

Example: In \mathbb{Z}_9^2 we have $d((2, 1), (7, 6)) = 4 + 4 = 8.$
Codes in the Lee metric

Lee metric as the distance in the graph (torus)

Example: In \mathbb{Z}_9^2 we have $d((2, 1), (7, 6)) = 4 + 4 = 8$.
Lee metric as the distance in the graph (torus)

Example: In \mathbb{Z}_9^2 we have $d((2, 1), (7, 6)) = 4 + 4 = 8$.
The resurgence of Lee Codes

Engineering applications

- Constrained and partial-response channels.

- Interleaving schemes.

- Multidimensional burst-error-correction.

- Error-correction for flash memories.

The resurgence of Lee Codes

Theoretical research

- **Enumerating and decoding perfect linear Lee codes.**

 B. AlBdaiwi, P. Horak, L. Milazzo. Enumerating and decoding perfect linear Lee codes.

- **Dense Lee Codes.**

 T. Etzion, A. Vardy, E. Yaakobi. Dense error-correcting codes in the Lee metric.
 Information Theory Workshop (ITW), 2010 IEEE.

- **Special constructions for perfect Lee codes.**

 T. Etzion. Product constructions for perfect Lee codes.

- **Diameter perfect Lee codes.**

 P. Horak, B.F. AlBdaiwi. Diameter perfect Lee codes.
Let $C \subseteq \mathbb{Z}_q^n$ be a q-ary code.

Definitions

- As in the case of the Hamming metric, C is a perfect Lee code when

 $$\mathbb{Z}_q^n = \bigcup_{c \in C} B(c, e),$$

 where e is the packing radius and the balls are Lee-balls.
Codes in the Lee metric

Let $C \subseteq \mathbb{Z}_q^n$ be a q-ary code.

Definitions

- As in the case of the Hamming metric, C is a perfect Lee code when $\mathbb{Z}_q^n = \bigcup_{c \in C} B(c, e)$, where e is the packing radius and the balls are Lee-balls.

- We denote by

 - $PL(n, e, q) = \{ C \subseteq \mathbb{Z}_q^n : C \text{ is } e\text{-perfect} \}$
 - $LPL(n, e, q) = \{ C \in PL(n, e, q) : C \text{ is linear} \}$
Codes in the Lee metric

Let $C \subseteq \mathbb{Z}_q^n$ be a q-ary code.

Definitions

- As in the case of the Hamming metric, C is a perfect Lee code when $\mathbb{Z}_q^n = \bigcup_{c \in C} B(c, e)$, where e is the packing radius and the balls are Lee-balls.

- We denote by

 - $PL(n, e, q) = \{C \subseteq \mathbb{Z}_q^n : C \text{ is } e\text{-perfect}\}$
 - $LPL(n, e, q) = \{C \in PL(n, e, q) : C \text{ is linear}\}$
 - $PL(n, e) = \{C \subseteq \mathbb{Z}^n : C \text{ is } e\text{-perfect}\}$, $(d(x, y) = \sum_{i=1}^n |x_i - y_i|)$
 - $LPL(n, e) = \{C \in PL(n, e) : C \text{ is linear}\}$
Main problem

Characterize the triplets \((n, e, q)\) for which \(PL(n, e, q) \neq \emptyset\).
Existence of Perfect Lee Codes

Main problem

Characterize the triplets \((n, e, q)\) for which \(PL(n, e, q) \neq \emptyset\).

Golomb-Welch (1970)

- For \(e = 1\) we have \(PL(n, 1) \neq \emptyset\) for all \(n\).
- For \(n = 2\) we have \(PL(2, e) \neq \emptyset\) for all \(e\).
- For each \(n\) there exists \(e_n\) s.t. \(PL(n, e) = \emptyset\) for all \(e \geq e_n\).
Existence of Perfect Lee Codes

Main problem

Characterize the triplets \((n, e, q)\) for which \(PL(n, e, q) \neq \emptyset\).

Golomb-Welch (1970)

- For \(e = 1\) we have \(PL(n, 1) \neq \emptyset\) for all \(n\).
- For \(n = 2\) we have \(PL(2, e) \neq \emptyset\) for all \(e\).
- For each \(n\) there exists \(e_n\) s.t. \(PL(n, e) = \emptyset\) for all \(e \geq e_n\).
- **Conjecture:** For \(n > 2\) and \(e > 1\) we have \(PL(n, e) = \emptyset\).
Existence of Perfect Lee Codes

Main problem

Characterize the triplets \((n, e, q)\) for which \(PL(n, e, q) \neq \emptyset\).

Golomb-Welch (1970)

- For \(e = 1\) we have \(PL(n, 1) \neq \emptyset\) for all \(n\).
- For \(n = 2\) we have \(PL(2, e) \neq \emptyset\) for all \(e\).
- For each \(n\) there exists \(e_n\) s.t. \(PL(n, e) = \emptyset\) for all \(e \geq e_n\).
- Conjecture: For \(n > 2\) and \(e > 1\) we have \(PL(n, e) = \emptyset\).
Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes $D_e = \langle (e, e+1) \rangle \subset \mathbb{Z}_q^2$ for $q = 2e^2 + 2e + 1$ and prove that these codes are perfect, then $PL(2, e, q) \neq \emptyset$ for $q = 2e^2 + 2e + 1$ ($\Rightarrow PL(2, e) \neq \emptyset$).
Existence of Perfect Lee Codes

Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes $D_e = \langle (e, e + 1) \rangle \subset \mathbb{Z}_q^2$ for $q = 2e^2 + 2e + 1$ and prove that these codes are perfect, then $PL(2, e, q) \neq \emptyset$ for $q = 2e^2 + 2e + 1$ ($\Rightarrow PL(2, e) \neq \emptyset$).

Example: $D_2 = \langle (2, 3) \rangle \subset \mathbb{Z}_{13}^2$
Existence of Perfect Lee Codes

Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes \(D_e = \langle (e, e + 1) \rangle \subset \mathbb{Z}_q^2 \) for \(q = 2e^2 + 2e + 1 \) and prove that these codes are perfect, then

\[PL(2, e, q) \neq \emptyset \text{ for } q = 2e^2 + 2e + 1 \implies PL(2, e) \neq \emptyset. \]

Example: \(D_2 = \langle (2, 3) \rangle = \{(0, 0), \ldots\} \)
Existence of Perfect Lee Codes

Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes $D_e = \langle (e, e + 1) \rangle \subset \mathbb{Z}_q^2$ for $q = 2e^2 + 2e + 1$ and prove that these codes are perfect, then $PL(2, e, q) \neq \emptyset$ for $q = 2e^2 + 2e + 1 \Rightarrow PL(2, e) \neq \emptyset$.

Example: $D_2 = \langle (2, 3) \rangle = \{(0, 0), (2, 3), \ldots\}$
Existence of Perfect Lee Codes

Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes \(D_e = \langle (e, e + 1) \rangle \subset \mathbb{Z}_q^2 \) for \(q = 2e^2 + 2e + 1 \) and prove that these codes are perfect, then \(PL(2, e, q) \neq \emptyset \) for \(q = 2e^2 + 2e + 1 \) \(\Rightarrow \) \(PL(2, e) \neq \emptyset \).

Example: \(D_2 = \langle (2, 3) \rangle = \{ (0, 0), (2, 3), (4, 6) \} \).
Existence of Perfect Lee Codes

Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes \(D_e = \langle (e, e + 1) \rangle \subset \mathbb{Z}_q^2 \) for
\[q = 2e^2 + 2e + 1 \]
and prove that these codes are perfect, then
\[PL(2, e, q) \neq \emptyset \text{ for } q = 2e^2 + 2e + 1 \implies PL(2, e) \neq \emptyset. \]

Example: \(D_2 = \langle (2, 3) \rangle = \{(0, 0), (2, 3), (4, 6), (6, 9)\} \)
Existence of Perfect Lee Codes

Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes $D_e = \langle (e, e + 1) \rangle \subset \mathbb{Z}_q^2$ for $q = 2e^2 + 2e + 1$ and prove that these codes are perfect, then $PL(2, e, q) \neq \emptyset$ for $q = 2e^2 + 2e + 1 \implies PL(2, e) \neq \emptyset$.

Example: $D_2 = \langle (2, 3) \rangle = \{(0, 0), (2, 3), (4, 6), (6, 9), \ldots, (11, 10)\}$
Existence of Perfect Lee Codes

Proof of Golomb and Welch for the bidimensional case:

Golomb and Welch present the codes $D_e = \langle (e, e + 1) \rangle \subset \mathbb{Z}_q^2$ for $q = 2e^2 + 2e + 1$ and prove that these codes are perfect, then $PL(2, e, q) \neq \emptyset$ for $q = 2e^2 + 2e + 1 \implies PL(2, e) \neq \emptyset$.

Example: $D_2 = \langle (2, 3) \rangle = \{(0, 0), (2, 3), (4, 6), (6, 9), \ldots, (11, 10)\}$
Related questions.

- For which \((e, q)\) we have \(PL(2, e, q) \neq \emptyset\)? In that case, is it possible to describe all these codes? (Remark: we are considering linear and non-linear codes.)

- What are the possible structures as abelian groups of these codes?
Related questions.

- For which \((e, q)\) we have \(PL(2, e, q) \neq \emptyset\)? In that case, is it possible to describe all these codes? (Remark: we are considering linear and non-linear codes.)

- What are the possible structures as abelian groups of these codes?

We can use the geometry of polyominoes and combinatorial arguments.

Theorem

For $e, q \in \mathbb{Z}^+$ we define: $q_e = e^2 + (e + 1)^2$, $\nu_1 = (e, e + 1)$, $\nu_2 = -(e + 1), e$, $\eta_1 = (1, -(2e + 1))$, $\eta_2 = (0, q_e) \in \mathbb{Z}_q^2$, $D_e = \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z}$ and $\overline{v} = (-x, y)$ is the conjugate of $v = (x, y)$.
For $e, q \in \mathbb{Z}^+$ we define: $q_e = e^2 + (e + 1)^2$, $\nu_1 = (e, e + 1)$, $\nu_2 = (-e + 1, e)$, $\eta_1 = (1, -(2e + 1))$, $\eta_2 = (0, q_e) \in \mathbb{Z}_q^2$, $D_e = \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z}$ and $\overline{v} = (-x, y)$ is the conj. of $v = (x, y)$.

1. **(Existence)** $PL(2, e, q) \neq \emptyset \iff q \equiv 0 \pmod{q_e}$.
For \(e, q \in \mathbb{Z}^+ \) we define: \(q_e = e^2 + (e + 1)^2 \), \(\nu_1 = (e, e + 1) \), \(\nu_2 = (-(e + 1), e) \), \(\eta_1 = (1, -(2e + 1)) \), \(\eta_2 = (0, q_e) \) \(\in \mathbb{Z}_q^2 \), \(D_e = \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z} \) and \(\overline{v} = (-x, y) \) is the conj. of \(v = (x, y) \).

1. (Existence) \(PL(2, e, q) \neq \emptyset \iff q \equiv 0 \pmod{q_e} \).

2. (Characterization) \(C \in PL(2, e, q) \iff C = c + D_e \) or \(C = c + \overline{D_e} \) for any \(c \in C \) (in particular \(C - c \) is a group).
Theorem

For $e, q \in \mathbb{Z}^+$ we define: $q_e = e^2 + (e + 1)^2$, $\nu_1 = (e, e + 1)$, $\nu_2 = (-e + 1, e)$, $\eta_1 = (1, -(2e + 1))$, $\eta_2 = (0, q_e) \in \mathbb{Z}_q^2$, $D_e = \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z}$ and $\overline{v} = (-x, y)$ is the conj. of $v = (x, y)$.

1. (Existence) $PL(2, e, q) \neq \emptyset \iff q \equiv 0 \pmod{q_e}$.

2. (Characterization) $C \in PL(2, e, q) \iff C = c + D_e$ or $C = c + \overline{D_e}$ for any $c \in C$ (in particular $C - c$ is a group).

3. (Structure) Let $C \in PL(2, e, q)$ and $G_C = C - c$ the group assoc. with C.

 i) G_C is cyclic iff $q = q_e$. In this case $G_C \cong \mathbb{Z}_q$ with generator $\nu_1 = (e, e + 1)$ if $G_C = D_e$ or $\overline{\nu}_1$ if $G_C = \overline{D_e}$.

 ii) If $q = h q_e$ com $h > 1$ then $G_C \cong \mathbb{Z}_q \times \mathbb{Z}_h$.

 Moreover, $G_C = \eta_1 \mathbb{Z} \oplus \eta_2 \mathbb{Z}$ if $G_C = D_e$ or $G_C = \overline{\eta}_1 \mathbb{Z} \oplus \eta_2 \mathbb{Z}$ if $G_C = \overline{D_e}$.
Sketch of the proof

Impossible configuration

Let \(I = \{(-1, -1), (-1, 0), (-1, 1), (-1, 2), (0, -1), (0, 2)\} \subseteq \mathbb{Z}_q^2 \).

If \(C \in PL(2, e, q) \) and \(c, c' \in C \Rightarrow \nexists \, x \in \mathbb{Z}_q^2 \) such that

- \(x \in B(c, e) \cup B(c', e) \).
- \(x + C \subseteq B(c, e) \cup B(c', e) \)
Decoding of special points

If $C \in PL(2, e, q)$ and $c \in C$, the point $c + (0, e + 1)$ can only be decoded in two ways. These possibilities are $c + (-e, e + 1)$ and $c + (e, e + 1)$.
Sketch of the proof

Decoding of special points

If $C \in PL(2, e, q)$ and $c \in C$, the point $c + (0, e + 1)$ can only be decoded in two ways. These possibilities are $c + (-e, e + 1)$ and $c + (e, e + 1)$.
Decoding of special points

If \(C \in PL(2, e, q) \) and \(c \in C \), the point \(c + (0, e + 1) \) can only be decoded in two ways. These possibilities are \(c + (-e, e + 1) \) and \(c + (e, e + 1) \).
Sketch of the proof

Decoding of special points

If $C \in PL(2, e, q)$ and $c \in C$, the point $c + (0, e + 1)$ can only be decoded in two ways. These possibilities are $c + (-e, e + 1)$ and $c + (e, e + 1)$.

(Qureshi - Campinas University, Brazil)
Decoding of special points

If \(C \in PL(2, e, q) \) and \(c \in C \), the point \(c + (0, e + 1) \) can only be decoded in two ways. These possibilities are \(c + (-e, e + 1) \) and \(c + (e, e + 1) \).
If \(C \in PL(2, e, q) \) and \(c \in C \), the point \(c + (0, e + 1) \) can only be decoded in two ways. These possibilities are \(c + (-e, e + 1) \) and \(c + (e, e + 1) \).
Sketch of the proof

Definition

For $C \in PL(2, e, q)$ and $c \in C$ we define the set $\omega(c) = \{v_1, \ldots, v_\tau\}$ where the adjacent balls of $B(c, e)$ are exactly $B(c + v_i, e)$ for $1 \leq i \leq \tau$.
Sketch of the proof

Definition

For $C \in PL(2, e, q)$ and $c \in C$ we define the set $\omega(c) = \{v_1, \ldots, v_\tau\}$ where the adjacent balls of $B(c, e)$ are exactly $B(c + v_i, e)$ for $1 \leq i \leq \tau$.

$$D_2 = \langle (2, 3) \rangle \subseteq \mathbb{Z}_{13}^2$$

$$c = (3, 11)$$
Sketch of the proof

Definition

For $C \in PL(2, e, q)$ and $c \in C$ we define the set $\omega(c) = \{v_1, \ldots, v_\tau\}$ where the adjacent balls of $B(c, e)$ are exactly $B(c + v_i, e)$ for $1 \leq i \leq \tau$.

$\omega(3, 11) = \{(2, 3), \ldots\}$
Sketch of the proof

Definition

For $C \in PL(2, e, q)$ and $c \in C$ we define the set $\omega(c) = \{v_1, \ldots, v_\tau\}$ where the adjacent balls of $B(c, e)$ are exactly $B(c + v_i, e)$ for $1 \leq i \leq \tau$.

$\omega(3, 11) = \{(2, 3), (-3, 2), \}$
Sketch of the proof

Definition

For $C \in PL(2, e, q)$ and $c \in C$ we define the set $\omega(c) = \{v_1, \ldots, v_\tau\}$ where the adjacent balls of $B(c, e)$ are exactly $B(c + v_i, e)$ for $1 \leq i \leq \tau$.

$\omega(3, 11) = \{(2, 3), (-3, 2), (2, -3), \ldots\}$
Sketch of the proof

Definition

For $C \in PL(2, e, q)$ and $c \in C$ we define the set $\omega(c) = \{v_1, \ldots, v_\tau\}$ where the adjacent balls of $B(c, e)$ are exactly $B(c + v_i, e)$ for $1 \leq i \leq \tau$.

$$\omega(3, 11) = \{(2, 3), (-3, 2), (2, -3), (-3, -2)\}$$
Sketch of the proof

Kissing Lemma

If \(C \in \text{PL}(2, e, q) \) the set \(\omega(c) \) does not depend on \(c \). Moreover we have only two possibilities: \(\omega(c) = \{ \pm \nu_1, \pm \nu_2 \} \) (type 1) or \(\omega(c) = \{ \pm \nu_1, \pm \nu_2 \} \) (type 2), where \(\nu_1 = (e, e + 1) \), \(\nu_2 = (-(e + 1), e) \).
Sketch of the proof

Kissing Lemma

If $C \in PL(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c) = \{\pm \nu_1, \pm \nu_2\}$ (type 1) or $\omega(c) = \{\pm \overline{\nu}_1, \pm \overline{\nu}_2\}$ (type 2), where $\nu_1 = (e, e + 1)$, $\nu_2 = (- (e + 1), e)$.
Sketch of the proof

Kissing Lemma

If $C \in PL(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c) = \{\pm \nu_1, \pm \nu_2\}$ (type 1) or $\omega(c) = \{\pm \nu_1^\ast, \pm \nu_2^\ast\}$ (type 2), where $\nu_1 = (e, e + 1), \nu_2 = -(e + 1, e)$.
Sketch of the proof

Kissing Lemma

If $C \in PL(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c) = \{\pm \nu_1, \pm \nu_2\}$ (type 1) or $\omega(c) = \{\pm \nu_1, \pm \nu_2\}$ (type 2), where $\nu_1 = (e, e + 1), \nu_2 = (- (e + 1), e)$.

(Qureshi - Campinas University, Brazil)
Sketch of the proof

Kissing Lemma

If $C \in PL(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c) = \{\pm \nu_1, \pm \nu_2\}$ (type 1) or $\omega(c) = \{\pm \nu_1, \pm \nu_2\}$ (type 2), where $\nu_1 = (e, e+1), \nu_2 = -(e+1, e)$.
Kissing Lemma

If $C \in PL(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c) = \{\pm \nu_1, \pm \nu_2\}$ (type 1) or $\omega(c) = \{\pm \nu_1, \pm \nu_2\}$ (type 2), where $\nu_1 = (e, e+1), \nu_2 = (-e-1, e)$.

\[
\omega(c) = \{\nu_1, \nu_2,
\]
Sketch of the proof

Kissing Lemma

If $C \in PL(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c) = \{\pm \nu_1, \pm \nu_2\}$ (type 1) or $\omega(c) = \{\pm \nu_1, \pm \nu_2\}$ (type 2), where $\nu_1 = (e, e + 1), \nu_2 = -(e + 1, e)$.
Sketch of the proof

Kissing Lemma

If $C \in PL(2, e, q)$ the set $\omega(c)$ does not depend on c. Moreover we have only two possibilities: $\omega(c) = \{\pm \nu_1, \pm \nu_2\}$ (type 1) or $\omega(c) = \{\pm \nu_1, \pm \nu_2\}$ (type 2), where $\nu_1 = (e, e + 1), \nu_2 = (-(e + 1), e)$.

\[
\omega(c) = \{\pm \nu_1, \pm \nu_2, \ldots\}
\]
Sketch of the proof

Kissing Lemma

If \(C \in PL(2, e, q) \) the set \(\omega(c) \) does not depend on \(c \). Moreover we have only two possibilities: \(\omega(c) = \{ \pm \nu_1, \pm \nu_2 \} \) (type 1) or \(\omega(c) = \{ \pm \nu_1, \pm \nu_2 \} \) (type 2), where \(\nu_1 = (e, e + 1), \nu_2 = (-(e + 1), e) \).
Sketch of the proof

For \(e, q \in \mathbb{Z}^+ \) we define: \(q_e = e^2 + (e + 1)^2, \nu_1 = (e, e + 1), \nu_2 = (-e + 1, e), \eta_1 = (1, -(2e + 1)), \eta_2 = (0, q_e) \in \mathbb{Z}_q^2, D_e = \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z} \) and \(\overline{v} = (-x, y) \) is the conj. of \(v = (x, y) \).

1. **(Existence)** \(PL(2, e, q) \neq \emptyset \iff q \equiv 0 \pmod{q_e} \).

2. **(Characterization)** \(C \in PL(2, e, q) \iff C = c + D_e \) or \(C = c + \overline{D_e} \) where \(c \in C \) any (in particular \(C - c \) is a group).

3. **(Structure)** Let \(C \in PL(2, e, q) \) and \(G_C = C - c \) the group assoc. with \(C \).

 i) \(G_C \) is cyclic iff \(q = q_e \). In this case \(G_C \simeq \mathbb{Z}_q \) with generator
 \[\nu_1 = (e, e + 1) \] if \(G_C = D_e \) or \(\overline{\nu}_1 \) if \(G_C = \overline{D_e} \).

 ii) If \(q = h q_e \) com \(h > 1 \) then \(G_C \simeq \mathbb{Z}_q \times \mathbb{Z}_h \).

Moreover, \(G_C = \eta_1 \mathbb{Z} \oplus \eta_2 \mathbb{Z} \) if \(G_C = D_e \) or \(G_C = \overline{\eta}_1 \mathbb{Z} \oplus \eta_2 \mathbb{Z} \) if \(G_C = \overline{D_e} \).
Sketch of the proof

For $e, q \in \mathbb{Z}^+$ we define: $q_e = e^2 + (e + 1)^2$, $\nu_1 = (e, e + 1)$, $\nu_2 = -(e + 1), e)$, $\eta_1 = (1, -(2e + 1))$, $\eta_2 = (0, q_e) \in \mathbb{Z}_q^2$, $D_e = \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z}$ and $\bar{v} = (-x, y)$ is the conj. of $v = (x, y)$.

1. (Existence) $PL(2, e, q) \neq \emptyset \iff q \equiv 0 \pmod{q_e}$.

2. (Characterization) $C \in PL(2, e, q) \iff C = c + D_e$ or $C = c + \overline{D_e}$ where $c \in C$ any (in particular $C - c$ is a group).

3. (Structure) Let $C \in PL(2, e, q)$ and $G_C = C - c$ the group assoc. with C.

 i) G_C is cyclic iff $q = q_e$. In this case $G_C \cong \mathbb{Z}_q$ with generator $\nu_1 = (e, e + 1)$ if $G_C = D_e$ or $\bar{\nu}_1$ if $G_C = \overline{D_e}$.

 ii) If $q = hq_e$ com $h > 1$ then $G_C \cong \mathbb{Z}_q \times \mathbb{Z}_h$.

 Moreover, $G_C = \eta_1 \mathbb{Z} \oplus \eta_2 \mathbb{Z}$ if $G_C = D_e$ or $G_C = \overline{\eta_1} \mathbb{Z} \oplus \eta_2 \mathbb{Z}$ if $G_C = \overline{D_e}$.
For the second part...

Let $C \in PL(2, q, e)$ and fix any $c \in C$.
Sketch of the proof

For the second part...

Let $C \in PL(2, q, e)$ and fix any $c \in C$.

For the kissing lemma; $c + \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z} \subseteq C$.
Sketch of the proof

For the second part...

Let $C \in PL(2, q, e)$ and fix any $c \in C$.

For the kissing lemma; $c + \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z} \subseteq C$.

For the other inclusion, if $c' \in C$ it is sufficient to consider a chain of adjacent balls from $B(c', e)$ to $B(c, e)$ and use kissing lemma again.
Sketch of the proof

For \(e, q \in \mathbb{Z}^+ \) we define: \(q_e = e^2 + (e + 1)^2, \nu_1 = (e, e + 1), \nu_2 = (-(e + 1), e), \eta_1 = (1, -2(e+1)), \eta_2 = (0, q_e) \in \mathbb{Z}^2, D_e = \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z} \) and \(\overline{\nu} = (-x, y) \) is the conj. of \(\nu = (x, y) \).

1. (Existence) \(PL(2, e, q) \neq \emptyset \iff q \equiv 0 \pmod{q_e} \).

2. (Characterization) \(C \in PL(2, e, q) \iff C = c + D_e \) or \(C = c + \overline{D_e} \) where \(c \in C \) any (in particular \(C - c \) is a group).

3. (Structure) Let \(C \in PL(2, e, q) \) and \(G_C = C - c \) the group assoc. with \(C \).

 i) \(G_C \) is cyclic iff \(q = q_e \). In this case \(G_C \cong \mathbb{Z}_q \) with generator \(\nu_1 = (e, e + 1) \) if \(G_C = D_e \) or \(\overline{\nu_1} \) if \(G_C = \overline{D_e} \).

 ii) If \(q = hq_e \) com \(h > 1 \) then \(G_C \cong \mathbb{Z}_q \times \mathbb{Z}_h \).

Moreover, \(G_C = \eta_1 \mathbb{Z} \oplus \eta_2 \mathbb{Z} \) if \(G_C = D_e \) or \(G_C = \overline{\eta_1} \mathbb{Z} \oplus \eta_2 \mathbb{Z} \) if \(G_C = \overline{D_e} \).
Sketch of the proof

For the first part...

(\Rightarrow) Let $C \in PL(2, q, e)$ and fix any $c \in C$. We can suppose

$$C = c + \nu_1\mathbb{Z} + \nu_2\mathbb{Z} \text{ where } \nu_1 = (e, e + 1), \nu_2 = -(e + 1, e) \in \mathbb{Z}_q^2.$$
Sketch of the proof

For the first part...

\((\Rightarrow) \) Let \(C \in PL(2, q, e) \) and fix any \(c \in C \). We can suppose

\[
C = c + \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z} \text{ where } \nu_1 = (e, e + 1), \nu_2 = (-(e + 1), e) \in \mathbb{Z}_q^2.
\]

As \(\text{gcd}(e, e + 1) = 1 \Rightarrow |\nu_1 \mathbb{Z}| = q \).
Sketch of the proof

For the first part...

(⇒) Let $C \in PL(2, q, e)$ and fix any $c \in C$. We can suppose

$C = c + \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z}$ where $\nu_1 = (e, e + 1), \nu_2 = (- (e + 1), e) \in \mathbb{Z}_q^2$.

As $\gcd(e, e + 1) = 1 \Rightarrow |\nu_1 \mathbb{Z}| = q$. Using Lagrange Theorem

$q = |\nu_1 \mathbb{Z}| \cdot |\nu_1 \mathbb{Z} + \nu_2 \mathbb{Z}| = \#C \Rightarrow \#C = qh$ for some $h \in \mathbb{Z}^+$.

(⇐) Golomb and Welch. □
Sketch of the proof

For the first part...

(\Rightarrow) Let $C \in PL(2, q, e)$ and fix any $c \in C$. We can suppose

$$C = c + \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z}$$

where $\nu_1 = (e, e + 1)$, $\nu_2 = -(e + 1, e) \in \mathbb{Z}_q^2$.

As $\gcd(e, e + 1) = 1 \Rightarrow |\nu_1 \mathbb{Z}| = q$. Using Lagrange Theorem

$$q = |\nu_1 \mathbb{Z}| \mid |\nu_1 \mathbb{Z} + \nu_2 \mathbb{Z}| = \#C \Rightarrow \#C = qh \text{ for some } h \in \mathbb{Z}^+.$$

By the sphere packing condition:

$$\#B(0, e) \cdot \#C = q^2 \iff q_e \cdot qh = q^2 \iff q = q_e h \text{ and so } q \equiv 0 \pmod{q_e}.$$
Sketch of the proof

For the first part...

\((\Rightarrow)\) Let \(C \in PL(2, q, e)\) and fix any \(c \in C\). We can suppose

\[C = c + \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z} \text{ where } \nu_1 = (e, e + 1), \nu_2 = -(e + 1, e) \in \mathbb{Z}_q^2. \]

As \(\gcd(e, e + 1) = 1 \Rightarrow |\nu_1 \mathbb{Z}| = q.\) Using Lagrange Theorem

\[q = |\nu_1 \mathbb{Z}| + |\nu_1 \mathbb{Z} + \nu_2 \mathbb{Z}| = \#C \Rightarrow \#C = qh \text{ for some } h \in \mathbb{Z}^+. \]

By the sphere packing condition:

\[\#B(0, e) \cdot \#C = q^2 \iff q_e \cdot qh = q^2 \iff q = q_e h \text{ and so } q \equiv 0 \pmod{q_e}. \]

\((\Leftarrow)\) Golomb and Welch.

(Qureshi - Campinas University, Brazil)
Sketch of the proof

For \(e, q \in \mathbb{Z}^+ \) we define: \(q_e = e^2 + (e + 1)^2, \nu_1 = (e, e + 1), \nu_2 = (- (e + 1), e), \eta_1 = (1, -(2e + 1)), \eta_2 = (0, q_e) \in \mathbb{Z}_q^2, D_e = \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z} \) and \(\bar{\nu} = (-x, y) \) is the conj. of \(\nu = (x, y) \).

1. (Existence) \(PL(2, e, q) \neq \emptyset \iff q \equiv 0 \left(\text{mod } q_e \right) \).

2. (Characterization) \(C \in PL(2, e, q) \iff C = c + D_e \) or \(C = c + \overline{D_e} \) where \(c \in C \) any (in particular \(C - c \) is a group).

3. (Structure) Let \(C \in PL(2, e, q) \) and \(G_C = C - c \) the group assoc. with \(C \).

 i) \(G_C \) is cyclic iff \(q = q_e \). In this case \(G_C \cong \mathbb{Z}_q \) with generator
 \(\nu_1 = (e, e + 1) \) if \(G_C = D_e \) or \(\bar{\nu}_1 \) if \(G_C = \overline{D_e} \).

 ii) If \(q = hq_e \) com \(h > 1 \) then \(G_C \cong \mathbb{Z}_q \times \mathbb{Z}_h \).

 Moreover, \(G_C = \eta_1 \mathbb{Z} \oplus \eta_2 \mathbb{Z} \) if \(G_C = D_e \) or \(G_C = \overline{\eta_1} \mathbb{Z} \oplus \eta_2 \mathbb{Z} \) if \(G_C = \overline{D_e} \).
For the last part...

We can suppose that C is linear and type 1, that is $C = \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z}$ where

$\nu_1 = (e, e + 1), \nu_2 = -(e + 1, e).$
Sketch of the proof

For the last part...

We can suppose that \(C \) is linear and type 1, that is \(C = \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z} \) where

\[
\nu_1 = (e, e + 1), \nu_2 = -(e + 1), e).
\]

As

\[
\begin{pmatrix}
-1 & -1 \\
e + 1 & e
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2
\end{pmatrix}
= \begin{pmatrix}
\eta_1 \\
\eta_2
\end{pmatrix}
\]

and

\[
\text{det}
\begin{pmatrix}
-1 & -1 \\
e + 1 & e
\end{pmatrix}
= 1,
\]

then \(C = \eta_1 \mathbb{Z} + \eta_2 \mathbb{Z} \) where \(\eta_1 = (1, -(2e + 1)) \) and \(\eta_2 = (0, q_e) \) (in \(\mathbb{Z}_q^2 \)).
Sketch of the proof

For the last part...

We can suppose that C is linear and type 1, that is $C = \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z}$ where

\[
\nu_1 = (e, e + 1), \nu_2 = (-(e + 1), e).
\]

As

\[
\begin{pmatrix}
-1 & -1 \\
e + 1 & e
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2
\end{pmatrix} = \begin{pmatrix}
\eta_1 \\
\eta_2
\end{pmatrix}
\]

and

\[
\det \begin{pmatrix}
-1 & -1 \\
e + 1 & e
\end{pmatrix} = 1,
\]

then $C = \eta_1 \mathbb{Z} + \eta_2 \mathbb{Z}$ where $\eta_1 = (1, -(2e + 1))$ and $\eta_2 = (0, q_e)$ (in \mathbb{Z}_q^2).

Clearly $\eta_1 \mathbb{Z} \cap \eta_2 \mathbb{Z} = (0)$ (therefore $C = \eta_1 \mathbb{Z} \oplus \eta_2 \mathbb{Z}$)) and $|\eta_1 \mathbb{Z}| = q \cdot e$

$|\eta_2 \mathbb{Z}| = \frac{q}{q_e} = h$ from where we can conclude that

$C = \eta_1 \mathbb{Z} \oplus \eta_2 \mathbb{Z} \simeq \mathbb{Z}_q \times \mathbb{Z}_h$.
For the last part...

We can suppose that C is linear and type 1, that is $C = \nu_1 \mathbb{Z} + \nu_2 \mathbb{Z}$ where

$$\nu_1 = (e, e + 1), \nu_2 = (- (e + 1), e).$$

As

$$\begin{pmatrix} -1 & -1 \\ e + 1 & e \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}$$

and

$$\det \begin{pmatrix} -1 & -1 \\ e + 1 & e \end{pmatrix} = 1,$$

then $C = \eta_1 \mathbb{Z} + \eta_2 \mathbb{Z}$ where $\eta_1 = (1, -(2e + 1))$ and $\eta_2 = (0, q_e)$ (in \mathbb{Z}_q^2).

Clearly $\eta_1 \mathbb{Z} \cap \eta_2 \mathbb{Z} = (0)$ (therefore $C = \eta_1 \mathbb{Z} \oplus \eta_2 \mathbb{Z}$) and $|\eta_1 \mathbb{Z}| = q e$

$$|\eta_2 \mathbb{Z}| = \frac{q}{q_e} = h$$ from where we can conclude that

$$C = \eta_1 \mathbb{Z} \oplus \eta_2 \mathbb{Z} \simeq \mathbb{Z}_q \times \mathbb{Z}_h.$$

As $h|q$, it is clear that C is cyclic iff $h = 1$.
For $q = 1105$. There are exactly 5 codes in $\mathbb{Z}_{1105} \times \mathbb{Z}_{1105}$ up to translations and conjugation ($1105 = 5 \cdot 13 \cdot 17$). One of these codes is cyclic and the others are non-cyclic. These codes are given by:

- $C_1 = (1, -3)\mathbb{Z}_{1105} \oplus (0, 5)\mathbb{Z}_{1105}$ ($e = 1$)
- $C_2 = (1, -5)\mathbb{Z}_{1105} \oplus (0, 13)\mathbb{Z}_{1105}$ ($e = 2$)
- $C_3 = (1, -13)\mathbb{Z}_{1105} \oplus (0, 85)\mathbb{Z}_{1105}$ ($e = 6$)
- $C_4 = (1, -21)\mathbb{Z}_{1105} \oplus (0, 221)\mathbb{Z}_{1105}$ ($e = 10$)
- $C_5 = (23, 24)\mathbb{Z}_{1105}$ ($e = 23$)
More relevant results related to the Golomb-Welch conjecture

- $PL(2, e, e) \neq \emptyset$, $PL(n, 1, 2n + 1) \neq \emptyset$, $PL(3, 2) = \emptyset$, $PL(n, e) = \emptyset$ for $e \geq e_n$.

- $PL(n, e, q) = \emptyset$ for $3 \leq n \leq 5$, $e \geq n - 1$, $q \geq 2e + 1$ and for $n \geq 6$, $e \geq \frac{2n-3}{2\sqrt{2}} - \frac{1}{2}$

- $PL(n, 2, q) = \emptyset$ for $q = 13$, q not divisible by a prime $4 + 1$, and $q = p^k$ with p
 prime, $p \neq 13$ and $p < \sqrt{n^2 + (n + 1)^2}$.

- $PL(3, e) = \emptyset$ for $e \geq 2$.

- $PL(4, e) = \emptyset$ for $e \geq 2$.

More relevant results related to the Golomb-Welch conjecture

- $PL(n, 2) = \emptyset$ for $5 \leq n \leq 12$ for linear codes

P. Horak, O. Grosek. A new approach towards the Golomb-Welch conjecture. preprint

Future work

- Approach the classification of n-dimensional perfect single-error-correcting Lee codes using the geometry of polyominoes and combinatorial arguments.

- Prove the non-existence of e-perfect Lee codes in some dimension $n > 3$ using these techniques.

- Construct quasi-perfect Lee codes and dense codes using this approach.
Future work

- Approach the classification of n-dimensional perfect single-error-correcting Lee codes using the geometry of polyominoes and combinatorial arguments.

- Prove the non-existence of e-perfect Lee codes in some dimension $n > 3$ using these techniques.

 - S. Gravier, M. Mollard, C. Payan succeed for $n = 3$.

- Construct quasi-perfect Lee codes and dense codes using this approach.
Future work

- Approach the classification of n-dimensional perfect single-error-correcting Lee codes using the geometry of polyominoes and combinatorial arguments.
- Prove the non-existence of e-perfect Lee codes in some dimension $n > 3$ using these techniques.
- Construct quasi-perfect Lee codes and dense codes using this approach.
Future work

- Approach the classification of n-dimensional perfect single-error-correcting Lee codes using the geometry of polyominoes and combinatorial arguments.
- Prove the non-existence of e-perfect Lee codes in some dimension $n > 3$ using these techniques.
- Construct quasi-perfect Lee codes and dense codes using this approach.
- Is it possible to use combinatorial designs to obtain non-trivial condition on the parameters (n, e, q) of perfect Lee codes, like in the Hamming case?
Future work

- Approach the classification of n-dimensional perfect single-error-correcting Lee codes using the geometry of polyominoes and combinatorial arguments.
- Prove the non-existence of e-perfect Lee codes in some dimension $n > 3$.
- Construct quasi-perfect Lee codes and dense codes using this approach.
- Is it possible to use combinatorial designs to obtain non-trivial condition on the parameters (n, e, q) of perfect Lee codes, like in the Hamming case?

Some references in polyominoes

Thanks for your attention!