Blocking Sets of the Hermitian Unital

Dieter Jungnickel
Institut für Mathematik
Universität Augsburg

December 6, 2013
1. Blocking sets on Hermitian curves
2. A lower bound
3. Background: Unitals via difference sets
4. A geometric construction
5. Explicit examples

The talk is based on joint work with A. Blokhuis, A. Brouwer, V. Krcadinac, S. Rottey, L. Storme, T. Szőnyi and P. Vandendriessche.
Hermitian unitals

- **Hermitian curve** \(\mathcal{H}_{2,q^2} \) in \(PG(2, q^2) \):

\[
\mathcal{H}_{2,q^2} : (x \ y \ z) A \begin{pmatrix} x^q \\ y^q \\ z^q \end{pmatrix} = 0,
\]

with \(\det(A) \neq 0 \), \(A = (a_{ij}) \), and \(a_{ij}^q = a_{ji} \).

- Any line of \(PG(2, q^2) \) intersects \(\mathcal{H}_{2,q^2} \) in 1 point (tangent) or in \(q + 1 \) points (secant).

- A secant intersects \(\mathcal{H}_{2,q^2} \) in a Baer subline \(PG(1, q) \) (**block**).

- Classical \((q^3 + 1, q + 1, 1) \)-design (**Hermitian unital**).
$\mathcal{H}_{2,4}$ yields $AG(2,3)$ embedded in $PG(2,4)$
Blocking sets

Definition.

1. **Blocking set** B on \mathcal{H}_{2,q^2}: a set of points intersecting every block, but not containing any block completely.

2. **Minimal** blocking set B: no proper subset of B still is a blocking set.

Computer Results (A. Al-Azemi, A. Betten and D. Betten, *Unital designs with blocking sets*):

- 68806 different $2-(28, 4, 1)$ unital designs have blocking sets.
- $\mathcal{H}_{2,9}$: no blocking sets.
Theorem. Let B be a blocking set of a Hermitian unital \mathcal{U} in $\mathrm{PG}(2, q^2)$, $q = p^h$, p prime. Then

$$|B| \geq \frac{3q^2 - 2q - 1}{2} = q^2 - q + 1 + \frac{q^2 - 3}{2}.$$

The setup:

- Points of \mathcal{U}: $(x : y : z)$ with $(x : y : z) I [z^q : y^q : x^q]$, so $xz^q + y^{q+1} + zx^q = 0$.
- Tangents of \mathcal{U}: the lines $[t : u : v]$ with $tv^q + u^{q+1} + vt^q = 0$.
- Line at infinity: $z = 0$, the tangent in $(1 : 0 : 0)$.
\(B = S \cup \{(1 : 0 : 0)\} \)

\(S := \{(a, b) \mid (a : b : 1) \in B\} \)

Line \([1 : u : v] : X + uY + v = 0\)

Tangent line \([1 : u : v] : vq + v + u^{q+1} = 0\)

A unital point outside \(B\) is on \(q^2\) unital lines: \(|S| \geq q^2\)

\(|B| = |S| + 1 =: q^2 - q + 1 + k\)

Claim: \(k \geq \frac{1}{2}(q^2 - 3)\)

W.l.o.g. \(|S| < 2q^2 - q - 1\)

\(B\) minimal \(\implies b \neq 0\) for all \((a, b) \in S\)
The polynomial method

\[H(U, V) = C(U, V)R(U, V) \]

\[:= (V^q + V + U^{q+1}) \prod_{(a,b) \in S} (V + a + bU) \]

\(H(U, V) \) vanishes identically on \(\mathbb{F}_{q^2} \times \mathbb{F}_{q^2} \)!

\[H(U, V) = (V^{q^2} - V)f(U, V) + (U^{q^2} - U)g(U, V) \]

with

- \(\deg(f), \deg(g) \leq k + 1 \)
- \(\deg(f) = k + 1, \quad \text{deg}_V f = k \)
- Common linear factor $V + a_i + Ub_i$ of $f(U, V)$ and $g(U, V)$
 - non-necessary point for B.
- $C(U, V)$ divides $f(U, V)$ and $g(U, V)$
 - B blocking set of $\text{PG}(2, q^2)$, so $B = \mathcal{H}_{2,q^2}$
- f and g are coprime.
- If $f(u, v) = 0$, then also $g(u, v) = 0$.
- $f(u, V)$ is fully reducible over \mathbb{F}_{q^2} for all $u \in \mathbb{F}_{q^2}$.
- Let $f = f_0 \cdots f_m$ be the factorization of f into irreducible components.
Case 1

There is an irreducible factor f_0 of f with $\partial_V f_0 \not\equiv 0$.

- Put $m := \deg f_0$, so that $1 \leq m \leq \deg f = k + 1$.

Then $\deg_V (f_0) = m - \epsilon$, with $\epsilon \in \{0, 1\}$, and $\epsilon = 0$ for $m = 1$.

- Let N be the number of zeros of f_0 in \mathbb{F}_{q^2}.

- By Bézout’s theorem, $N \leq \deg f_0 \deg g \leq m(k + 1)$.

- As $f(u, V)$ is fully reducible for all u, the number M of zeros counted with multiplicity is $q^2(m - \epsilon)$.

- Now $N \geq M - m(m - 1)$.

- Hence $q^2(m - \epsilon) - m(m - 1) \leq m(k + 1)$.

- By case analysis, $k \geq \frac{1}{2}(q^2 - 3)$.
Case 2

\[\partial_V f_i \equiv 0 \text{ for all irreducible factors } f_i \text{ of } f. \]

- \(f(u, V) \) is a \(p \)-th power.
- The multiplicity of \(v \) as a root of \(H(u, V) = (V^{q^2} - V)f(u, V) \) is 1 \((\text{mod } p)\).
- All (non-horizontal) secants intersect \(B \) in 1 \((\text{mod } p)\) points.
- Summing over a parallel class of \(\mathcal{U} \):
 \[|B| \equiv (q^2 - q + 1) \cdot 1 \equiv 1 \pmod{p}. \]
- Summing over the \(q^2 \) lines through a point \(p \not\in B \):
 \[|B| \equiv q^2 \cdot 1 \equiv 0 \pmod{p}. \]
Represent $\text{PG}(2, q^2)$ via a planar difference set D in the cyclic group G of order $q^4 + q^2 + 1$.

Let D be fixed by every multiplier.

$G = A \times B$, where $|A| = q^2 - q + 1$ and $|B| = q^2 + q + 1$.

The cosets of A are arcs, the cosets of B Baer subplanes.

Elements of G: pairs (i, j) with $0 \leq i \leq q^2 - q$ and $0 \leq j \leq q^2 + q$.

The multiplier q^3 maps (i, j) to $(-i, j)$.

$g \mapsto D - q^3g$ defines a Hermitian polarity.

The absolute points give the Hermitian unital $\mathcal{U} = \{a + \beta \mid a \in A, 2\beta \in B \cap D\}$.

\mathcal{U} is the union of $q + 1$ cosets of A.
Theorem. \(\mathcal{H}_{2,q^2} \), with \(q \geq 7 \), has blocking sets of size

\[
\frac{q^3 + 1}{2} \quad \text{if } q \text{ is odd,}
\]

\[
\frac{q^3 - q^2 + q}{2} \quad \text{if } q \text{ is even.}
\]

Idea of proof:

- Let \(q \) be odd. Partition the \(q + 1 \) cosets of \(A \) into two sets of size \((q + 1)/2 \) such that the union of each is a blocking set of \(U \).
- If \(q \) is even, partition \(U \) into collections of \(q/2 \) and \(q/2 + 1 \) cosets of \(A \) forming blocking sets.
Hermitian curve partitioned into arcs

\[\mathcal{H}_{2,q^2} \]
Proof for \(q \) odd

The point set of \(U \) is \(A + \frac{1}{2}(B \cap D) \), and \(\frac{1}{2}(B \cap D) \) is an oval \(O \) in the Baer subplane \(B \).

Lines have three types of intersection pattern with the \(U \)-cosets of \(A \):

- A tangent of \(O \) is also a tangent of the unital \(U \).
- A secant of \(O \) intersects two \(U \)-cosets in a single point, and the remaining ones in 0 or 2 points. Both cases occur \((q - 1)/2 \) times.
- An external line of \(O \) intersects all \(U \)-cosets of \(A \) in 0 or 2 points. Both cases occur \((q + 1)/2 \) times.

The \((q^2 - q)/2 \) external lines give partitions of the set of \(U \)-cosets not leading to blocking sets of \(U \).

As \(\frac{1}{2} \left(\frac{q+1}{(q+1)/2} \right) > \frac{1}{2}(q^2 - q) \) for \(q \geq 7 \), the desired partition of the \(U \)-cosets exists.
The main result

- $q = 2$: Non-existence (well-known)
- $q = 3$: Non-existence by computer search
- $q = 4$: Method works!
- $q = 5$: Method fails, but a random greedy computer search gives blocking sets of all sizes from 45 to 81.

Main Theorem.
The Hermitian unital in $\text{PG}(2, q^2)$ contains a blocking set if and only if $q > 3$.

Theorem.

Let \(r \mid (q - 1) \), where \(r > 1 \) and \(4r^2 + 1 < q \).

Then the Hermitian unital in \(\text{PG}(2, q^2) \) contains a blocking set \(B \) of size
\[k + q(q - 1)^2/r \]
for some \(k \) with \(1 \leq k \leq q^2 - q + 1 \).

For \(r \sim \sqrt{q}/2 \), this result leads to proper blocking sets of size approximately
\[2q^2 \sqrt{q} \].
Sketch of proof for q odd

- We again use the Hermitian curve \mathcal{H} with affine equation $X^q + X + Y^{q+1} = 0$.

- Choose a non-square $k \in \mathbb{F}_q$ and $i \in \mathbb{F}_{q^2}$ with $i^2 = k$.
 Now the elements of \mathbb{F}_{q^2} are $x = x_1 + ix_2$, with $x_1, x_2 \in \mathbb{F}_q$.

- Put $B := \{(x, y) \in \mathcal{H} \mid y = u^r + iv, \text{ with } u, v \in \mathbb{F}_q\} \cup \{(1 : 0 : 0)\}$.
 So B contains $(1 : 0 : 0)$ and the points of \mathcal{U} on the horizontal lines $Y = u^r + iv$, $u, v \in \mathbb{F}_q$.

- Trivially, B meets every horizontal line.

- B meets every non-horizontal line of \mathcal{H} in z points, where $(q - 2 - (2r - 2)\sqrt{q})/r \leq z \leq (q + 1 + (2r - 2)\sqrt{q})/r$.
Consider a cyclic \((q^2 - q + 1)\)-arc \(A\) in \(\mathcal{H}\) and passing through \((1 : 0 : 0)\).

The \(q + 1\) lines through \((1 : 0 : 0)\) tangent to \(A\) form a dual Baer subline at \((1 : 0 : 0)\).

One of these lines is the tangent line \(Z = 0\) to \(\mathcal{H}\) in \((1 : 0 : 0)\), and the remaining \(q\) are secant lines to \(\mathcal{H}\).

Delete all points \(\neq (1 : 0 : 0)\) of the arc \(A \cap B\) from \(B\).

Delete all points \(\neq (1 : 0 : 0)\) lying on the above \(q\) secants of \(\mathcal{H}\) through \((1 : 0 : 0)\) from \(B\).

This gives the desired blocking set.
Thanks for your attention.