DG approximation of two-component miscible liquid-gas porous media flows

Alexandre Ern and Igor Mozolevski

Université Paris-Est, CERMICS, Ecole des Ponts, France

RICAM Workshop, Linz, October 2011
Introduction

- Multicomponent multiphase porous media flows are encountered in several applications
 - petroleum engineering (oil-water)
 - agricultural engineering, groundwater remediation (air-water)

- Such flows have received enhanced attention recently
 - gas sequestration
 - underground repositories of radioactive waste
The issue of radioactive waste I

- Production in France estimated at **2 kg/year/citizen**
 - various sources: electro-nuclear plants, health treatments, industrial processes, research, army

- Total conditioned radioactive waste amounts to **1.2 Mm³**

- **0.2%** of this volume contains **99%** of radioactivity

- **HAVL waste** High Activity, Long Life **1 Myears**
The issue of radioactive waste II

- HAVL waste could be stored in **underground repository**
 - **ANDRA** (French Agency for Radioactive Waste Management)
 - preliminary study established feasibility in **2005**
 - **clay host rock** located at ≈ 500 m depth
 - decision to be taken in **2014**, operating could start in **2025**

[Image of a map showing the location of a repository for radioactive waste]
The issue of radioactive waste III

A Possible Repository Architecture

- Limit the number of connections
- Spacing calculated in order to keep temperature low
- Specialized module for each category of waste

Underground research facility currently operating

Various academic research programs have been launched

GNR MOMAS Mathematical modeling and numerical simulation

www.gdrmomas.org
The issue of radioactive waste IV

- **Multiple barriers** to contain radionuclides (RN)
 - conditioning of waste, steel containers
 - manufactured barriers (bentonite, steel)
 - host rock (quite favorable properties)

- **Main time scales**
 - 10^2 years operating and observing the facility, reversibility
 - 10^4 years degradation of manufactured barriers
 - 10^6 years migration of RN through geosphere up to biosphere
Hydrogen production and migration

- Corrosion of metallic components (and marginally water radiolysis)
 \[\text{Fe} + 2\text{H}_2\text{O} \rightarrow \text{Fe(OH)}_2 + \text{H}_2 \]

- Understand hydrogen migration through host rock

- Two-phase (liquid, gas), two-component (water, hydrogen) flow, gas phase is compressible

- **Gas phase (dis)appearance**

![Graph](image)
Outline

- Setting
- Numerical method
- Results
Setting

- Governing equations
- Choice of main unknowns
- Mathematical model
Governning equations I

- **Basic notation**
 - subscript $\alpha \in \{l, g\}$ for phase
 - superscript $\beta \in \{w, h\}$ for component
 - ρ_α^β density of component β in phase α
 - s_α saturation of phase α, $s_l + s_g = 1$
 - p_α pressure of phase α

- **Mass conservation equation for each component**

$$
\Phi \sum_{\alpha \in \{l, g\}} \partial_t (s_\alpha \rho_\alpha^\beta) + \sum_{\alpha \in \{l, g\}} \nabla \cdot (\rho_\alpha^\beta \mathbf{q}_\alpha + \mathbf{j}_\alpha^\beta) = F^\beta
$$

with Φ porosity, \mathbf{q}_α volumetric flow rate of phase α, \mathbf{j}_α^β mass diffusion flux of component β in phase α

- [Bear ’78, Chavent & Jaffré ’78, Helmig ’97]
Governing equations II

- Darcy–Muskat law for volumetric flow rates (neglecting gravity)
 \[q_\alpha = -K \lambda_\alpha (s_\alpha) \nabla p_\alpha \quad \forall \alpha \in \{l, g\} \]
 with \(K \) absolute permeability, \(\lambda_\alpha \) mobility of phase \(\alpha \) (\(\lambda_\alpha = 0 \) if phase \(\alpha \) is absent)

- Capillary pressure \(\pi : [0, 1) \rightarrow [0, +\infty) \)
 \[p_g = p_l + \pi(s_g) \]

- Assume incompressibility in liquid phase and neglect water vaporization
 \[\varrho_l^w = \varrho_l^{\text{std}} \quad \varrho_g^w = 0 \]
Governing equations III

- Ideal gas law in gas phase and hydrogen phase changes in thermodynamic equilibrium (Henry’s law)

\[\varrho_g^h = C_g p_g, \quad \varrho_l^h = C_h p_g \]

- Fick’s law for dissolved hydrogen diffusion flux (dilute approximation)

\[j_l^h = -\Phi s_l D_l^h \nabla \varrho_l^h, \quad j_l^w = -j_l^h \]

- Governing equations

\[
\begin{align*}
\Phi \varrho_{l}^{\text{std}} \partial_t s_l + \nabla \cdot (\varrho_{l}^{\text{std}} q_l - j_l^h) &= F_w \\
\Phi \partial_t (\varrho_{l}^h s_l + C_g p_g s_g) + \nabla \cdot (\varrho_{l}^h q_l + C_g p_g q_g + j_l^h) &= F^h
\end{align*}
\]
Choice of main unknowns I

- Possible absence of gas phase in a priori unknown parts of domain

- Choosing one of the saturations as one of the main unknowns is inappropriate if gas phase disappears
 - s_g is identically 0
 - s_l is identically 1

- Unified formulation of governing equations highly desirable to avoid intricate numerical solvers

- Artificially enforcing $s_g \geq \epsilon > 0$ is inappropriate (can lead to both dissolved hydrogen and gas pressure overestimation)
Choice of main unknowns II

- Following [Bourgeat, Jurak & Smaï ’09], we choose as main unknowns

\[y = (y_1, y_2), \quad y_1 := p_l, \quad y_2 := \rho^h_l \]

allowing for a **unified formulation** including gas phase disappearance

See also
- [Jaffré & Sboui ’10] for a reformulation based on complementary constraints
- [Abadpour & Panfilov ’09] for method with negative saturations
Choice of main unknowns III

- Gas saturation recovered from capillarity and thermodynamic equilibrium

\[s_g(p_l, \varrho_l^h) = s_g(y) = \pi^{-1} \left(\frac{y_2}{C_h} - y_1 \right) \]

\(\pi^{-1} : \mathbb{R} \rightarrow [0, 1) \) inverse capillary pressure function extended by zero

\(s_g \) is a **continuous function** of \(y \)

- **Continuously differentiable** for van Genuchten capillary pressure model
- **Not differentiable** at entry pressure for Brooks–Corey model
Mathematical model I

- Nondimensional form
 - reference pressure p_0 (1 MPa), reference density $C_h p_0$ (15 g/m3)
 - mass conservation equations scaled by ρ_{std} and $C_h p_0$

- Governing equations

$$
\partial_t b_1(y) - \nabla \cdot (A_{11}(y) \nabla y_1 + A_{12}(y) \nabla y_2) = F_1 \\
\partial_t b_2(y) - \nabla \cdot (A_{21}(y) \nabla y_1 + A_{22}(y) \nabla y_2) = F_2
$$

with $b_i(y)$ nondimensional and $A_{ij}(y)$ in m2/s

- IC on y, BC either Dirichlet on y or Neumann on total fluxes

$$
\sigma_i(y) = \sum_{j \in \{1,2\}} A_{ij}(y) \nabla y_j
$$
Mathematical model II

- **System coefficients**

\[
\begin{align*}
 b_1(y) &= -\Phi s_g(y) \\
 b_2(y) &= \Phi a(s_g(y)) y_2 \\
 A_{11}(y) &= p_0 K \lambda_l(1 - s_g(y)) \\
 A_{12}(y) &= -(C_{h}p_0/\varrho_{l}^{\text{std}})\Phi(1 - s_g(y))D_{l}^{h} \\
 A_{21}(y) &= y_2 p_0 K \lambda_l(1 - s_g(y)) \\
 A_{22}(y) &= y_2 p_0 K \lambda_g(s_g(y))\omega + \Phi(1 - s_g(y))D_{l}^{h}
\end{align*}
\]

with \(a(s) = 1 + (\omega - 1)s\) and \(\omega = C_{g}/C_{h} (\approx 50)\)

- First equation is **parabolic** in \(y_1\), degenerating into **elliptic** if gas phase disappears

- Second equation is **parabolic** in \(y_2\), degenerating into **elliptic** if dissolved hydrogen disappears
Mathematical model III

- **Structure of space differential operator**

- **Ellipticity iff**

 \[(A_{12} + A_{21})^2 < 4A_{11}A_{22}\]

- **Typical orders of magnitude (in \(\mu m^2/s\))**

 \[A_{11} \approx 50, \quad A_{12} \approx 0.7, \quad A_{21} \approx 50, \quad A_{22} \approx 450\]

- **Under assumption** \(A_{12} \approx 0\), ellipticity iff \(p_0K\lambda_l(1) < 4\Phi D_l^h\)

- **Alternative assumption for ellipticity is smallness condition on hydrogen** [Mikelić ’09]
Mathematical model IV

- Under assumption $A_{12} \approx 0$, change of variables

 $$y_1 = u_1 + \omega^{-1} e^{\omega u_2} \quad y_2 = e^{\omega u_2}$$

 yields coupled elliptic-parabolic system [Smaï ’09]

 $$\partial_t b^*(u) - \nabla \cdot (A^*(u) \nabla u) = F$$

- b^* is the gradient of a convex potential
- $A^*(u)$ is symmetric positive definite
- Fits Alt–Luckhaus theory for existence of weak solutions
- See also [Amaziane, Jurak & Žgalić-Keko ’11; Khalil & Saad ’11] for mathematical analysis of compressible immiscible case
Numerical method

- Time discretization: backward Euler
- Linearization: inexact Newton
- Space discretization: discontinuous Galerkin (dG)
Time discretization

Recall governing equations \((i \in \{1, 2\})\)

\[
\partial_t b_i(y) - \sum_{j \in \{1, 2\}} \nabla \cdot (A_{ij}(y) \nabla y_j) = F_i
\]

Time discretization by **backward Euler scheme** \((i \in \{1, 2\})\)

\[
\frac{1}{\tau^m} (b_i(y^m) - b_i(y^{m-1})) - \sum_{j \in \{1, 2\}} \nabla \cdot (A_{ij}(y^m) \nabla y_j^m) = F_i^m
\]
Linearization

- **Incomplete Newton method** with fully coupled approach
 - fixed-point for nonlinearities in diffusion operator
 - linearization in time derivative

- For all $m = 1, \ldots, M$ (time loop) and for all $l \geq 0$ (linearization loop), find $y_{m,l+1}^i$ s.t. ($i \in \{1, 2\}$)

\[
\sum_{j \in \{1, 2\}} \frac{1}{\tau_m} \partial_j b_i(y_i^m) y_{j,l+1}^m - \sum_{j \in \{1, 2\}} \nabla \cdot (A_{ij}(y_i^m) \nabla y_{j,l+1}^m) = G_{i,l}^m
\]

yielding a system of linear coupled PDEs in space
Space discretization I

- dG methods can be viewed as
 - FE-based methods using discrete functions with jumps
 - FV-based high-order methods using numerical fluxes

- Vigorous development since the late 90s
 - [Cockburn, Karniadakis & Shu ’00; Hesthaven & Warburton ’08]
 - unified analysis Poisson problem [Arnold, Brezzi, Cockburn & Marini ’02], Friedrichs systems [AE & Guermond ’06]

- DG methods for two-phase immiscible porous media flows
 - [Bastian ’99; Bastian & Riviè re ’03; Eslinger ’05; Klieber & Riviè re ’06; Epshteyn & Riviè re ’07; AE, Mozolevski & Schuh ’09]

Space discretization II

- \{\mathcal{T}_\delta\}_{\delta>0} family of shape-regular meshes (possibly with hanging nodes)
- \mathcal{F}_\delta^i \text{ collects interfaces, }\mathcal{F}_\delta^b \text{ boundary faces, } \mathcal{F}_\delta := \mathcal{F}_\delta^b \cup \mathcal{F}_\delta^i
- Average operator \{\cdot\}, jump operator \[[\cdot]\], face normal \mathbf{n}_F
- For polynomial degree \(k \geq 1\),

\[V^k_\delta := \{v_\delta \in L^2(\Omega); \forall T \in \mathcal{T}_\delta, v_\delta|_T \in \mathbb{P}_k(T)\} \]

- Discrete pressure and hydrogen density both sought in \(V^k_\delta\)
Space discretization III

- **Interior penalty dG bilinear form** \((i, j \in \{1, 2\})\)

\[
a_\delta^{ij}(y_\delta; u_\delta, v_\delta) = \sum_{T \in T_\delta} \int_T A_{ij}(y_\delta) \nabla u_\delta \cdot \nabla v_\delta
- \sum_{F \in F^i_\delta \cup F^D_\delta} \int_F \mathbf{n}_F \cdot \{A_{ij}(y_\delta) \nabla u_\delta\}[[v_\delta]]
- \theta^{ij} \sum_{F \in F^i_\delta \cup F^D_\delta} \int_F \mathbf{n}_F \cdot \{A_{ij}(y_\delta) \nabla v_\delta\}[[u_\delta]]
+ \sum_{F \in F^i_\delta \cup F^D_\delta} \eta^{ij} \frac{\sigma k^2}{\delta_F} \int_F [[[u_\delta]][[v_\delta]]]
\]
Space discretization IV

- Discrete problem: For all $v_{i, \delta} \in V^k_{\delta}$, $i \in \{1, 2\}$,

$$
\sum_{j \in \{1, 2\}} \frac{1}{\tau^m} \int_{\Omega} \partial_j b_i(y^m_{\delta, l}) y^m_{j, \delta, l+1} v_{i, \delta} + \sum_{j \in \{1, 2\}} a_{\delta}^{ij}(y^m_{\delta, l}; y^m_{j, \delta, l+1}, v_{i, \delta}) = \int_{\Omega} G^m_{i, l} v_{i, \delta} + \text{bc's}
$$

- Penalty and symmetry terms only on diagonal blocks ($i = j$)

- Penalty strategy reasonable if ellipticity can be asserted
Space discretization V

- **DG method weakly enforces**
 - zero PDE residual on each element \(T \in \mathcal{T}_\delta \)
 - Dirichlet/Neumann BC’s on all boundary faces
 - on all mesh interfaces \(F \in \mathcal{F}_\delta \), the transmission conditions
 \[
 [[\gamma_i]] = 0, \quad n_F \cdot [[[\sigma_i(y)]]] = 0, \quad \forall i \in \{1, 2\}
 \]

- For heterogeneous media with different rock types
 - **weighted-averages** can be considered ([AE, Stephansen & Zunino ’09] for linear convection-diffusion)
 - for immiscible flows where gas saturation is one of the main unknowns, **nonlinear interface conditions** must be enforced [AE, Mozolevski & Schuh ’09]
Results

- Three test cases (1D)
 - Gas-phase (dis)appearance [MOMAS benchmark]
 - Ill-prepared initial condition [MOMAS benchmark]
 - Heterogeneous medium [Bourgeat, Jurak & Smaï ’11]

- In all cases, we use
 - van Genuchten model for capillary pressure and Mualem model for relative permeability
 - piecewise linear polynomials in dG method ($k = 1$)
 - 10^{-8} convergence criterion in L^2-norm for inexact Newton
Gas-phase (dis)appearance I

- Domain \(\Omega = (0, 200) \) (m) initially saturated by water
- Hydrogen injection at \(x = 0 \) during \(10^5 \) years
- Injection rate \(q_{\text{inj}} = 5.57 \cdot 10^{-6} \) kg /m\(^2\)/year
- Simulation time \(10^6 \) years
- Initial and BC’s

\[-n \cdot \sigma_1|_{x=0} = 0 \quad -n \cdot \sigma_2|_{x=0} = q_{\text{inj}} \chi[0, T_{\text{inj}}](t)\]

\[p_l|_{x=200} = 10^6 \text{ (Pa)} \quad \rho_l^h|_{x=200} = 0\]

\[p_l|_{t=0} = 10^6 \text{ (Pa)} \quad \rho_l^h|_{t=0} = 0\]

- Uniform mesh with 200 elements, time steps within \([125;5000]\) years
Gas-phase (dis)appearance II

Problem data

<table>
<thead>
<tr>
<th>Porous medium</th>
<th>Fluid characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Param.</td>
<td>Value</td>
</tr>
<tr>
<td>Φ</td>
<td>0.15 (-)</td>
</tr>
<tr>
<td>K</td>
<td>5×10^{-20} m2</td>
</tr>
<tr>
<td>P_r</td>
<td>2×10^6 Pa</td>
</tr>
<tr>
<td>n</td>
<td>1.49 (-)</td>
</tr>
<tr>
<td>s_{lr}</td>
<td>0.4 (-)</td>
</tr>
<tr>
<td>s_{gr}</td>
<td>0 (-)</td>
</tr>
</tbody>
</table>
Gas-phase (dis)appearance III

- Snapshots for times in $[0, 10^5]$ years

- Liquid pressure (MPa)
- Dissolved hydrogen molar density (mol/m3)
- Gas saturation (%)
Gas-phase (dis)appearance IV

- **Snapshots for times in** $[10^5, 10^6]$ **years**

![Graphs showing liquid pressure, dissolved hydrogen molar density, and gas saturation over time.](image)
Ill-prepared initial condition I

- Domain $\Omega = (0, 1)$ (m) with zero flux BC’s and no external sources
- Initial conditions

$$p_l(x, 0) = 10^6 \text{ (Pa)} \quad x \in (0, 1)$$

$$p_g(x, 0) = \begin{cases}
1.5 \cdot 10^6 \text{ (Pa)} & \text{if } x \in (0, 0.5) \\
2.5 \cdot 10^6 \text{ (Pa)} & \text{if } x \in (0.5, 1)
\end{cases}$$

so that system is initially out of mechanical equilibrium

- Similar medium and fluid parameters (except $K = 10^{-16} \text{ m}^2$) as previous case
- Simulation time 10^6 s
- Uniform mesh with 512 elements, time steps within $[1;10^4] \text{ s}$
Ill-prepared initial condition II

- Snapshots for times $[0,10^3]$ s

<table>
<thead>
<tr>
<th>Graph</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>Liquid pressure (MPa)</td>
</tr>
<tr>
<td>Middle</td>
<td>Dissolved hydrogen molar density (mol/m3)</td>
</tr>
<tr>
<td>Right</td>
<td>Gas saturation (%)</td>
</tr>
</tbody>
</table>

![Graphs showing liquid pressure, dissolved hydrogen molar density, and gas saturation over time for different initial conditions.](image)
Ill-prepared initial condition III

- **Snapshots for times** $[5 \cdot 10^3, 10^5]$ s

Liquid pressure (MPa)
Diss. hyd. molar density (mol/m3)
Gas saturation (%)
Ill-prepared initial condition IV

- Snapshots for times $[2 \cdot 10^5, 10^6]$ s

- Liquid pressure (MPa)
- Dissolved hydrogen molar density (mol/m3)
- Gas saturation (%)

![Graphs of liquid pressure, dissolved hydrogen molar density, and gas saturation over time](image-url)
Heterogeneous medium I

- Similar to test case 1 except that medium consists of two rock types occupying $\Omega_1 = (0, 20)$ and $\Omega_2 = (20, 200)$ (m) and that hydrogen injection is not stopped

- Rock occupying Ω_2 has a finer texture \Rightarrow capillary barrier at interface $x = 20$

- Uniform mesh with 160 elements (fitted to rock interface), time steps within $[200;20000]$ years
Heterogeneous medium II
Snapshots at times \(\{3 \cdot 10^4, 4.2 \cdot 10^4, 1.3 \cdot 10^5, 10^6\} \) years
Conclusions

- Two-component miscible liquid-gas porous media flow model motivated by hydrogen migration in underground radioactive waste repositories
- Choice of main unknowns to handle absence of gas phase
- DG space discretization combined with backward Euler scheme and incomplete Newton linearization
- Further work
 - deeper analysis of mathematical model
 - multidimensional test cases with heterogeneities