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Supply Function Models

Price of an order depends on volumes St(ω, ν). S may be estimated
from orders book :

Quantity 10 35 20 100
Price 110 112 117 125

Note that the price by share is non-decreasing. But there is no
influence of a large trade on the next moment orders book...
(Çetin-Jarrow-Protter ’06, Rogers-Singh ’05)
This includes Proportional Transaction Costs models

St(ν) = (1 + λ)St(0)1IR+(ν) + (1− µ)St(0)1IR−(ν)
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The discrete-time model (Çetin, Jarrow and Protter 2004,
2006)

Risky asset price is defined by

the marginal price St , t ≥ 0
the supply curve ν 7−→ S(., ν) :

S(St , ν) price per share of ν risky assets

with S(s, 0) = s

Z 0
t : holdings in cash, Zt : holdings in risky asset

Z 0
t+dt − Z 0

t + (Zt+dt − Zt) S (St , Zt+dt − Zt) = 0

=⇒ Z 0
T = Z 0

0 −
∑

(Zt+dt − Zt) S (St , Zt+dt − Zt)

= Z 0
0 +

∑
Zt (St+dt − St) + ....
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Continuous-time formulation of Model

Set Yt := Z 0
t + ZtSt , then :

YT = Y0 +
∑

Zt (St+dt − St)

−
∑

(Zt+dt − Zt) [S (St , Zt+dt − Zt)− S (St , Zt+dt − Zt)]

Assume ν 7−→ S(., ν) is smooth (unlike proportional transaction
costs models), then :

YT = Y0 +

∫ T

0
ZtdSt −

∫ T

0

∂S
∂ν

(St , 0) d〈Z c〉t

−
∑
t≤T

∆Zt [S (St ,∆Zt)− St ]

• d〈Z c〉t = Γ2
t d〈Z c〉t : the so-called Gamma...
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The Hedging Problem

Option / contingent claim : g(ST ), where

g : R+ −→ R has linear growth

Super-hedging problem

V := inf
{

y : Y y ,Z
T ≥ g(ST ) P− a.s. for some "admissible" Z

}
• For this formulation to be consistent with the financial problem,
we assume there is no liquidity cost at maturity T
• Here, admissibility is the crucial issue
• Non-Markov case : with new results, should be possible...
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The Çetin-Jarrow-Protter Negative Result

Without further restrictions on trading strategies, the problem
reduces to Black-Scholes ! Reason for this result is the following
result of Bank-Baum 04

Lemma For predictable W−integ. càdlàg process φ, and ε > 0

sup
0≤t≤1

∣∣∣∣∫ t

0
φrdWr −

∫ t

0
φε

rdWr

∣∣∣∣ ≤ ε

for some a.c. predictable process φε
t = φε

0 +

∫ t

0
αrdr

=⇒ If the "admissibility" set allows for arbitrary a.c. portfolio
Zt = Z0 +

∫ t
0 αudu, then V = V BS (with Γ = 0 !)
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A Convenient Set of Admissible Strategies

We show that liquidity cost does affect V , perfect replication
is possible, and hedging strategy can be described (formally)

Definition Z ∈ A if it is of the form

Zt =
N−1∑
n=0

zn1I{t<τn+1} +

∫ t

0
αudu +

∫ t

0
ΓudSu

• (τn) is an ↗ seq. of stop. times, zn are Fτn−measurable,
‖N‖∞ < ∞
• Z and Γ are L∞−bounded up to some polynomial of S
• Γt = Γ0 +

∫ t
0 audu +

∫ t
0 ξudWu, 0 ≤ t ≤ T , and

‖α‖B,b + ‖a‖B,b + ‖ξ‖B,2 < ∞, ‖φ‖B,b :=

∥∥∥∥∥ sup
0≤t≤T

|φr |
1 + SB

t

∥∥∥∥∥
Lb
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PDE characterization

Let

`(s) :=

[
4
∂S
∂ν

(s, 0)
]−1

Theorem Let −C ≤ g(.) ≤ C (1 + .) for some C > 0. Then
V (t, s) is the unique continuous viscosity solution of the dynamic
programming equation

−Vt(t, s) +
1
4
s2σ(t, s)2`(s)

 1−
(

Vss(t, s)
`(s)

+ 1
)+

2
 = 0

with V (T , s) = g(s) and −C ≤ V (t, s) ≤ C (1 + s) for every (t, s).

• Notice that there is no boundary layer =⇒ perfect hedge
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Hedging a Convex Payoff in the Frictionless BS Model

For a convex payoff : only possibility to super-hedge is the
Black-Scholes perfect replication strategy

Fig.: Hedging a convex payoff
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Hedging a Concave Payoff in the Frictionless BS Model

For a concave payoff : two possibilities to super-hedge
Black-Scholes perfect replication =⇒ Γ 6= 0 so pay liquidity
cost
Buy-and-hold =⇒ Γ = 0 no liquidity cost, but hedge might be
too expensive
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Hedging a Concave Payoff in the Frictionless BS Model

Fig.: Hedging a concave payoff
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Formal Description of a Hedging Strategy

• vss < −`(s) : Then the PDE satisfied by V reduces to

−Vt(t, s) +
1
4
s2σ(t, s)2`(s) = 0 (degenerate !)

buy-and-hold strategy is more interesting because liquidity cost is
too expensive

vss ≥ −`(s) : Then the PDE satisfied by V reduces to

−Vt(t, s)−
1
2
s2σ(t, s)2Vss −

s2σ(t, s)2

4`(s)
V 2

ss = 0

perfect replication
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The Technical Difficulty

Fig.: Which strategy to use exactly at the inflexion point ?
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A New Formulation : Intuition

Recall the state dynamics in Stratonovitch form :

dYt = Zt◦dSt −
(

1
2
Γt + Sν(St , 0)

)
σ2

t S
2
t dt

and the corresponding "natural" PDE :

∂V
∂t

= −
(

1
2
Vss + Sν(s, 0)

)
σ2s2

Main observation : We would obtain the same PDE if the
volatility of S is modified :

dYt = Zt◦dS ′t −
(

1
2
Γt + Sν(S ′t , 0)

)
σ2

t S
′
t
2dt

dS ′t = σ′tS
′
tdWt
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A New Formulation : Relax Controls and Change Volatility
(Intuition from L. Denis and C. Martini)

Consider the super-hedging problem :

V̂ := inf
{

y : YT ≥ g(ST ) P̂− a.s. for some Z ∈ ˆSM2
}

where

dYt = Zt◦dSt −
(

1
2
Γt + Sν(St , 0)Γ2

t

)
σ2

t St
2dt

Compare with

V := inf {y : YT ≥ g(ST ) P− a.s. for some Z ∈ A}

Then, V̂ = V
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A Dense Subset of Scales

C ([0, T ])d Canonical space, B canonical process, P Wiener measure

M :=
{
P′ : Prob. meas. s.t. P′[B0 = 0] = 1 and B ∈M2(P′)

}
U ⊂ S+

d given, U0 dense subset of U, T0 dense subset of [0, 1]

U0, simple functions : n ∈ N, 0 = t0 < . . . < tn = 1, ε > 0,

a(t) =
n∑

i=1

αi1I[ti−1, ti ), αi ∈ U0 ∩ [εId , ε−1Id ], ti ∈ T0

U0 = {ai , i ≥ 1} countable with
∑

i≥1 2−i ∫ 1
0 |ai (t)|dt < ∞

Ū0, simple processes : above ai ’s ∈ L2 (P,Fti )

Ū = H2(P, F, U)
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For a ∈ Ū0 : M3 Pa = distribution of the process
∫ t
0

√
a(t)dBt

• since
∑

i≥1 2−i ∫ 1
0 |a

i (t)|dt < ∞, the reference measure

P̂ = P̂U0,T0 :=
∑
i≥1

2−iPai ∈ M

• For every i ≥ 1, Pai ≺≺ P̂

• For every a ∈ Ū0, Pa ≺≺ P̂

• But for arbitrary a ∈ Ū , Pa 6≺≺ P̂

Our result will however not depend on the choice of (U0,T0)
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Properties of P̂

• P̂ ∈M, and d〈B〉t = ai (t)dt Pai−a.s.

Aggregartion Let X i ∈ H0(Pai ) be a family of processes such
that

X i
s = X j

s , s ≤ t whenever ai = aj on [0, t]

Then there is a unique process X ∈ H0(P̂) such that

X = X i dt × dPai − a.s.

=⇒ d〈B〉t = âtdt P̂−a.s.
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Problems with Null Sets

• Our analysis requires to define objects P̂-a.s. and then to look at
their decompositions under Pai for every i ≥ 1
• Standard stochastic analysis results are stated under the
assumption that the filtration satisfies the usual conditions...
• Let FP̂ be the filtration completed by P̂−null sets, then FP̂ is not
complete for Pai !

F+−adapted modification For any Z ∈ H0(P′, FP′), there is a
unique Z̃ ∈ H0(P′, F+) such that Z and Z̃ are P′−modifications
(i.e. Z = Z̃ dt × dP′−a.s.)

=⇒ Always consider F+−adapted versions
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Operators and Spaces

• Ht(y , z , γ)

H : Ω× [0, 1]×R×Sd −→ R, P ×B(R)×B(Rd )×B(Sd )−meas.

• Ft(y , z , a) : conjugate wrt γ

Ft(y , z , a) := sup
γ∈Sd

{
1
2
Tr[aγ]− Ht(y , z , γ)

}
Assumption H uniformly Lipschitz in (y , z), has linear growth
wrt γ, H(0, 0, 0) ∈ H2(Pa) for every a ∈ H2(S+

d ), and there is a
subset U ⊂ S+

d such that U ⊂ dom(Ft), t ≤ 1

Consider the reference measure P̂ := P̂U0,T0 , and let

Ĥ2 := ∩i≥1H2(Pai , F+), ˆSM2
:= ∩i≥1SM2 (

Pai , F+
)
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Formulation of Second Order Target Problems

• For Z ∈ ˆSM2
, define the controlled state :

dYt = −Ht(Yt , Zt , Γt)dt + Zt ◦ dBt , P̂− a.s.

where the process Γ is defined by

d〈Z , B〉t = Γtd〈B〉t P̂− a.s.

• The target problem is :

V̂ := inf
{

y : Y1 ≥ ξ P̂− a.s. for some Z ∈ ˆSM2
}
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First Relaxation of Second Order Target Problems

Relax the connection between Z and Γ

• For Z , G ∈ Ĥ2, define the controlled state :

dY 0
t = −Ht(Y 0

t , Zt , Gt)dt + Zt ◦ dBt , P̂− a.s.

=
1
2
Tr[Gtd〈B〉t ]− Ht(Yt , Zt , Gt)dt + Zt · dBt , P̂− a.s.

=

(
1
2
Tr[Gt ât ]− Ht(Yt , Zt , Gt)

)
dt + Zt · dBt , P̂− a.s.

where the process d〈B〉t = âtdt P̂−a.s.

• The relaxed problem is :

V̂ 0 := inf
{

y : Y 0
1 ≥ ξ P̂− a.s. for some Z , G ∈ Ĥ2

}
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First Relaxation of Second Order Target Problems

Clearly : V̂ ≥ V̂ 0

Proposition V̂ = V̂ 0

Based on extension of Bank and Baum to the nonlinear case : Let
(Y , Z ) be such that

Yt = y +

∫ t

0
hs(Ys , Zs , âs)ds +

∫ t

0
ZsdBs , P̂− a.s.

Then, ∀ ε > 0, there is a continuous FV process Z ε such that

Y ε
t = y +

∫ t

0
hs(Y ε

s , Z ε
s , âs)ds +

∫ t

0
Z ε

s dBs , P̂− a.s.

and sup
0≤t≤1

|Yt − Y ε
t | ≤ ε P̂− a.s.
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Further Relaxation of Second Order Target Problems

Second relaxation : forget Γ !

• Recall the (partial) convex conjugate of H :

Ft(y , z , a) := sup
γ∈Sd

{
1
2
Tr[aγ]− Ht(y , z , γ)

}
, a ∈ Sd

+

• For Z ∈ H2(P̂), define the controlled state :

dY 1
t = Ft(Y 1

t , Zt , ât)dt + Zt · dBt , P̂− a.s.

where the process d〈B〉t = âtdt P̂−a.s.

• The relaxed problem is :

V̂ 1 := inf
{

y : Y 1
1 ≥ ξ P̂− a.s. for some Z ∈ H2(P̂)

}
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Further Relaxation of Second Order Target Problems

Immediately follows that : V̂ 0 ≥ V̂ 1

Proposition V̂ 0 = V̂ 1

Since

Ft(y , z , a) := sup
γ∈Sd

{
1
2
Tr[aγ]− Ht(y , z , γ)

}
, a ∈ Sd

+

one can get as close as required by choosing an almost optimal
process Gt ...
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The Duality Result

Theorem Under some conditions, we have

V̂ = V̂ 0 = V̂ 1 = sup
a∈U0

Y a
0

where (Y a, Z a) is the unique solution of the BSDE

dY a
t = Ft(Y a

t , Z a
t , at)dt + Z a

t · dBt , Y a
T = ξ, Pa − a.s.

Assume further that

ξ = g(B.), and Ft(y , z , a) = φ(t, B., y , z , a)

for some uniformly continuous maps g and φ(., y , z , .), then

V̂ = V̂ 0 = V̂ 1 = sup
a∈Ū

Y a
0
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Sketch of proof of the duality result

Introduce :

Ŷ i
t := Pai − ess−sup

{
Y a

t : a ∈ Ū0, a = ai on [0, t]
}

• Partial dynamic programming : Ŷ i is a strong
F (., ai )−supermartingale, i.e. Ŷ iτ2

τ1
≤ Ŷ i

τ1
, Pai−a.s. where

Ŷ iτ2
t = Ŷ i

τ2
−

∫ τ2

t
Fs(Ŷ iτ2

s , Ẑ iτ2
t , ai (s))ds −

∫ τ2

t
Ẑ iτ2

s dBs

• Use (an adaptation of) the nonlinear Doob-Meyer decompositon
of Peng =⇒ for some non-decreasing process C :

Ŷ i
t = Ŷ i

0 +

∫ t

0
Fs(Ŷ i

s , Ẑ
i
s , ai (s))ds +

∫ t

0
Ẑ i

sdBs − Ct

• Aggregate the processes Ŷ i into a process Ŷ under P̂ by checking
the consistency condition...
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Example 1 : H affine in γ

Let

Ht(y , z , γ) = H0
t (y , z) +

1
2
Tr

[
σσTγ

]
Then

Ft(y , z , a) := sup
γ∈Sd

(
1
2
Tr[aγ]− Ht(y , z , γ)

)
=

{
H0

t (y , z) for a = σσT

∞ otherwise

In this case P̂ = PσσT
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Example 2 : Uncertain volatility

Denis and Martini 1999, Peng 2007

Let d = 1 for simplicity, and

Ht(y , z , γ) = H0
t (y , z) +

1
2
σ2γ+ − 1

2
σ2γ−

Then

Ft(y , z , a) = H0
t (y , z) for a ∈

[
σ2, σ2] and Ft(y , z , a) = ∞ otherwise

In this case P̂ = PU0 where U0 is any dense subset of
[
σ2, σ2]
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Conclusion

• Second order stochastic target problems have a suitable
fomulation by allowing for model uncertainty

• From the dual formulation, we have obtained existence for the
second relaxation of the target problem

• Future work : exploit this existence result to define a weak notion
of second order BSDEs

• Provide a rigorous hedging strategy in the context of the
Cetin-Jarrow-Protter model, and for the problem of hedging under
Gamma constraints.

Nizar TOUZI Dual Formulation of Second order Target Problems


	Introduction: the Cetin-Jarrow-Protter liquidity model
	A Reference Dominating Measure
	Second Order Stochastic Target Problems

