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Hedging in incomplete markets

@ Incomplete market: exact replication impossible.
@ Hedging is now an approximation problem.
@ Industry practice: sensitivities to risk factors
oC(t,S o .
Delta = (GSt) :infinitesimal moves, hedge with stock
0°C(t,S

Gamma = a(sét) . bigger moves; hedge with liquid options

@ Quadratic hedging: control the residual error

T 2
min E <C +/ ¢td5t — Y)
¢ 0

All these strategies require a continuously rebalanced portfolio.
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Discrete hedging

e Continuous rebalancing is unfeasible: in practice, the strategy
¢+ is replaced with a discrete strategy, leading to the hedging
error of the “second type”: error of approximating the
continuous portfolio with a discrete one.

@ The simplest choice is ¢f := @pe/p), h= T/n.

@ This discretization error has only been studied in the case of
continuous processes.

@ Two main approaches: weak convergence (CLT for hedging
error) and L? convergence
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Discrete hedging: the complete market case

@ Bertsimas, Kogan and Lo '98 introduced an asymptotic
approach allowing to study discrete hedging in continuous
time.

Suppose

dSSt = /,L(t, St)dt + O'(t, St)th
t

and we want to hedge a European option with payoff h(S7) using
delta-hedging ¢: = %

Peter Tankov Discrete hedging in models with jumps



Introduction
Hedging in incomplete markets
Discrete hedging

CLT for hedging error

The discrete hedging error is defined by

)
— h(S7) /O prds,

Then €% — 0 but the renormalized error \/ne’}- converges to

T a2c22 .
,/2/0 © St

where W* is a Brownian motion independent of W.
@ Hedging error decays as v/h.
@ It is orthogonal to the stock price.

@ The amplitude is determined by the gamma %
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Approximating hedging portfolios

Hayashi and Mykland '05 interpreted the discrete hedging error as
the error of approximating the “ideal” hedging portfolio fOT ¢+dS;
with a feasible hedging portfolio fOT o7 dS;

This makes sense in incomplete markets

Suppose ¢ and S are Itd process:
d(bt = ﬂtdt + &tth and dSt = /,Ltdt + Utth. Then

n T [ ) . 0°C
\/EET_. = 2/0 O'SO'SdWS7 (O't = 8525150}>
t
where g} ::/ (¢r — &7 )dSt.
0

Weak convergence of processes in the Skorokhod topology on
the space D of cadlag functions
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L? hedging error for continuous processes

@ Result by Zhang (1999): for call/put options, the L? hedging
error converges to the expected square of the weak limit.

T 2 2

@ The constant may be improved by an intelligent choice of
rebalancing dates (Brodén and Wiktorsson '08) but the
convergence rate cannot be improved.

@ See also related results by Gobet and Temam (01) and Geiss
(02), (06), (07).

Peter Tankov Discrete hedging in models with jumps



Introduction
Hedging in incomplete markets
Discrete hedging

Discretization error in presence of jumps

Our idea: study the discretization error

en = /0 (e — B0 )dS,

in presence of jumps in the underlying and the hedging strategy.

@ Approximation error of the Lévy-driven Euler scheme: Jacod
and Protter (98), Jacod (04)

@ Related results in the approximation of quadratic variation by
realized volatility

.
X2 = X3 + 2/ Xe—dX: + [X, X] T
0

@ Limit theorems for the approximation error of quadratic
variation: Jacod (08).
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Model setup: Lévy-1td processes

t t
X; = Xo+/ ,usds+/ osdWs +/ / «(2)J(ds x dz)
0 |Z|<1

/ /z>1 J(ds x dz).

J: Poisson random measure with intensity dt x v

p and o are cadlag (F)-adapted

v: 2 x [0, T] x R — R is such that (w,z) — 7:(2) is
Fi x B(R)-measurable Vt and t — ~:(z) is caglad Vw, z;

(2)? < Aup(2), / _ plaa) <o

with p positive deterministic and A caglad (F:)-adapted.



Model setup

Model setup

@ The stock price S is a Lévy-1t process with coefficients
H, 0,7,

@ The continuous-time strategy ¢ is a Lévy-1td process with
coefficients ji, 5, 7.

@ The agent uses the discrete strategy ¢f := ¢p¢/p) instead of
the continuous strategy ¢;.
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Weak convergence: the normalizing sequence

The normalizing factor need not be equal to +/n.
Suppose ¢ and S move only by finite-intensity jumps. If there is
only one jump between t; and t;41,
tiv1 tit1
¢t—d5t - (b?_ dSt
t; t;

Therefore Plef # 0] = O(1/n) and
n“ef — 0
in probability V.
More generally, if S and ¢ are Lévy-Ito processes without diffusion
parts,
Vnel — 0

in probability uniformly on t.



The asymptotic error process
Proof of the weak co

Weak convergence Delta-hedging in a L

Weak convergence

The discretization error satisfies

T t
\/56?—> \/2/0 Us&des*-i-ﬁ Z A¢ﬂ\/a ioT;

i T; <t
+VT > AST/1- (o,
i T; <t

W* is a standard BM independent from W and J,

(&k)k>1 and (&} )k>1 are two sequences of independent N(0, 1),
(Ck)k>1 is sequence of independent U([0,1])

(Ti)i>1 are the jump times of J enumerated in any order.
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The asymptotic error process
Proof of the k con nce

Weak convergence Delta-hed in a Lé et

Remarks on convergence

@ The hedging error \/nef converges weakly in
finite-dimensional laws but not in Skorohod topology.

@ The discretized error process \/EEZ[t/h] converges in Skorohod
topology to the same limit.
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The asymptotic error process
Proof of the weak convergence

Weak convergence
8 Delta-hedging in a Lévy market

Idea of the proof

Main tool: if (X") and (Y") are two sequences of processes such
that
sup | Xy — Y{| — 0 in probability
t

and X" — X weakly then Y — X weakly.

Peter Tankov Discrete hedging in models with jumps



The asymptotic error process
Proof of the weak convergence

Weak convergence
8 Delta-hedging in a Lévy market

Idea of the proof

Step 1 Remove the big jumps
Step 2 Remove the small jumps
Step 3 Now we can write

Se=Sy+SI+S+ 5!

st = [ (et [reteten)) as
S = /O redW,
Sl = /0 t / vs(2)J(ds x dz)

and ¢r = do + o7 + ¢S + o1
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The asymptotic error process
Proof of the weak convergence

Weak convergence
8 Delta-hedging in a Lévy market

Idea of the proof

The leading terms in the hedging error are

Jn / (6€ — ¢)dSE — \/? /0 0 dW;
S KT
\/ﬁ/(gbjt—qﬁft )dS :Z;:\/EA¢Ti/T; osdW,s
= VT Y Aér/Geior,

PiTi<t
Vi [ (65 - ot7)ds! = S vansr /(T’)asdvvs
VT ) ASr\/1-Gélor,—.

i T; <t
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Weak convergence Delta-hedging in a Lévy market

Application: delta-hedging in a Lévy market

Si = SpeXt, Xy =bt+oW,+ /zJ(ds X dz)

C(t,5) = EOIH(S¥T ), 6e= 58,50

Suppose

@ The Lévy measure is finite and has a regular density (e.g.
Merton model).

@ The payoff function H is piecewise smooth with a finite
number of discontinuities.
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Weak convergence Delta- hedglng ina Levy market

Application: delta-hedging in a Lévy market

Apply the 1t6 formula to get the decomposition for ¢:

2
g, — g2C(ES) :{a C

5 02 33C _,
2
0S otosS Fb+o/ )852 ety 2 8535 }d

82C oc _oc

Under the hypotheses on H and v it can be shown that the
coefficients do not explode in T: almost all trajectories end in a
point where H is smooth.
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The asymptotic error process
Proof of the weak convergence

Weak convergence Delta-hedging in a Lévy market

Application: delta-hedging in a Lévy market

The main result then implies \/ne} — Z; with

Zt_\/7/ 2552@dW*+\FZA f&US
+ \/?Z ASS\/?QE,{O—SS—@(S7 Ss-)
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The asymptoti ror process
Proof of the convergence

Weak convergence Delta-he gy e

Application: risk of a hedged option position

If E[Z?] < oo, we can estimate the risk of a hedged option
position using

Pllef] = 0] = P[|Z¢/v/n| = 0] < fE[Zzll/z
with (small jump size approximation)

ez~ [ € [s“ (7<)

(o*+o /(e 12(e224+1)(dx)).

Peter Tankov Discrete hedging in models with jumps



A surprising result
The limit theorem
k Jump-adapted rebalancing
L* convergence Conclusions

Convergence of L? error

We have proved the weak convergence

T T
e s 77 = ,/2/0 0s5sdW; + VT S AprV/Geior,
i
+VT Y AST/1- G,
but for some applications it is more convenient to have
E[(VneF)?] — E[Z3].
Surprising result: Even in the most simple cases, the L? error does

not converge to the expected square of the weak limit if there are
jumps both in S and in ¢.

Peter Tankov Discrete hedging in models with jumps



A surprising result

The limit theorem
k Jump-adapted rebalancing
L* convergence Conclusions

L? convergence: example

Suppose
Ot = St = N,

with N; a Poisson process with intensity A. Then

P [/OT(Nt — NYdN; # 0] -0 <i>

Jim £ [(ﬁ [ o )

but
)\2 T2
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Convergence of L2 error: general case

Let

and

A= 10 g2y /R 52(2)u(dz)

and suppose
@ (A:) and () are themselves Lévy-Itd processes.
@ Integrabiliity assumptions on A, i and ¢.

Then

. T [T addes L
im E[(v/nh)?] = E | / AAcdt + = > DDA
n 0 t<T
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Comparaison of L2 and weak convergence

Denote
Ac=at+ [ e widz) = AT+ AL
R
and similarly A, := AZ + A]. Then
T LI . -
E[Z?] = ~E /0 (A7A7 + AZA] + AJA7)ds + )~ AGTAAT
t<T

whereas

. T /7, .- . . .
lim E[(v/ne)?] = € [ /O (AZAT + ATAY + AJA7 + ATAY)ds

+ > AGH(AA] + AAY) |
t<T
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The limit ﬂe orem
k Jump-adapted rebalancing
L* convergence Conclusions

The rebalancing strategy

@ Suppose that ¢ and S are piecewise constant and that the
portfolio is rebalanced after each jump of ¢. Then the hedging
error is zero with a finite number of rebalancing dates.

@ In the general case, we suppose that the rebalancing is done
at deterministic dates T; = £ ~T and at random dates T: given
by the jump times of the P0|sson process
Ng := J([0, t] x (—o0, —¢) U (g, 0)).

@ When n — oo and € — 0, the convergence rate can be

defined in terms of the expected number of rebalancings
n+ TA;, with Ac = V(R )\ [—¢,¢]).
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The limit theorem

Denote A; = A; + 12 and let

t t t
f;;:/ [Lids—i—/ &deer// 5o (2)J(ds x dz),
0 0 0 Jiz|<e

A= i - / W@dz), A=+ / 52(2)w(dz).
|z|>e |z|<e

Then there exists C < oo such that for ¢ sufficiently small, Vn,

E [(/OT(EZ% - ¢/(t))d5t) 2]

C - C
< —E[sup A; sup A¢] + — E[sup A7 sup(ji5)’],
n t t n t t

where [(t) is the closest rebalancing date to the left of t.
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Example: exponential Lévy model

Let S follow a pure-jump exponential Lévy model

t
Xt:bt—l—/ /zJ(dsxdz),
o Jr

with the Lévy measure v satisfying

/ |z|Pv(dz) < 00, p>1.
|z|>1

Further, let ¢: = ¢(t, St) with ¢(-,-) smooth on [0, T] x R such
that there exist p > 0 and C < oo with

9¢(t,S)| | [00(t,S)| | |9°0(t,S)
‘ ot *' 05 ‘*’ 052
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Example: exponential Lévy model

In this example, A} = S2(b* + [ z?v(dz)), and it is easy to get

A< C(1+ ]St]p)/ Z?v(dz),

|z|<e

75 < C(1+SP)(L + / l2|(d2)).

|z|>e

therefore

E [(/OT(¢t - ¢/(t))d5t) 2]

2
< ¢ 2?v(dz) + £2 1 +/ |z|v(dz)
N J)z|<e n |z[>¢

Peter Tankov Discrete hedging in models with jumps



A surprising result

The limit theorem
k Jump-adapted rebalancing
L* convergence Conclusions

Example: exponential Lévy model

Suppose v(R) = oo, and let £ be chosen such that TA. = n. Since

2
1
Iim/ Z?v(dz) =0 and lim — 1+/ |z|v(dz) | =0,
€=0 J|z|<e e—0 e |z|>e

we have that

£ [(/OT(@_ _ ¢,(t))d5t>2] —o((n+ TA)™Y).

Moreover, if v(dx) ~ vf’ﬁ near zero then

E </OT(¢t - ¢/(t))d5t)2] = O((n+ TA.)~2@L/a)y,

Implementing this strategy does not require the knowledge of v.
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Concluding remarks

@ For bounded functionals (e.g., for estimating the Value at
Risk of a hedged position), the discretization error is
dominated by the diffusion component.

@ For unbounded functionals, the contribution of jumps is
equally important.

o In pure jump models, the rate of L? convergence can be
improved by jump-adapted rebalancing strategies.
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