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Hedging in incomplete markets

Incomplete market: exact replication impossible.

Hedging is now an approximation problem.

Industry practice: sensitivities to risk factors

Delta =
∂C (t,St)

∂S
: infinitesimal moves, hedge with stock

Gamma =
∂2C (t,St)

∂S2
: bigger moves; hedge with liquid options

Quadratic hedging: control the residual error

min
φ

E

(
c +

∫ T

0
φtdSt − Y

)2

All these strategies require a continuously rebalanced portfolio.
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Discrete hedging

Continuous rebalancing is unfeasible: in practice, the strategy
φt is replaced with a discrete strategy, leading to the hedging
error of the “second type”: error of approximating the
continuous portfolio with a discrete one.

The simplest choice is φn
t := φh[t/h], h = T/n.

This discretization error has only been studied in the case of
continuous processes.

Two main approaches: weak convergence (CLT for hedging
error) and L2 convergence
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Discrete hedging: the complete market case

Bertsimas, Kogan and Lo ’98 introduced an asymptotic
approach allowing to study discrete hedging in continuous
time.

Suppose
dSt

St
= µ(t,St)dt + σ(t,St)dWt

and we want to hedge a European option with payoff h(ST ) using
delta-hedging φt = ∂C

∂S .
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CLT for hedging error

The discrete hedging error is defined by

εn
T = h(ST )−

∫ T

0
φn

t dSt

Then εn
T → 0 but the renormalized error

√
nεn

T converges to√
T

2

∫ T

0

∂2C

∂S2
S2

t σ2
t dW ∗

t ,

where W ∗ is a Brownian motion independent of W .

Hedging error decays as
√

h.

It is orthogonal to the stock price.

The amplitude is determined by the gamma ∂2C
∂S2
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Approximating hedging portfolios

Hayashi and Mykland ’05 interpreted the discrete hedging error as
the error of approximating the “ideal” hedging portfolio

∫ T
0 φtdSt

with a feasible hedging portfolio
∫ T
0 φn

t dSt

• This makes sense in incomplete markets
Suppose φ and S are Itô process:
dφt = µ̃tdt + σ̃tdWt and dSt = µtdt + σtdWt . Then

√
nεn

t ⇒
√

T

2

∫ t

0
σ̃sσsdW ∗

s ,

(
σ̃t =

∂2C

∂S2
Stσt

)
where εn

t :=

∫ t

0
(φt − φn

t )dSt .

• Weak convergence of processes in the Skorokhod topology on
the space D of càdlàg functions
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L2 hedging error for continuous processes

Result by Zhang (1999): for call/put options, the L2 hedging
error converges to the expected square of the weak limit.

lim
n→∞

nE [(εn
T )2] =

T

2
E

[∫ T

0

(
∂2C

∂S2

)2

S4
t σ4

s ds

]
.

The constant may be improved by an intelligent choice of
rebalancing dates (Brodén and Wiktorsson ’08) but the
convergence rate cannot be improved.

See also related results by Gobet and Temam (01) and Geiss
(02), (06), (07).
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Discretization error in presence of jumps

Our idea: study the discretization error

εn
t :=

∫ t

0
(φt− − φn

t−)dSt

in presence of jumps in the underlying and the hedging strategy.

Approximation error of the Lévy-driven Euler scheme: Jacod
and Protter (98), Jacod (04)

Related results in the approximation of quadratic variation by
realized volatility

X 2
T = X 2

0 + 2

∫ T

0
Xt−dXt + [X ,X ]T

Limit theorems for the approximation error of quadratic
variation: Jacod (08).

Peter Tankov Discrete hedging in models with jumps



Introduction
Model setup

Weak convergence
L2 convergence

Model setup: Lévy-Itô processes

Xt = X0 +

∫ t

0
µsds +

∫ t

0
σsdWs +

∫ t

0

∫
|z|≤1

γs(z)J̃(ds × dz)

+

∫ t

0

∫
|z|>1

γs(z)J(ds × dz).

• J: Poisson random measure with intensity dt × ν
• µ and σ are càdlàg (Ft)-adapted
• γ: Ω× [0,T ]× R → R is such that (ω, z) 7→ γt(z) is
Ft × B(R)-measurable ∀t and t → γt(z) is càglàd ∀ω, z ;

γt(z)2 ≤ Atρ(z),

∫
|z|≤1

ρ(z)ν(dz) < ∞

with ρ positive deterministic and A càglàd (Ft)-adapted.
Peter Tankov Discrete hedging in models with jumps



Introduction
Model setup

Weak convergence
L2 convergence

Model setup

The stock price S is a Lévy-Itô process with coefficients
µ, σ, γ;

The continuous-time strategy φ is a Lévy-Itô process with
coefficients µ̃, σ̃, γ̃.

The agent uses the discrete strategy φn
t := φh[t/h] instead of

the continuous strategy φt .
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Weak convergence: the normalizing sequence

The normalizing factor need not be equal to
√

n.
Suppose φ and S move only by finite-intensity jumps. If there is
only one jump between ti and ti+1,∫ ti+1

ti

φt−dSt =

∫ ti+1

ti

φn
t−dSt

Therefore P[εn
t 6= 0] = O(1/n) and

nαεn
t → 0

in probability ∀α.
More generally, if S and φ are Lévy-Itô processes without diffusion
parts, √

nεn
t → 0

in probability uniformly on t.
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Weak convergence

The discretization error satisfies

√
nεn

t →
√

T

2

∫ t

0
σs σ̃sdW ∗

s +
√

T
∑

i :Ti≤t

∆φTi

√
ζiξiσTi

+
√

T
∑

i :Ti≤t

∆STi

√
1− ζiξ

′
i σ̃Ti−.

W ∗ is a standard BM independent from W and J,
(ξk)k≥1 and (ξ′k)k≥1 are two sequences of independent N(0, 1),
(ζk)k≥1 is sequence of independent U([0, 1])
(Ti )i≥1 are the jump times of J enumerated in any order.
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Remarks on convergence

The hedging error
√

nεn
t converges weakly in

finite-dimensional laws but not in Skorohod topology.

The discretized error process
√

nεn
h[t/h] converges in Skorohod

topology to the same limit.
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Idea of the proof

Main tool: if (X n) and (Y n) are two sequences of processes such
that

sup
t
|X n

t − Y n
t | → 0 in probability

and X n → X weakly then Y n → X weakly.

Peter Tankov Discrete hedging in models with jumps



Introduction
Model setup

Weak convergence
L2 convergence

The asymptotic error process
Proof of the weak convergence
Delta-hedging in a Lévy market

Idea of the proof

Step 1 Remove the big jumps

Step 2 Remove the small jumps

Step 3 Now we can write

St = S0 + Sd
t + Sc

t + S j
t

Sd
t =

∫ t

0

(
µs +

∫
γs(z)ν(dz)

)
ds

Sc
t =

∫ t

0
σsdWs

S j
t =

∫ t

0

∫
γs(z)J(ds × dz)

and φt = φ0 + φd
t + φc

t + φj
t .
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Idea of the proof

The leading terms in the hedging error are

√
n

∫
(φc

t − φc,n
t )dSc

t →
√

T

2

∫ t

0
σs σ̃sdW ∗

s

√
n

∫
(φj

t − φj ,n
t )dSc

t =
∑

i

√
n∆φTi

∫ r(Ti )

Ti

σsdWs

→
√

T
∑

i :Ti≤t

∆φTi

√
ζiξiσTi

√
n

∫
(φc

t − φc,n
t )dS j

t =
∑

i

√
n∆STi

∫ Ti

l(Ti )
σ̃sdWs

→
√

T
∑

i :Ti≤t

∆STi

√
1− ζiξ

′
i σ̃Ti−.
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Application: delta-hedging in a Lévy market

St = S0e
Xt , Xt = bt + σWt +

∫
zJ(ds × dz)

C (t,S) = EQ [H(SeXT−t )], φt =
∂C

∂S
(t,St)

Suppose

The Lévy measure is finite and has a regular density (e.g.
Merton model).

The payoff function H is piecewise smooth with a finite
number of discontinuities.
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Application: delta-hedging in a Lévy market

Apply the Itô formula to get the decomposition for φ:

dφt = d
∂C (t,St)

∂S
=

{
∂2C

∂t∂S
+ (b + σ2/2)

∂2C

∂S2
St +

σ2

2

∂3C

∂S3
S2

t

}
dt

+ σ
∂2C

∂S2
StdWt +

∫
R

(
∂C

∂S
(t,St−ez)− ∂C

∂S
(t,St−)

)
J(dt × dz)

Under the hypotheses on H and ν it can be shown that the
coefficients do not explode in T : almost all trajectories end in a
point where H is smooth.
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Application: delta-hedging in a Lévy market

The main result then implies
√

nεn
t → Zt with

Zt =

√
T

2

∫ t

0
σ2S2

s

∂2C

∂S2
dW ∗

s +
√

T
∑

∆
∂C

∂S

√
ζiξiσSs

+
√

T
∑

∆Ss

√
1− ζiξ

′
iσSs−

∂2C

∂S2
(s,Ss−)
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Application: risk of a hedged option position

If E [Z 2
t ] < ∞, we can estimate the risk of a hedged option

position using

P[|εn
t | ≥ δ] ≈ P[|Zt/

√
n| ≥ δ] ≤ 1

δ
√

n
E [Z 2

t ]1/2

with (small jump size approximation)

E [Z 2
t ] ≈ T

2

∫ t

0
E

[
S4

s

(
∂2C

∂S2

)2
]

(σ4+σ2

∫
(ez−1)2(e2z+1)ν(dx)).
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Convergence of L2 error

We have proved the weak convergence

√
nεn

T → ZT :=

√
T

2

∫ T

0
σs σ̃sdW ∗

s +
√

T
∑

i

∆φTi

√
ζiξiσTi

+
√

T
∑

i

∆STi

√
1− ζiξ

′
i σ̃Ti−,

but for some applications it is more convenient to have

E [(
√

nεn
T )2] → E [Z 2

T ].

Surprising result: Even in the most simple cases, the L2 error does
not converge to the expected square of the weak limit if there are
jumps both in S and in φ.
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L2 convergence: example

Suppose
φt = St = Nt ,

with Nt a Poisson process with intensity λ. Then

P

[∫ T

0
(Nt− − Nn

t )dNt 6= 0

]
= O

(
1

n

)
but

lim
n→∞

E

[(√
n

∫ T

0
(Nt− − Nn

t )dNt

)2
]

=
λ2T 2

2
.
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Convergence of L2 error: general case

Let

At =
d〈S〉t

dt
= σ2

t +

∫
R

γ2
t (z)ν(dz)

and

Ãt =
d〈φ〉t

dt
= σ̃2

t +

∫
R

γ̃2
t (z)ν(dz)

and suppose

(At) and (µt) are themselves Lévy-Itô processes.

Integrabiliity assumptions on A, µ and φ.

Then

lim
n

E [(
√

nεn
T )2] = E

T

2

∫ T

0
AtÃtdt +

T

2

∑
t≤T

∆φ2
t ∆At

 .
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Comparaison of L2 and weak convergence

Denote

At = σ2
t +

∫
R

γ2
t (z)ν(dz) := Aσ

t + Aγ
t

and similarly Ãt := Ãσ
t + Ãγ

t . Then

E [Z 2] =
T

2
E

∫ T

0
(Aσ

t Ãσ
t + Aσ

t Ãγ
t + Aγ

t Ãσ
t )ds +

∑
t≤T

∆φ2
t ∆Aσ

t


whereas

lim
n

E [(
√

nεn
T )2] =

T

2
E

[∫ T

0
(Aσ

t Ãσ
t + Aσ

t Ãγ
t + Aγ

t Ãσ
t + Aγ

t Ãγ
t )ds

+
∑
t≤T

∆φ2
t (∆Aσ

t + ∆Aγ
t )

]
.
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The rebalancing strategy

Suppose that φ and S are piecewise constant and that the
portfolio is rebalanced after each jump of φ. Then the hedging
error is zero with a finite number of rebalancing dates.

In the general case, we suppose that the rebalancing is done
at deterministic dates Ti = i

nT and at random dates T̃i given
by the jump times of the Poisson process
Nε

t := J([0, t]× (−∞,−ε) ∪ (ε,∞)).

When n →∞ and ε → 0, the convergence rate can be
defined in terms of the expected number of rebalancings
n + Tλε, with λε = ν(R \ [−ε, ε]).
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The limit theorem

Denote A∗t = At + µ2
t and let

φε
t :=

∫ t

0
µ̃ε

sds +

∫ t

0
σ̃sdWs +

∫ t

0

∫
|z|≤ε

γ̃s−(z)J̃(ds × dz),

µ̃ε
s = µ̃s −

∫
|z|>ε

γs(z)ν(dz), Ãε
t = σ̃2

s +

∫
|z|≤ε

γ̃2
s (z)ν(dz).

Then there exists C < ∞ such that for ε sufficiently small, ∀n,

E

[(∫ T

0
(φt− − φl(t))dSt

)2
]

≤ C

n
E [sup

t
A∗t sup

t
Ãε

t ] +
C

n2
E [sup

t
A∗t sup

t
(µ̃ε

t )
2],

where l(t) is the closest rebalancing date to the left of t.
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Example: exponential Lévy model

Let S follow a pure-jump exponential Lévy model

dSt

St−
= dXt

Xt = bt +

∫ t

0

∫
R

zJ̃(ds × dz),

with the Lévy measure ν satisfying∫
|z|>1

|z |pν(dz) < ∞, p ≥ 1.

Further, let φt = φ(t,St) with φ(·, ·) smooth on [0,T ]× R+ such
that there exist p ≥ 0 and C < ∞ with∣∣∣∣∂φ(t,S)

∂t

∣∣∣∣+ ∣∣∣∣∂φ(t,S)

∂S

∣∣∣∣+ ∣∣∣∣∂2φ(t,S)

∂S2

∣∣∣∣ ≤ C (1 + |S |p).
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Example: exponential Lévy model

In this example, A∗t = S2
t (b2 +

∫
R z2ν(dz)), and it is easy to get

Ãε
t ≤ C (1 + |St |p)

∫
|z|≤ε

z2ν(dz),

|µ̃ε
t | ≤ C (1 + |St |p)(1 +

∫
|z|>ε

|z |ν(dz)),

therefore

E

[(∫ T

0
(φt− − φl(t))dSt

)2
]

≤ C

n

∫
|z|≤ε

z2ν(dz) +
C

n2

(
1 +

∫
|z|>ε

|z |ν(dz)

)2

.

Peter Tankov Discrete hedging in models with jumps



Introduction
Model setup

Weak convergence
L2 convergence

A surprising result
The limit theorem
Jump-adapted rebalancing
Conclusions

Example: exponential Lévy model

Suppose ν(R) = ∞, and let ε be chosen such that Tλε = n. Since

lim
ε→0

∫
|z|≤ε

z2ν(dz) = 0 and lim
ε→0

1

λε

(
1 +

∫
|z|>ε

|z |ν(dz)

)2

= 0,

we have that

E

[(∫ T

0
(φt− − φl(t))dSt

)2
]

= o((n + Tλε)
−1).

Moreover, if ν(dx) ∼ dx
|x |1+α near zero then

E

[(∫ T

0
(φt− − φl(t))dSt

)2
]

= O((n + Tλε)
−2(1∧1/α)).

• Implementing this strategy does not require the knowledge of ν.
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Concluding remarks

For bounded functionals (e.g., for estimating the Value at
Risk of a hedged position), the discretization error is
dominated by the diffusion component.

For unbounded functionals, the contribution of jumps is
equally important.

In pure jump models, the rate of L2 convergence can be
improved by jump-adapted rebalancing strategies.
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