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Outline
@ Motivation: risk minimizing portfolio problem

® Maximum principles for optimal control of FBSDE driven by Lévy
processes

@ a sufficient maximum principle
@ an equivalence principle
@ a Malliavin calculus approach

@ Application to risk minimizing portfolios
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Financial market set up

Filtered probability space (2, F,{F:}¢>o0, P).
o A risk free asset, with unit price So(t) =1 for all t € [0, T]
o A risky asset, with unit price S(t)

dS(t) :S(t_)[,u(t)dt+a(t)dB(t)+/ v(t, z)N(dt, dz)]; $(0) >0

e B(t): Fy-Brownian motion

e N(dt,dz) = N(dt, dz) — v(dz)dt: compensation of the jump measure
N(-,-) of a Lévy process 7(-), v being the Lévy measure of n(-).

e Rg =R\ {0}

o u(t),o(t) and (t,z): Fi-predictable processes s.t. y(t,z) > —1+¢
and
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Risk minimizing portfolio problem

The wealth process A, corresponding to a portfolio u is given by

dA(t) = A(t™ )u(t) [pu(t)dt + a(t)dB(t) + [, y(t, z)N(dt, dz)]
A(0) =a> 0.
(1)

Pb: find u* € Ag which minimizes the risk of the terminal wealth, i.e.

inf p(AT)) = pl(Ar-(T))

where p is a convex risk measure, i.e. a map satisfying convexity,
monotonicity and translation properties.
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A representation of convex risk measures

A convex risk measure p can be represented as:
p(F) = sup {Eq[—F] - ((Q)} (2)
QeP

for some family P of probability measures absolutely continuous wrt P
and some convex “penalty” function ( : P — R.
For example, the entropic risk measure is defined by:

p(F) = SipP{EQ[_F] —H(Q,P)}

where H is the relative entropy

en-e[En(2)

With the representation (2), the problem of minimizing the risk of the
terminal wealth leads to a stochastic differential game.
(Mataramvura-@ksendal)
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Representation of risk measures by BSDE

Definition: Define the risk pg(F) (associated to a convex function g) of
a financial position F as

pg(F) == Eg[-F] :=X;F(0) eR (3)
where X, F(0) is the value at t = 0 of the solution X(t) of the BSDE:

dX(t) = —g(X(t))dt + Y(£)dB(t) + [, K(t,z)N(dt, dz)
X(T) = —F.

Remark: When g(x) = 2x2, then pg coincides with the entropic risk
measure.
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Now, the risk minimizing portfolio problem

jnf pg(Au(T))

is equivalent to
inf X;(7)(0) (4)
ueA

where X;“(T)(t) is given by the BSDE

dX(t) = —g(X(t))dt + Y (t)dB(t) + [y, K(t,z)N(dt, dz)
X(T) = —Au(T).

and A(t) is given by a SDE.
This is an example of a stochastic control problem of a system of
FBSDEs driven by Lévy processes.
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Optimal Control with partial observation of FBSDEs

Forward system in the unknown process A(t)

dA(t) = b(t, A(t), u(t))dt + o(t, A(t), u(t))dB(t)
+ o (6 At), u(t), 2)N(dt, dz); € [0, T] (5)
A(0)=acR

Backward system in the unknown processes X(t), Y(t), K(t,z)

dX(t) = —g(t, (N) X(t), Y(t),u(t))dt + Y(t)dB(t)
+ J K(t,z)N(dt,dz); te[0,T] (6)
X(T)=cA(T), ceR\{0}
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Admissible controls

Consider a subfiltration £ C F; representing the information available to
the controller at time t, e.g.

Et = Fe—s)+ (6 > 0 constant)
i.e. the controller gets a delayed information flow

e Let Ag denote the family of admissible controls, contained in the set of
E:-predictable controls u(-) such that the system (5)—(6) has a unique
strong solution.

e U: given convex set s.t. u(t) € U, Vte [0, T]
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Optimal control problem

Performance functional:
/ F(E, A(E), X(E), Y (£), K(t, ), u(t))dt (7)
+ h(X(0)) + hg(A(T))}; ue Ag

where f hy, hy are given functions s.t.

E[/O [f(t, A(t), X (1), Y (), K(t,-),u(t))|dt+|h1(X(0))|+|h2(A(T))|} < 0.
Find ®¢ € R and u* € Ag such that

bg = sup J(u) = J(u") (8)
u€Ag
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Hamiltonian

The Hamiltonian is defined by

H(tvavxayakvua)‘vpaqu) (9)
= f(ta a,x,y, k7 U) +g(ta a,x,y, U))\+ b(t7 a, u)p

+o(t,a,u)g+ /R ~(t, a, u,z)r(z)v(dz)

We assume that H is Frechet differentiable (C!) in the variables a, x, y, k.
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Pair of FBSDEs in the adjoint processes

Forward system in the unknown process \(t)

9H

d)‘(t) = p) (t’ A(t)’ X(t)v Y(t)’ K(tv ')v u(t), )‘(t)v p(t), q(t)v r(tv '))dt
H -
+8_y()dB(t) + hROVkH()N(dt, dz)

N0 = HXO) (= TEx()

(10)
Backward system in the unknown processes p(t), g(t), r(t,-)
{dp(t) = —%—:l()dt—i—q(t)dB(t) +/ r(t, z)N(dt,dz); te]0, T]
p(T) = cA(T)+ hy(A(T))

(11)
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Sufficient conditional maximum principle

l'h(iorgm 1 ALet o € Ag with corresponding solutions
A X, Y,K,\ P, q,?. Suppose that

e The functions x — h;(x), i = 1,2 and
(a,x,y, k,u) — H(t,a,x,y, k, u, 3‘(t)v p(t),a(t), #(t,-))
are concave, for all t € [0, T]

o i(t) € . A A . A
argmaxveUE[H(t, A(t)’ X(t)’ Y(t)v K(t’ ')’ v, )‘(t)a b(t)a a(t)’ ?(t’ )) | gt]

Then (under some growth conditions) &i(t) is an optimal control i.e.

J(@) = sup J(v).

ueAg
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Choose u € A with corresponding solutions A, X, Y, K, \, p,q,r.
We write

~ ~

H(t) = H(th(t)v)A((t)a R(ta ')a fl(t), S‘(t)v ﬁ(t)v a(t)v ?(tv ))

H(t) = H(t,A(t),X(t), Y(t)v K(t7 ')7 u(t)v :\(t)a ﬁ(t)a a(t)a ?(t)(tv ))

and similarly with f(t), f(t), ... etc.
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J(o) = J(u) = h + b,
where -
h= E[/O {7(t) — F(e)) ]
and
b = E[m(X(0)) = h(X(0)) + ha2(A(T)) = ha(A(T))].
Using definition of H=f + g\ + bp+ og + fRO ~vrv(dz) we have

Since h; and h, are concave, we have

h(X(0)) — hi(X(0)) = (X(0) = X(0))h1(X(0)) = (X(0) — X(0))A(0).

~

ha(A(T)) — ha(A(T)) > (A(T) = A(T))hp(A(T)).
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By the 1td formula and (6) and (11) we get
E[(X(0 = X(0))A(0)] = E[(X(T) = X(T)A(T)] (1)

~E[ [ & -x@dim + [ Mo -x) @)

N
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Since the function

(avxaya k, U) - H(tv a,x,y, k,u, 3‘(t)v ﬁ(t), f](t), ?(tv ))
is concave, we have

Ate) — H) > 220 (A) - A6+ 226X (1) - X(0)
+ GO = YO + [ Vi (K (e.2) - K(e,2)w(de)
+ ) (w(e) — o). (12)

Since @(t) €

argmaxE[H(t,,z\( t), )A(( t), \A’(t), f((t, ), u,j\(t),fa(t), g(t), ?(t,)) | &) we
deduce that

2 EIH(t A(D), X(2), V(0), K (£, 0,

A(t), B(1), a(2), P(t,)) | Ecduma(n(@(t) — u(£)) = 0
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We conclude that
J(i) — J(u) > 0.

Since this holds for all u € Ag, @ is optimal.
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A partial information equivalence principle for FBSDE's

Drawback with the previous result: the concavity assumption. Now
we remove this assumption and assume the following instead:

(Al) Vs € [0, T) and all bounded £-measurable RV 6(w)
the control

Os(t) = 0(w)x(s,1y(t) ; t € [0, T]

isin Ag.

(A2) Yu, € Ag where (3 is bounded, 36 > 0 s.t. the
control

u(t)+ypB(t); t€0,T]
belongs to Ag Vy € (=6, 0).
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Partial information equivalence principle

Theorem 2: suppose u € Ag with corresponding solutions
A X, Y, K, A\ p,q,r. Then the following are equivalent:

() L+ yB) |,o= 0 for all § € A

dy
(ii) 5
E %H(t,A(t),X(t),Y(t),K(t,-),u,)\(t),p(t),q(t),r(t,-))|5t =0
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Sketch of Proof

Define
d d
a(t) = d—yAu+yﬁ(t) ly=0; &(t) = d_yXu+yﬁ(t) ly=0

d d
n(t) = d_yYU—i—yﬂ(t) |y=0; ¢(t) = d_yKu+y,6’(taZ) ‘y=0

Note that
a(0) =0
1d 1
oT) = Ed—yXquyﬁ(T) ly=0= Ef(T)
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Assume that (i) holds. Then

d
0= d_yJ(u +yB) ly=o

=E

T2 0000+ 2eete) + 2 onte) + wr(e 20,21 + etoyate

+h(X(0)(0) + hé(A( ))e(T)]
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Using the 1td formula and after some computations, we get

T
E [ a—'Ll(t)ﬁ(t)dt] =0; B € Ag bounded .
0 8U

In particular, this holds for all 3 € Ag of the form
B(t) = Bs(t,w) = B(w)xis,n(t) ; £ € [0, T] (13)

for a fixed s € [0, T) where 6(w) is a bounded £;-measurable RV.
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This gives

E l/sTg—:l(t)th] =0.

Differentiating with respect to s we arrive at

E [88—’:(5)9} =0.

Since this holds for all bounded £s-measurable random variables 6, we

conclude that oK

This proves that (i) = (ii).

Conversely, since every bounded 3 € Ag¢ can be approximated by linear
combinations of controls 35 of the form (13), we can prove that (ii) =
(i) by reversing the above argument.
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A Malliavin calculus approach

@ Replace the adjoint processes p, q, r given by BSDEs by p, g,
7 given directly in terms of the parameters and state of the
system.

@ Moreover, this approach allows non-Markovian systems.

dA(t) = b(t, A(t), u(t),w)dt + o(t, A(t), u(t),w)dB(t)
+ Ja vt A(t), u(t), z,w)N(dt, dz);  t €0, T]

A(0)=a€cR

dX(t) = —g(t, A(t), X(t), Y(t), u(t),w)dt + Y(t)dB(t)
+ [o K(t,z)N(dt, dz); t €0, T]

X(T)=CcA(T), ceR\{0}

-
J(u) = E[/O f(t,A(t), X(t), Y(t), K(t,-), u(t),w)dt




Modified Hamiltonian

H(t,a,x,y, k,u, \,w) = f + A\g + bp(t) + oq(t) + / YH(t, z)v(dz),
Ro

where

El(t) = th?(t)
?(t,Z) = Dt,zﬁ(t)

D.F : Malliavin derivative wrt B(-) (at t) of arv F.
Dy, F: Malliavin derivative wrt N(-,-) (at t,z) of F.
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——(s)G(t,s)ds
with

K(t) = hy(A(T)) + c\(T) + : %(s)ds

Ho(s, a,x, u) = X(s)g + K(s)b + DsK(s)o + / D, K (s)yv(dz)

G(ts) = exp </{ —%<—( ))2}dr+ sa_a(,)dB(r)
+/t /Roln(l—ka—Z(rz (dr. dz) + / [ In 1+l)—— U(dz)dr ;s > ¢

X(t) given by the same (forward) equation as for X but H replaced by H:

~ oH

+%()d8(t)+ ViH(O)N(dr, dz) ; t € [0, T]

(t, A(t), X(t), Y(t), K(t,-), u(t), \(t))dt

Maximum principles for optimal control of FBSDE with jumps
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Main result

Theorem 3: Let u € A, with corresponding solutions
of

A(t), X(t), Y (t), K(t,z) and X(t). Assume that hy(A(T)), M(T), 8a(t)

H
and u(s)G(t,s) are Malliavin differentiable to all s > t and satisfy the

conditions for the use of duality formulae when necessary. Then the
following are equivalent:

(%) diyJ(u + y03) |y=0= 0 for all bounded 5 € Ag¢
d ~ -
Q E EH(t,A(t),X(t), Y(t), K(t), u, A(t))u=u(e) | | =0

for a.a. (t,w) € [0, T] x Q.
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Duality formulae for Malliavin derivatives

E [F/OTcp(s)dB(s)] =E l/OTgo(s)Dsts
[ / Rowsz (dsdz)]—E

valid for all Malliavin differentiable F and F;-predictable processes ¢ and
1) such that the integrals on the right converge absolutely.

/ Roz/J s z)DstV(dz)dl ,

Agnés Sulem INRIA-Paris-Rocquencourt Maximum principles for optimal control of FBSDE with jumps



Application to risk minimizing portfolios

o Wealth process A(t) = A,(t):

{dA(t) = u(t) [a(t)dt + B(t)dB(t) + [ 6(t,z)N(dt, dz)] (15)

Ro
A(0)=a>0

where «, 3 and 6 are given predictable processes.
u(t) = w(t)A(t~): amount invested in the risky asset at time t.

o Corresponding BSDE for (X, Y, K) :

dX(t) = —g(t, X(t),w)dt + Y(t)dB(t) +/ K(t,z)N(dt, dz)
X(T) = ~Ay(T) °
(16)
g is a function s.t. (t,w) — g(t,x,w) is F-predictable Vx.

e Performance functional:

J(u) = Xu(0)
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Modified Hamiltonian:

H(t,a,x,y, k, u,\,w)

= Ag(t,x) + va(t)p(t) + ub(t)g(t) + / uf(t, z)¥(t, z)v(dz),

Ro

where

Hence
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Condition for an optimal control &(t):

E [a(t)X(T) +B(t)DX(T) + [ 0(t, 2)De 2 A(T)v(dz) |5t] —0,

Ro

We can solve this Malliavin-differential eq in the unknown rv A\(T):

A(T) = E[\(T)] exp < /0 o(s)dB(s) — % /O o2(s)ds
+ /o /]RD In(1 4 ~(s,z))N(ds, dz)

T
+/ / {In(1+~(s,2)) — 7(5,2)}V(dz)ds>
o Jr
for some F-predictable processes o(t) and +(t, z) such that
a(t)+ B(t)o(t) + [ O(t, 2)v(t,z)v(dz) =0 for a.a. t,w. (17)
Ro

Condition (17) says that the measure Q defined by

dQ(w) = Efi((TT))] dP(w) on Fr is an ELMM for the process A(t).
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A special case

Suppose g(t,x,w) = —co(t) + c(t)x ; & = Fr. Then the solution X, of

ax () = —g(t,X(t),w)dt+Y(t)dB(t)+/ K(t, 2)(dt, dz); X(T) = —Ay(T)

satisfies

The minimal risk is

Xi(0) = —E[a(T)]EQ[As(T)] - E l/o Aa(t)Co(t)dt]

— _aEDs(T) - E VO )\f,(t)co(t)dr]
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